
WORD-LEVEL TRAVERSAL OF FINITE STATE MACHINES USING ALGEBRAIC GEOMETRY

Xiaojun Sun∗, Priyank Kalla∗, Florian Enescu†

∗Electrical & Computer Engineering, University of Utah, Salt Lake City, UT
†Mathematics & Statistics, Georgia State University, Atlanta, GA

{xiaojuns, kalla}@ece.utah.edu, fenescu@gsu.edu

Abstract—Reachability analysis is a tool for formal equiva-
lence and model checking of sequential circuits. Conventional
techniques are mostly bit-level, in that the reachable states,
transition relations and property predicates are all represented
using Boolean variables and functions. The problem suffers from
exponential space and time complexities; therefore, some form
of abstraction is desirable. This paper introduces a new concept
of implicit state enumeration of finite state machines (FSMs)
performed at the word-level. Using algebraic geometry, we show
that the state-space of a sequential circuit can be encoded,
canonically, as the zeros of a word-level polynomial F (S) over
the Galois field F2k , where S = {s0, ...,sk−1} is the word-level
representation of a k-bit state register. Subsequently, concepts of
elimination ideals and Gröbner bases can be employed for FSM
traversal. The paper describes the complete theory of word-level
FSM traversal and demonstrates the feasibility of the approach
with experiments over a set of sequential circuit benchmarks.

I. INTRODUCTION

In verification of sequential circuits, designers face prob-
lems of errors in specification models and implementations.
These errors are often modeled as “bad states” in the un-
derlying finite state machine (FSM) of the sequential circuit.
Existence of errors can be identified by detecting whether these
bad states are reachable from certain initial states. This re-
quires some form of reachability analysis [1]; it is required or
performed by various techniques such as (symbolic) simulation
[2], model checking [3], property directed reachability (PDR)
[4], etc. Contemporary techniques are mostly bit-level, in that
the transition relations, sets of states, property predicates are
mostly given in terms of bit-level or Boolean variables. This
often makes the representations too large to handle.

This paper presents a new approach to sequential verifica-
tion that performs reachability analysis of an arbitrary FSM
while operating implicitly at the word-level. The approach is
based on concepts from computational algebraic geometry.
Essentially, the transition relation of the FSM and the set of
initial states is represented by way of multivariate polyno-
mials over the Galois field F2k , where k corresponds to the
number of state elements, or state register bits {s0, . . . ,sk−1}.
Subsequently, using concepts from algebraic geometry, such
as projection of varieties, elimination ideals, quotients of
ideals and Gröbner Bases (GB), a word-level polynomial
F (S) is computed, where S = {s0, . . . ,sk−1} is a word-level
representation of the k state register bits. The set of reachable
states is encoded as the zeros of this word-level polynomial.

This approach can be considered as a way of word-level
abstraction of the state space of the FSM. Abstraction plays a

This work is sponsored in part by NSF grants CCF-1320335, CCF-1320385
and CCF-1619370.

978-1-5090-4270-8/16/$31.00 c⃝2016 IEEE

key role in addressing the scalability issues with sequential
verification [5], often by reducing the FSM’s state-space
to analyze. It is usually done by combining sets of states
with similar properties. In this work, the k bit-level state
variables are bundled together as one word-level variable, so
the reachable state space can be effectively encoded by a word-
level constraint expression. Such a word-level abstraction may
help overcome the state explosion problem.

Contribution: Any Boolean function over k-bit vectors
f : Bk→Bk can be uniquely mapped to a polynomial function
over k-bit words in the Galois field F2k , i.e. as polynomial
functions f : F2k → F2k [6]. Therefore, the transition relations
and sets of states (Boolean encoding) can be represented as
(word-level) elements over F2k . FSM traversal requires oper-
ations such as image computations, set intersections, unions
and complements, equivalence tests, etc. All these operations
can be implemented using computational algebraic geometry
over Galois fields. Moreover, since F2k ⊃ F2, it provides a
unified framework for both bit-level (B ≡ F2) and word-level
(F2k) constraints. Furthermore, values of state variables can
be represented as solutions (varieties) to a finite set of poly-
nomials (ideals). GB techniques can be subsequently applied
to transform such polynomial systems into a canonical form,
facilitating least fixed-point test (convergence). In this work,
all these concepts are applied in a synergistic fashion for word-
level reachability analysis. The approach can be generalized
to FSMs with different number of inputs and state register
bits, as any Boolean function f : Bn→ Bm can be modeled as
polynomial function f : F2k → F2k , where k = LCM(n,m).

Previous Work: The work of [7] derives a word-level
polynomial representation Z = F (A) for a combinational
circuit C with k-bit inputs A = (a0, . . . ,ak−1) and outputs
Z = (z0, . . . ,zk−1). They make use of a reduced GB computa-
tion of the polynomials of the circuit to derive the word-level
polynomial. We draw inspirations from [7] and further extend
the results with fundamental algebraic geometry concepts to
perform word-level FSM traversal. In our previous work [8],
GB techniques have been applied to verify sequential normal-
basis Galois field multipliers. This technique is inapplicable to
reachability analysis of arbitrary FSMs. The use of algebraic
geometry has been proposed for model checking [9] [10];
however, these approaches are a straight-forward application
of bit-level Boolean Gröbner basis engines in lieu of BDDs
or SAT solvers. In contrast, ours is a truly word-level and
geometric approach to reachability analysis.

Paper Organization: The paper is organized as follows. The
following section covers preliminary concepts. Section III de-
scribes the theory of word-level reachability computations and
presents a complete algorithm for word-level FSM traversal
based on various algebraic geometry concepts. Section IV

states some improvements which can be made on our approach
to avoid high computational complexity. Section V describes
our initial set of experiments that demonstrate the validity of
our approach. The limitations of the approach are analyzed and
the work currently underway is described. Finally, Section VI
concludes the paper.

II. PRELIMINARIES

Definition II.1. A Mealy finite state machine is a n-tuple M =
(Σ,O,S,S0,∆,Λ) where: i) Σ is the input label, O is the output
label; ii) S is the set of states, and S0 ⊆ S is the set of initial
states; iii) ∆ : S×Σ→ S is the next state transition function;
iv) Λ : S×Σ→ O is the output function.

Combinational

Logic

…x
1

x
m

… z
1

z
n

…

sk

s1

tk

t1

Combinational

Logic
R

E

G

r’0~r’k-1r0~rk-1

(a) (b)

Fig. 1: FSM models of sequential circuits

Typical sequential circuits are depicted as in Fig.1(a). Pri-
mary inputs are denoted x1, . . . ,xm ∈Σ, and the primary outputs
as z1, . . . ,zn ∈ O. Signals s1, . . . ,sk are the present state (PS)
variables, t1, . . . , tk the next state (NS) variables. We can define
two k-bit words denoting the PS/NS variables as there are
k flip-flops in the datapath: S = (s1, . . . ,sk), T = (t1, . . . , tk).
Transition function at the bit-level is defined as ∆i : ti =
∆i(s1, . . . ,sk,x1, . . . ,xm).

When the primary outputs of the FSM only depend on
the present states, i.e. Λ : S→ O, then the FSM is called a
Moore machine. For example, in some cases k-bit arithmetic
computations are implemented as Moore machines, where
input operands are loaded into register files R and the FSM is
executed for k clock cycles to obtain the result in R. We can
simplify these to the model in Fig.1(b). While our approach
works for both kinds of FSMs, we will consider only Mealy
FSMs in the paper.

A. Algebraic geometry concepts

Let B ≡ F2 ≡ {0,1}, Fq = F2k the finite (Galois) field
of q = 2k elements and R = F2k [x1, . . . ,xn] the polynomial
ring in n variables with coefficients from F2k . The field F2k

is constructed as F2k = F2[X] (mod P(X)), where P(X) is
an irreducible polynomial over F2. Let α be a root of the
irreducible polynomial P(X), i.e. P(α) = 0. Any element
A ∈ F2k can be represented as A = ∑k−1

i=0 aiαi, where ai ∈ F2.
The field F2k is therefore, a k-dimensional extension of the
base field F2: so, F2k ⊃ F2. Consequently, all operations
of addition and multiplication in F2k are performed modulo
the irreducible polynomial P(α) and coefficients are reduced

modulo 2; so −1 = +1 in F2k . Boolean operators in B are
mapped to operators in F2 ⊂ F2k as:

a∧b→ a ·b; a⊕b→ a+b

¬a→ 1+a; a∨b→ a+b+a ·b

Using these mappings we can write Boolean functions
as polynomials over F2k . Every function f : Bk → Bk can
be construed as a polynomial function over f : F2k → F2k .
Therefore, f can be represented by way of a unique, minimal,
canonical polynomial F (X) [6] [7].

A polynomial f = c1X1 + c2X2 + · · ·+ ctXt is written as
a finite sum of terms, where c1, . . . ,ct are coefficients and
X1, . . . ,Xt are monomials. A monomial ordering X1 > X2 · · ·>
Xt is imposed on the polynomials to process them systemat-
ically. Then, LT (f) = c1X1,LM(f) = X1 denote the leading
term and the leading monomial of f , respectively.

Ideals, Varieties and Gröbner Bases: Let F = { f1, . . . , fs}
denote the given set of polynomials. An ideal J ⊆ R generated
by polynomials f1, . . . , fs ∈ R is:

J = ⟨ f1, . . . , fs⟩= {
s

∑
i=1

hi · fi : hi ∈ Fq[x1, . . . ,xn]}.

The polynomials f1, . . . , fs form the basis or the generators
of J. We have to consider the set of solutions to the system
of polynomials equations f1 = · · · = fs = 0. The set of all
solutions to a given system of polynomial equations f1 = · · ·=
fs = 0 is called the variety, which depends upon the ideal
J = ⟨ f1, . . . , fs⟩ generated by the polynomials. The variety is
denoted by V (J) =V (f1, . . . , fs) and defined as:

V (J) =V (f1, . . . , fs) = {a ∈ Fn
q : ∀ f ∈ J, f (a) = 0},

where a = (a1, . . . ,an)∈ Fn
q denotes a point in the affine space.

We will denote by V (J) the complement of V (J), where
V (J) = (F2k)n−V (J).

An ideal may have many generating sets; i.e. it is possible
to have ideal J = ⟨ f1, . . . , fs⟩= ⟨h1, . . . ,hr⟩= · · ·= ⟨g1, . . . ,gt⟩
such that V (f1, . . . , fs) = V (h1, . . . ,hr) = · · · = V (g1, . . . ,gt).
A Gröbner basis (GB) is one such representation with many
important properties, including the fact that it is a canonical
representation of an ideal.

Definition II.2. [Gröbner Basis] [11]: For a monomial or-
dering >, a set of non-zero polynomials G = {g1,g2, · · · ,gt}
contained in an ideal J, is called a Gröbner basis for J iff
∀ f ∈ J, f ̸= 0 there exists i ∈ {1, · · · , t} such that LM(gi)
divides LM(f); i.e., G = GB(J)⇔ ∀ f ∈ J : f ̸= 0,∃gi ∈ G :
LM(gi) | LM(f).

The famous Buchberger’s algorithm [12], which is now
textbook knowledge [11], is used to compute a GB. Operating
on input F = { f1, . . . , fs}, and subject to the imposed term
order >, the algorithm computes G = GB(J) = {g1, . . . ,gt}.
One application of GB is that it can work as a quantification
procedure [13]. For this purpose, we introduce the concepts
of vanishing polynomials, and elimination ideals.

Fermat’s little theorem over Fq: For any α ∈ Fq,αq = α.
Therefore, the polynomial xq− x vanishes (= 0) over Fq, and
is called the vanishing polynomial of Fq. Denote by J0 = ⟨xq

1−
x1, . . . ,x

q
n− xn⟩ the ideal of all vanishing polynomials in R.

Gröbner bases can be used to eliminate (i.e. quantify)
variables from an ideal. Given ideal J = ⟨ f1, . . . , fs⟩⊂R, the lth

elimination ideal Jl is the ideal of Fq[xl+1, . . . ,xn] defined by
Jl = J∩Fq[xl+1, . . . ,xn]. Variable elimination can be achieved
by computing a Gröbner basis of J w.r.t. elimination orders:

Theorem II.1. (Elimination Theorem [11]) Let J ⊂
F2k [x1, . . . ,xn] be an ideal and let G be a Gröbner basis
of J with respect to a lexicographic (LEX) ordering where
x1 > x2 > · · · > xn. Then for every 0 ≤ l ≤ n, the set Gl =
G∩F2k [xl+1, . . . ,xn] is a Gröbner basis of the l-th elimination
ideal Jl .

Example II.1. Consider polynomials f1 : x2− y− z− 1; f2 :
x− y2− z− 1; f3 : x− y− z2− 1 and ideal J = ⟨ f1, f2, f3⟩ ⊂
C[x,y,z]. Gröbner basis G = GB(J) w.r.t. LEX term order
equals to g1 : x− y− z2− 1; g2 : y2− y− z2− z; g3 : 2yz2−
z4 − z2; g4 : z6 − 4z4 − 4z3 − z2. From observation, we find
that the polynomial g4 only contains variable z (x,y elimi-
nated), and polynomials g2,g3,g4 only contain variables y,z
(x eliminated). According to theorem II.1, G1 = G∩C[y,z] =
{g2,g3,g4} is the Gröbner basis of the 1st elimination ideal
of J and G2 = G∩C[z] = {g4} is the 2nd elimination ideal of
J, respectively.

Application to word-level abstraction: Assume that we
are given a combinational logic block C with input A =
(a0, . . . ,ak−1) and output Z = (z0, . . . ,zk−1). We can describe
this circuit with an elimination ideal J+J0 in F2k , where J is
the ideal generated by the polynomials corresponding to the
gates of the circuit and J0 is the ideal of vanishing polyno-
mials. The authors of [7] showed that for any combinational
logic block, a canonical word-level polynomial representation
can be derived through a GB computation with elimination
orders. They used a lexicographic (elimination) term order
with variables ordered as “bit-level variables of the circuit” >
“word-level output” Z > “word-level input” A, and computed
G = GB(J+J0) to derive the canonical word-level polynomial
abstraction (cf. Theorem 4.2 in [7]).

Conceptually, we use a similar strategy. By representing the
transition relations and sets of initial states using the ideal
J + J0, and computing a Gröbner basis w.r.t. an elimination
order with “bit-level variables” > “present-state word” >
“next-state word”, the reachable states can be encoded as
polynomials in word-level state variables.

With this background, we now describe how to perform
word-level FSM traversal.

III. FSM REACHABILITY USING ALGEBRAIC GEOMETRY

We use symbolic state reachability with algebraic geometry
concepts. It is an abstraction based on word operand definition
of datapaths in circuits, and it can be applied to arbitrary
FSMs by bundling a set of bit-level variables together as one
or several word-level variables. The abstraction polynomial,
encoding the reachable state space of the FSM, is obtained
through computing a GB over F2k of the polynomials of the
circuit using an elimination term order based on Theorem II.1.

Conceptually, the state-space of a FSM is traversed in a
breadth-first manner, as shown in Algorithm 1. The algorithm

operates on the FSM M = (∑,O,S,S0,∆,Λ) underlying a
sequential circuit. In such cases, the transition function ∆
and the initial states are represented and manipulated using
Boolean representations such as BDDs or SAT solvers. The
variables f rom,reached, to,new represent characteristic func-
tions of sets of states. Starting from the initial state f romi = S0,
the algorithm computes the states reachable in 1-step from
f romi in each iteration. In line 4 of algorithm 1, the image
computation is used to compute the reachable states in every
execution step.

The transition function ∆ is given by Boolean equations of
the flip-flops of the circuit: ti = ∆i(s,x), where ti is a next
state variable, s represents the present state variables and x
represents the input variables. The transition relation of the
FSM is then represented as:

T (s,x, t) =
n

∏
i=1

(ti⊕∆i) (1)

where n is the number of flip flops, and ⊕ is XNOR operation.
Let f rom denote the set of initial states, then the image of
the initial states, under the transition function ∆ is finally
computed as:

to = Img(∆, f rom) = ∃s ∃x [T (s,x, t) · f rom] (2)

Here, ∃x(f) represents the existential quantification of f
w.r.t. variable x.

ALGORITHM 1: BFS Traversal for FSM Reachability

Input: Transition functions ∆, initial state S0

1 f rom0 = reached = S0;
2 repeat
3 i← i+1;
4 toi←Img(∆, f romi−1);
5 newi← toi∩ reached;
6 reached← reached∪newi;
7 f romi← newi;
8 until newi == 0;
9 return reached

Let us describe the application of the algorithm on the FSM
circuit of Fig. 2. We will first describe its operation at the
Boolean level, and then describe how this algorithm can be
implemented using algebraic geometry at word level.

In Line 1 of the BFS algorithm, assume that the initial
state is S3 in Fig.2(b), which is encoded as S3 = {11}. Using
Boolean variables s0,s1 for the present states, f rom0 = s0 · s1
is represented as a Boolean formula.

Example III.1. For the circuit in Fig. 2 (b), we have the
transition functions of the machine as:

∆1 : t0⊕((x∨ s0∨ s1)∨ s0s1)

∆2 : t0⊕(s0x∨ s1s0)

f rom : f rom0 = s0 · s1

When the formula of Eqn. (2) is applied to compute 1-step
reachability, to = ∃s0,s1,x(∆1 ·∆2 · f rom0), we obtain to = t0 · t1,
which denotes the state S1 = {01} reached in 1-step from S3.

x
s0
s1 t0

t1

Z

s0

s1

S0 S1

S2 S3

00 01

10 11

0/0 1/1

1/1

0/1

*/1

(a) (b)

a

b

c

d

Fig. 2: The example FSM and the gate-level implementation.

In the next iteration, the algorithm uses state S1 = {01} as the
current (initial) state, and computes S2 = {10}= t0 · t1 as the
next reachable state, and so on.

Our objective is to model the transition functions ∆ as a
polynomial ideal J, and to perform the image computations
using Gröbner bases over Galois fields. This requires to per-
form quantifier elimination; which can be accomplished using
the GB computation over F2k using elimination ideals [13].
Finally, the set union, intersection and complement operations
are also to be implemented in algebraic geometry.

FSM Traversal at word-level over F2k : The state transition
graph (STG) shown in Fig.2(a) uses a 2-bit Boolean vector
to represent 4 states {S0,S1,S2,S3}. We map these states to
elements in F22 , where S0 = 0,S1 = 1,S2 =α,S3 =α+1. Here,
we take P(X) = X2 +X + 1 as the irreducible polynomial to
construct F4, and P(α) = 0 so that α2 +α+1 = 0.

Initial state: In Line 1 of Alg.1, the initial state is specified
by means of a corresponding polynomial f = F (S) = S−
1−α. Notice that if we consider the ideal generated by the
initial state polynomial, I = ⟨ f ⟩, then its variety V (I) = 1+α
corresponds to the state encoding S3 = {11}= 1+α, where a
polynomial in word-level variable S encodes the initial state.

Set operations: In Lines 5 and 6 of Alg. 1, we need union,
intersection and complement of varieties over F2k , for which
we again use algebraic geometry concepts.

Definition III.1. (Sum/Product of Ideals [11]) If I =
⟨ f1, . . . , fr⟩ and J = ⟨g1, . . . ,gs⟩ are ideals in R, then the sum
of I and J is defined as I+J = ⟨ f1, . . . , fr,g1, . . . ,gs⟩. Similarly,
the product of I and J is I · J = ⟨ fig j | 1≤ i≤ r,1≤ j ≤ s⟩.

Theorem III.1. If I and J are ideals in R, then V(I + J) =
V(I)

∩
V(J) and V(I · J) = V(I)

∪
V(J).

In Line 5 of Alg. 1, we need to compute the complement
of a set of states. Assume that J denotes a polynomial ideal
whose variety V (J) denotes a set of states. We require the
computation of another polynomial ideal J′, such that V (J′) =
V (J). We show that this computation can be performed using
the concept of ideal quotient:

Definition III.2. (Quotient of Ideals) If I and J are ideals in

a ring R, then I : J is the set { f ∈ R | f ·g ∈ I,∀g ∈ J} and is
called the ideal quotient of I by J.

Example III.2. In Fq[x,y,z], ideal I = ⟨xz,yz⟩, ideal J = ⟨z⟩.
Then

I : J = { f ∈ Fq[x,y,z] | f · z ∈ ⟨xz,yz⟩}
= { f ∈ Fq[x,y,z] | f · z = Axz+Byz}
= { f ∈ Fq[x,y,z] | f = Ax+By}
= ⟨x,y⟩

We can now obtain the complement of a variety through the
following results which are stated and proved below:

Lemma III.1. Let f ,g ∈ F2k [x], then ⟨ f : g⟩=
⟨

f
gcd(f ,g)

⟩
.

Proof. Let d = gcd(f ,g). So, f = d f1,g = dg1 with
gcd(f1,g1) = 1. Note that f1 =

f
gcd(f ,g) .

Take h∈ ⟨ f : g⟩. According to the Def. III.2, hg∈ ⟨ f ⟩, which
means hg = f · r with r ∈ F2k [x]. Therefore, hdg1 = d f1r and
hg1 = f1r. But considering gcd(g1, f1) = 1 we have the fact
that f1 divides h. Hence h ∈ ⟨ f1⟩.

Conversely, let h∈ ⟨ f1⟩. Then h= s · f1, where s∈F2k [x]. So,
hg = hdg1 = s f1dg1 = sg1 f ∈ ⟨ f ⟩. Therefore, h ∈ ⟨ f : g⟩.

Theorem III.2. Let J be an ideal generated by a single
univariate polynomial in variable x over F2k [x], and let the
vanishing ideal J0 = ⟨x2k − x⟩. Then

V (J0 : J) =V (J0)−V (J),

where all the varieties are considered over the field F2k .

Proof. Since F2k [x] is a principal ideal domain, J = ⟨g⟩ for
some polynomial g ∈ F2k [x]. Let d = gcd(g,x2k − x). So, g =

dg1,x2k −x = d f1, with gcd(f1,g1) = 1. Then J0 : J = ⟨ f1⟩ by
Lemma III.1.

Let x ∈ V (J0)−V (J). From the definition of set comple-
ment, we get x ∈ F2k while g(x) ̸= 0.

Since x2k
= x, we see that either d(x) = 0 or f1(x) = 0. Con-

sidering g(x) ̸= 0, we can assert that d(x) ̸= 0. In conclusion,
f1(x) = 0 and x ∈V (f1).

Now let x ∈V (f1), we get f1(x) = 0. So, x2k − x = 0 gives
x ∈V (J0) = F2k which contains all elements in the field.

Now we make an assumption that x ∈ V (g). Then g(x) =
0 = d(x)g1(x) which means either d(x) = 0 or g1(x) = 0.

If g1(x) = 0, then since f1(x) = 0 we get that f1,g1 share a
root. This contradicts the fact that gcd(f1,g1) = 1.

On the other hand, if d(x) = 0, then since f1(x) = 0 and
x2k − x = d f1, we get that x2k − x has a double root. But this
is impossible since the derivative of x2k − x is −1.

So, x /∈V (g) and this concludes the proof.

Let x2k − x be a vanishing polynomial in F2k [x]. Then
V (x2k − x) = F2k i.e. the variety of vanishing ideal contains
all possible valuations of variables, so it constitutes the uni-
versal set. Subsequently, based on Theorem III.2, the absolute
complement V (J′) of a variety V (J) can be computed as:

Corollary III.1. Let J⊆F2k [x] be an ideal, and J0 = ⟨x2k−x⟩.
Let J′ be an ideal computed as J′ = J0 : J. Then

V (J′) =V (J) =V (J0 : J)

With Corollary III.1, we are ready to demonstrate the
concept of word-level FSM traversal over F2k using algebraic
geometry. The algorithm is given in Alg. 2. Note that in
the algorithm, f romi, toi,newi are univariate polynomials in
variables S or T only, due to the fact that they are the result
of a GB computation with an elimination term order, where
the bit-level variables are abstracted and quantified away.

ALGORITHM 2: Algebraic Geometry based FSM Traversal
Input: The circuit’s characteristic polynomial ideal Jckt , initial

state polynomial F (S), and LEX term order: bit-level
variables x,s, t > PS word S > NS word T

1 f rom0 = reached = F (S);
2 repeat
3 i← i+1;
4 G←GB(⟨Jckt ,Jv, f romi−1⟩);

/* Compute Gröbner basis with elimination
term order: T smallest */

5 toi← G∩F2k [T];
/* There will be a univariate polynomial

in G denoting the set of next states
in word-level variable T */

6 ⟨newi⟩ ← ⟨toi⟩+(⟨T 2k −T ⟩ : ⟨reached⟩);
/* Use quotient of ideals to attain

complement of reached states, then use
sum of ideals to attain an
intersection with next state */

7 ⟨reached⟩ ← ⟨reached⟩ · ⟨newi⟩;
/* Use product of ideals to attain a

union of newly reached states and
formerly reached states */

8 f romi← newi(S\T);
/* Start a new iteration by replacing

variable T in newly reached states
with current state variable S */

9 until ⟨newi⟩== ⟨1⟩;
/* Loop until a fixpoint reached: newly

reached state is empty */
10 return ⟨reached⟩

Example III.3. We apply Algorithm 2 to the example shown
in Fig. 2 to execute the FSM traversal. Let the initial state
f rom0 = {00} in B2 or 0 ∈ F4. Polynomially, it is written as

f rom0 = S− 0. In the first iteration, we compose an ideal J
with

f1 : t0− (xs0s1 + xs0 + xs1 + x+ s0 + s1 +1)
f2 : t1− (xs0 + x+ s0s1 + s0)

f3 : S− s0− s1α; f4 : T − t0− t1α

Jckt = ⟨ f1, f2, f3, f4⟩, and the vanishing polynomials:

f5 : x2− x; f6 : s2
0− s0, f7 : s2

1− s1

f8 : t2
0 − t0, f9 : t2

1 − t1; f10 : S4−S, f11 : T 4−T

with Jv = ⟨ f5, f6, . . . , f11⟩.
Compute G = GB(J) for J = Jckt + J0 + ⟨ f rom0⟩, with an

elimination term order

{x,s0,s1, t0, t1}︸ ︷︷ ︸
all bit-level variables

> S︸︷︷︸
(PS word)

> T︸︷︷︸
(NS word)

.

The resulting GB G contains a polynomial generator with
only T as the variable. In Line 5, assign it to the next state

to1 = T 2 +(α+1)T +α.

Note that the roots or variety of T 2 +(α+1)T +α is {1,α},
denoting the states {01,10}.

Since the formerly reached state “reached = T ”, its com-
plement is computed using Corollary III.1

⟨T 4−T ⟩ : ⟨T ⟩= ⟨T 3 +1⟩.

V (⟨T 3+1⟩) = {1,α,α+1} denoting the states {01,10,11}.
Then the newly reached state set in this iteration is

⟨T 3 +1,T 2 +(α+1)T +α⟩= ⟨T 2 +(α+1)T +α⟩

We add these states to formerly reached states

reach = ⟨T ⟩ · ⟨T 2 +(α+1)T +α⟩
= ⟨T ·T 2 +(α+1)T +α⟩
= ⟨T 3 +(α+1)T 2 +αT ⟩

i.e. states {00,01,10}. We update the present states for next
iteration

f rom1 = S2 +(α+1)S+α.

In the second iteration, we compute the reduced GB with the
same term order for ideal J = Jckt + Jv + ⟨ f rom1⟩. It includes
a polynomial generator

to2 = T 2 +αT

denotes states {00,10}. The complement of reached is

⟨T 4−T ⟩ : ⟨T 3 +(α+1)T 2 +αT ⟩= ⟨T +1+α⟩

(i.e. states {11}). We compute the newly reached state

⟨T 2 +αT,T +1+α⟩= ⟨1⟩

Since the GB contains the unit ideal, it means the newly
reached state set is empty, thus a fixpoint has been reached.
The algorithm terminates and returns

reached = ⟨T 3 +(α+1)T 2 +αT ⟩

which, as a Gröbner basis of the elimination ideal, canonically
encodes the final reachable state set.

Significance of using GB: A reduced GB is a unique,
minimal and canonical representation of the circuit’s function.
Starting from a certain initial state and using a reduced
GB to represent the transition function, reachable states can
be computed and represented canonically. Then it becomes
possible to identify when a fixpoint is reached (termination of
the algorithm) by performing an equality check of polynomial
ideals. Moreover, the GB computation is also used as a
quantification procedure. As the GB is computed w.r.t. an
elimination term order with “bit-level variables” > “present-
state word” S > “next-state word” T , the set of reachable
states are encoded, canonically, using a univariate polynomial
in T , quantifying away the rest of the variables.

IV. IMPROVING OUR APPROACH

A. Simplify the Gröbner Basis Computation

In Alg. 2, a Gröbner basis is computed for each iteration
to attain the word-level polynomial representation of the next
states. In practice, for a sequential circuit with complicated
structure and large size, Gröbner basis computation is in-
tractable. To overcome the high computational complexity
of computing a GB, we describe a method that computes a
GB of a smaller subset of polynomials. The approach draws
inspirations from [7]. According to Prop.2 in [7], if the GB is
computed using refined abstraction term order (RATO), there
will be only one pair of polynomials { fw, fg} such that their
leading monomials are not relatively prime, i.e.

gcd(LM(fw),LM(fg)) ̸= 1

As a well-known fact from Buchberger’s algorithm, the S-
polynomial (Spoly) pairs with relatively prime leading mono-
mials will always reduce to 0 modulo the basis and have
no contribution to the Gröbner basis computation. Therefore,
by removing the relatively prime polynomials from Jckt , the
Gröbner basis computation is transformed to the reduction of
Spoly(fw, fg) modulo Jckt . More specifically, we turn the GB
computation into one-step multivariate polynomial division,
and the obtained remainder r will only contain bit-level inputs
and word-level output.

Example IV.1. After adding intermediate bit-level signal
a,b,c,d, the elimination ideal for example circuit (Ex.III.3)
can be rewritten LEX order with RATO:

(t0, t1)> (a,b,c,d)

> T > (x,s0,s1)

We can write down all polynomial generators of Jckt :

f1 : a+ xs0s1 + xs0 + xs1 + x+ s0s1 + s0 + s1 +1

f2 : b+ s0s1 f3 : c+ x+ xs0

f4 : d + s0s1 + s0 f5 : t0 +ab+a+1
f6 : t1 + cd + c+d f7 : t0 + t1α+T

From observation, the only pair which is not relatively
prime is (f5, f7), thus the critical candidate polynomial pair
is (fw, fg), where

fw = t0 +a ·b+a+b, fg = t0 + t1α+T

Result after reduction is:

Spoly(fw, fg)
J+J0−−−→+ T + s0s1x+αs0s1

+(1+α)s0x+(1+α)s0 + s1x+ s1 +(1+α)x+1

The remainder contains only bit-level inputs (x,s0,s1) and
word-level output T .

The remainder from Spoly reduction contains bit-level PS
variables, and our objective is to get a polynomial containing
only word-level PS variables. One possible method is to
rewrite bit-level variables in term of word-level variables, i.e.

si = G(S) (3)

Then we can substitute all bit-level variables with the word-
level variable and obtain a word-level expression. The authors
of [7] propose a method to construct a system of equations
and solution to the system consists of Eqn.(3).

Example IV.2. Objective: Abstract polynomial si + Gi(S)
from f0 : s0 + s1α+S.

First, compute f 2
0 : s0 + s1α2 + S2. Apparently variable s0

can be eliminated by operation

f1 = f0 + f 2
0

=(α2 +α)s1 +S2 +S

Now we can solve univariate polynomial equation f1 = 0 and
get solution

s1 = S2 +S

Using this solution we can easily solve equation f0 = 0. The
result is

s0 = αS2 +(1+α)S

More formally, polynomial expressions for si in terms of S
can be obtained by setting up and solving the following system
of equations:

S
S2

S22

...
S2k−1

=


1 α α2 · · · αk−1

1 α2 α4 · · · α2(k−1)

1 α4 α8 · · · α4(k−1)

...
...

...
. . .

...
1 α2k−1 α2·2k−1 · · · α(k−1)·2k−1




s0
s1
s2
...

sk−1


(4)

Treat s as a vector of k unknowns s0, . . . ,sk−1, then Eqn.(4)
can be solved by using Cramer’s rule or Gaussian elimination.
In other words, we can obtain si = G(S) by solving Eqn.(4)
symbolically.

In this approach we get word-level variable representation
for each bit-level PS variables. By substitution, a new poly-
nomial in word-level PS/NS variables could be obtained.

After processing with RATO and bit-to-word conversions,
we get a polynomial in the form of fT = T +F (S,x) denoting
the transition function. We include a polynomial in S to

define the present states fS, as well as the set of vanishing
polynomials for primary inputs JPI

0 = ⟨x2
1 − x1, . . . ,x2

n − xn⟩.
Using elimination term order with S > xi > T , we can compute
a GB of the elimination ideal ⟨ fT , fS⟩+JPI

0 . This GB contains
a univariate polynomial denoting next states. The improved
algorithm is depicted in Alg. 3.

ALGORITHM 3: Refined Algebraic Geometry based FSM
Traversal
Input: Input-output circuit characteristic polynomial ideal Jckt ,

initial state polynomial F (S)
1 f rom0 = reached = F (S);
2 fT =Reduce(Spoly(fw, fg),Jckt);
/* Compute S-poly for the critical pair,

then reduce it with circuit ideal under
RATO */

3 Eliminate bit-level variables in fT ;
4 repeat
5 i← i+1;
6 G←GB(⟨ fT , f romi−1⟩+ JPI

0);
/* Compute Gröbner basis with elimination

term order: T smallest; JPI
0 covers all

possible inputs from PIs */
7 toi← G∪F2k [T];

/* There will be a univariate polynomial
in G denoting next state in
word-level variable T */

8 ⟨newi⟩ ← ⟨toi⟩+(⟨T 2k −T ⟩ : ⟨reached⟩);
/* Use quotient of ideals to attain

complement of reached states, then use
sum of ideals to attain an
intersection with next state */

9 ⟨reached⟩ ← ⟨reached⟩ · ⟨newi⟩;
/* Use product of ideals to attain a

union of newly reached states and
formerly reached states */

10 f romi← newi(S\T);
/* Start a new iteration by replacing

variable T in newly reached states
with current state variable S */

11 until ⟨newi⟩== ⟨1⟩;
/* Loop until a fixpoint reached: newly

reached state is empty */
12 return ⟨reached⟩

V. EXPERIMENT RESULTS

We have implemented our traversal algorithm in 3 parts: the
first part implements polynomial reductions (division) of the
Gröbner basis computations, under the term order derived from
the circuit as Line 2 in Alg. 3. This is implemented with our
customized data structure in C++. The second part implements
the bit-level to word-level abstraction to attain transition
functions at the word-level using the SINGULAR symbolic
algebra computation system [v. 3-1-6] [14], as Line 3 in Alg. 3;
and the third part executes the reachability checking iterations
using SINGULAR as well. With our tool implementation, we
have performed experiments to analyze reachability of several
FSMs. Our experiments run on a desktop with 3.5GHz Intel
CoreTM i7-4770K Quad-core CPU, 32 GB RAM and 64-bit
Ubuntu Linux OS. The experiments are shown in Table I.

There are 2 bottlenecks which restricts the performance
of our tool: one bottleneck is that the polynomial reduction

engine is slow when the number of gates (especially OR gates)
is large; the other one is the high computational complexity
of Gröbner basis engine in general. Therefore, we pick 10
FSM benchmarks of reasonable size for testing our tool.
Among them “b01, b02, b06” come from ITC’99 benchmarks,
“s27, s208, s386” are from ISCAS’89 benchmarks and “bbara,
beecount, dk14, donfile” are from MCNC benchmarks. ISCAS
benchmarks are given as bench format so we can directly
read gate information, where ITC/MCNC FSMs are given in
unsynthesized blif format so we first turn them into gate-level
netlists using AIG based synthesizer ABC. Since the number
of primary inputs (m) is relatively small, in our experiments
we partition primary inputs as m single bit-level variables. To
verify the correctness of our techniques and implementations,
we compare the number of reachable states obtained from our
tool against the results obtained from the VIS tool [15].

In Table I, # States denotes the final reachable states starting
from given reset state, which given by our tool is the same with
the return value of compute reach in VIS. Meanwhile, from
observation of the experiment run-times, we find the reduction
runtime increases as the number of gates grows. Also, iterative
reachability convergence check’s runtime reflects both the size
of present state/next state words (k) and the number of final
reached states, which corresponds to the degree of polynomial
reached in Alg.2. Although the efficiency of our initial imple-
mentation fails to compete with the BDD based FSM analyzer
VIS, the experiment demonstrates the power of abstraction
of algebraic geometry techniques for reachability analysis
applications. Currently, we are investigating techniques that
can help us overcome the complexity of the GB computation
with elimination orders and speed-up our approach.

VI. CONCLUSION

This paper has presented a new approach to perform reach-
ability analysis of finite state machines at the word-level. This
is achieved by modeling the transition relations and sets of
states by way of polynomials over finite fields F2k , where
k represents the size of the state register bits. Subsequently
using the concepts of elimination ideals, Gröbner bases, and
quotients of ideals, we show that the set of reachable states
can be encoded, canonically, as the variety of a univariate
polynomial. This polynomial is computed using the Gröbner
basis algorithm w.r.t. an elimination term order. Experiments
are conducted with a few FSMs that validate the concept of
word-level FSM traversal using algebraic geometry.

REFERENCES

[1] Herve J Touati, Hamid Savoj, Bill Lin, Robert K Brayton, and Alberto
Sangiovanni-Vincentelli, “Implicit state enumeration of finite state
machines using bdd’s”, in Computer-Aided Design, 1990. ICCAD-90.
Digest of Technical Papers., 1990 IEEE International Conference on,
pp. 130–133. IEEE, 1990.

[2] Olivier Coudert, Christian Berthet, and Jean Christophe Madre, “Ver-
ification of synchronous sequential machines based on symbolic exe-
cution”, in Automatic verification methods for finite state systems, pp.
365–373. Springer, 1990.

[3] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, and David L
Dill, “Sequential circuit verification using symbolic model checking”,
in Design Automation Conference, 1990. Proceedings., 27th ACM/IEEE,
pp. 46–51. IEEE, 1990.

TABLE I: Results of running benchmarks using our tool. Parts I to III denote the time taken by polynomial divisions, bit-level to
word-level abstraction and iterative reachability convergence checking part of our approach, respectively.

Benchmark #
Gates

#
Latches # PIs #

States
#

iterations
Runtime (sec) Runtime of

VIS (sec)I II III
b01 39 5 2 18 5 < 0.01 0.01 0.02 < 0.01
b02 24 4 1 8 5 < 0.01 0.01 < 0.01 < 0.01
b06 49 9 2 13 4 < 0.01 0.07 5.0 < 0.01
s27 10 3 4 6 2 < 0.01 0.01 0.02 < 0.01

s208 61 8 11 16 16 < 0.01 0.32 2.4 < 0.01
s386 118 6 13 13 3 1.0 7.6 8.2 < 0.01
bbara 82 4 4 10 6 0.04 0.01 0.04 < 0.01

beecount 48 3 3 7 3 < 0.01 0.01 0.01 < 0.01
dk14 120 3 3 7 2 45 < 0.01 0.08 < 0.01

donfile 205 5 2 24 3 12316 0.02 1.7 < 0.01

[4] Aaron R Bradley, “Sat-based model checking without unrolling”, in
Verification, Model Checking, and Abstract Interpretation, pp. 70–87.
Springer, 2011.

[5] Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Edmund
Clarke, “Word level predicate abstraction and refinement for verifying
RTL verilog”, in Proceedings of the 42nd annual Design Automation
Conference, pp. 445–450. ACM, 2005.

[6] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press,
1997.

[7] T. Pruss, P. Kalla, and F. Enescu, “Efficient Symbolic Computation for
Word-Level Abstraction from Combinational Circuits for Verification
over Finite Fields”, IEEE Trans. on CAD, vol. 35, pp. 1206–1218, July
2016.

[8] Xiaojun Sun, Priyank Kalla, Tim Pruss, and Florian Enescu, “Formal
verification of sequential galois field arithmetic circuits using algebraic
geometry”, in Design Automation and Test in Europe, DATE 2015.
Proceedings. IEEE/ACM, 2015.

[9] G. Avrunin, “Symbolic Model Checking using Algebraic Geometry”,
in Computer Aided Verification Conference, pp. 26–37, 1996.

[10] Q. Tran and M. Y. Vardi, “Gröbner Basis Computation in Boolean
Rings for Symbolic Model Checking”, in IASTED Conf. on Modelling
and Simulation, 2007.

[11] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative
Algebra, Springer, 2007.

[12] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal, PhD
thesis, University of Innsbruck, 1965.

[13] S. Gao, A. Platzer, and E. Clarke, “Quantifier Elimination over Finite
Fields with Gröbner Bases”, in Intl. Conf. Algebraic Informatics, 2011.

[14] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “SINGULAR
3-1-3 — A computer algebra system for polynomial computations”,
2011, http://www.singular.uni-kl.de.

[15] Robert K Brayton, Gary D Hachtel, Alberto Sangiovanni-Vincentelli,
Fabio Somenzi, Adnan Aziz, Szu-Tsung Cheng, Stephen Edwards, Sunil
Khatri, Yuji Kukimoto, Abelardo Pardo, et al., “Vis: A system for
verification and synthesis”, in Computer Aided Verification, pp. 428–
432. Springer, 1996.

