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Abstract – Sequential Galois field (F2k ) arithmetic circuits
take k-bit inputs and produce a k-bit result, after k-clock cy-
cles of operation. Formal verification of sequential arithmetic
circuits with large datapath size is beyond the capabilities of
contemporary verification techniques. To address this problem,
this paper describes a verification method based on algebraic
geometry that: i) implicitly unrolls the sequential arithmetic
circuit over multiple (k) clock-cycles; and ii) represents the
function computed by the state-registers of the circuit, canon-
ically, as a multi-variate word-level polynomial over F2k . Our
approach employs the Gröbner basis theory over a specific
elimination ideal. Moreover, an efficient implementation is
described to identify the k-cycle computation performed by the
circuit at word-level. We can verify up to 100-bit sequential
Galois field multipliers, whereas conventional techniques fail
beyond 23-bit circuits.

I. INTRODUCTION

Galois field (GF) arithmetic finds application in areas such
as cryptography, error control coding, VLSI testing, etc. In
most hardware applications, fields of the type F2k are widely
chosen. Such binary GFs are k-dimensional extensions of the
base field F2, which means bit-level signals can be written as
Boolean variables in F2 and a k-bit word-level signal can be
represented by an element in field F2k . Additionally it allows
for the design of efficient (AND-XOR) arithmetic architectures
and algorithms for hardware design. There is a critical need to
formally verify the correctness of hardware implementations of
GF arithmetic. In most applications, however, the datapath size
(bit-vector operand size) k is very large. Most conventional
formal methods are unable to cope with the large size and
complexity of GF circuits.

GF arithmetic circuits over F2k take k-bit vectors as in-
puts and produce k-bit outputs. For example, a GF mod-
ulo multiplier computes R = A× B (mod P(x)), where: i)
A = ∑

k−1
i=0 as(i)α

i, B = ∑
k−1
i=0 bs(i)α

i denote the k-bit inputs,
R = ∑

k−1
i=0 rs(i)α

i is the output, and as(i),bs(i),rs(i) ∈ F2; ii) P(x)
is the given primitive polynomial used to construct F2k ; and
iii) P(α) = 0, i.e. α is the primitive element of the field. In the
above, the elements are represented in standard basis notation
(denoted by subscript “s” on the bits). As the datapath size
k increases, combinational GF designs become prohibitively
large; sequential GF circuits are therefore desirable.

Sequential GF circuits operate as follows: k-bit input
operands are loaded into k-bit state registers (flip-flops), and
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the circuit is executed for k clock-cycles; after which the
k-bit result is available in the output registers. Data rep-
resentation and circuit design for sequential GF circuits is
mostly based on normal basis [1] . Data is represented as
A = ∑

k−1
i=0 an(i)β

2i
, where β ∈ F2k is the normal element, and

{β,β2, . . . ,β2i
, . . . ,β2k−1} forms the normal basis. Standard and

normal basis representations can be derived from each other,
i.e. β can be derived from α and vice-versa. It has been
shown that architectures for multiplication and squaring can
be efficiently designed using normal bases [2] [3] [4] as
sequential circuits.

Example I.1. For a,b ∈ F2k ,(a+b)2 = a2 +b2. Applying this
rule for element squaring:

B =(b0β+b1β
2 +b2β

4 + · · ·+bk−1β
2k−1

)

B2 =b2
0β

2 +b2
1β

4 +b2
2β

8 + · · ·+b2
k−1β

2k

=bk−1β+b0β
2 +b1β

4 + · · ·+bk−2β
2k−1

as β2k
= β by applying Fermat’s little theorem to F2k , and

b2
i = bi.

The above example shows that squaring of elements rep-
resented in normal bases can be implemented simply by a
cyclic right-shift operation. However, multiplication of two
elements in normal basis is still a complex operation — and
its design and verification is still challenging. Recent literature
has addressed formal equivalence proofs of combinational GF
arithmetic circuits [5] [6] [7]. This paper addresses verification
of sequential GF circuits, which has not been addressed before.

Problem Statement: We are given: i) the Galois field F2k =
F2[X ] (mod P(X)),P(α)= 0, along with the normal basis rep-
resentation, i.e. β is also known; ii) a word-level specification
polynomial R = F (A,B) (mod P(X)); where A = ∑

k−1
i=0 aiβ

2i
,

B =∑
k−1
i=0 biβ

2i
, R =∑

k−1
i=0 riβ

2i
, ai,bi,ri ∈ F2, and iii) a sequen-

tial circuit (S) implementation of the polynomial computation.
Our objective is to prove or disprove that S is a k-cycle
implementation of R.

Approach & Contributions: The sequential GF arithmetic
circuit can be viewed as a restricted Moore finite state machine
(FSM), as shown in Fig. 1. The operands are loaded into state
registers A,B (as initial states), and after k-clock cycles of
operation, the result R = F (A,B) is stored in the R register.

A straight-forward approach to verify such a sequential cir-
cuit may consist of unrolling the circuit for k time-frames, and
performing a (combinational) equivalence check between the
explicitly unrolled machine and the specification polynomial.
Such a technique is inefficient for large circuits. Therefore,
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Fig. 1: A typical normal basis GF sequential circuit model. A =
(a0, . . . ,ak−1) and similarly B,R are k-bit registers; A′,B′,R′ denote
next-state inputs.

we propose a method that implicitly (symbolically) represents
the unrolled computation, canonically, as a word-level multi-
variate polynomial. We show that the k-cycle polynomial
representation can be derived iteratively by performing a
sequence of Gröbner basis (GB) computations of the ideal
generated by the polynomials corresponding to the circuit. The
approach requires the use of a specific elimination term order
for the GB computation, based on the circuit’s topology. Once
the canonical polynomial is derived, it can be checked against
the specification polynomial for verification.

Computing Gröbner bases with elimination orders is in-
feasible for large circuits. To overcome this complexity, we
draw inspirations from [7], and exploit the binomial expansion
over GFs to engineer a new, efficient implementation to derive
the word-level polynomial. We demonstrate the feasibility of
our approach by verifying (and also detecting bugs in) up to
100-bit sequential GF multipliers (containing 300 flip-flops),
whereas conventional techniques fail beyond 23-bit circuits.
Finally, our approach can be construed as a word-level, im-
plicit traversal of the underlying FSM of the sequential GF
circuit, wherein the set of states is encoded as the variety of
an elimination ideal related to the FSM’s transition function.

Paper Organization: The paper is organized as follows.
The following section reviews previous work, and contrasts
it against the new contributions of this paper. Sec III briefly
describes the architecture of the sequential normal basis GF
multipliers verified in this paper. Section IV covers preliminary
concepts and notation. Section V describes our approach, com-
putational improvements for which are described in Section
VI. Experimental results are described in Section VII. Finally,
Section VIII concludes the paper.

II. REVIEW OF PREVIOUS WORK

Verification of a combinational GF arithmetic circuit C
against a polynomial specification F has been addressed in
[5] [6] [7]. The paper [7] performs verification by deriving
a canonical word-level polynomial representation F from the
circuit C. Their approach views any arbitrary Boolean function
(circuit) f : Bk→ Bk as a polynomial function f : F2k → F2k ,
and derives a canonical polynomial representation F over F2k .
This can be achieved by computing a reduced Gröbner basis
w.r.t. an abstraction term order derived from the circuit. Sub-
sequently, a refinement of this abstraction term order (called
RATO) is proposed, that enables to compute the Gröbner basis

of a smaller subset of polynomials. The approach can prove
correctness of up to 571-bit combinational GF multipliers.

Since we are also interested in deriving a polynomial
representation of the computation performed by the sequential
circuit S, we draw inspirations from [7] – particularly the
use of RATO – for sequential verification. However, the
approach of [7] suffers from a few limitations: i) When the
GF polynomial implemented by the circuit is dense (say, due
to the presence of a bug in the design), their approach is
computationally infeasible; ii) The use of RATO still requires
a Gröbner basis computation (even though on a subset of
polynomials) to derive the polynomial F , which can lead to
a memory explosion. Experiments in [7] are only successful
for hierarchically designed and bug-free GF circuits. While we
do employ RATO as the term order for sequential verification,
we further present an efficient symbolic computation approach
that does not suffer from these limitations.

The problem addressed in this paper is not suitable to be
solved by conventional bit-level sequential equivalence [8] or
(bounded) model checking frameworks based on interpolation
[9] or property directed reachability [10]. This is mostly due to
the word-level and GF polynomial nature of the specification
(property) F , which is also only valid in one state of the ma-
chine. A recent work on arithmetic bit-level (ABL) verification
[11] is efficient on integer arithmetic blocks, but experiments
only show results for combinational circuits and the proposed
approach may require explicit FSM unrolling. The use of
algebraic geometry has been proposed for model checking [12]
[13] [14]; however, these approaches are a straight-forward
application of bit-level Boolean Gröbner basis engines in lieu
of BDDs or SAT solvers.

III. SEQUENTIAL GF MULTIPLIER DESIGN

Let us briefly describe the fundamentals behind the design
of normal basis sequential GF multipliers, so as to put in
perspective the type of designs that have been verified in this
paper. Let R=∑

k−1
i=0 riβ

2i
, A=∑

k−1
i=0 aiβ

2i
, B=∑

k−1
i=0 biβ

2i
, then

R = A ·B = (
k−1

∑
i=0

aiβ
2i
)(

k−1

∑
j=0

b jβ
2 j
) =

k−1

∑
i=0

k−1

∑
j=0

aib jβ
2i

β
2 j

The expressions β2i
β2 j

are called cross-product terms and
they can also be represented in normal basis:

β
2i

β
2 j
=

k−1

∑
n=0

λ
(n)
i j β

2n
, λ

(n)
i j ∈ F2.

From the above two equations, one can see that the expres-
sion for the nth digit of product R = (r0, . . . ,rn, . . .rk−1) is:

rn =
k−1

∑
i=0

k−1

∑
j=0

λ
(n)
i j aib j = A ·Mn ·BT , 0≤ n≤ k−1

where Mn = (λ
(n)
i j ) is a binary k× k matrix over F2, and

it is called the λ-matrix. Moreover, let rn = A ·Mn ·BT . Then
rn−1 = A ·Mn−1 ·BT = rotate(A) ·Mn ·rotate(B)T . This implies
that Mn is generated by right and down cyclic shifting Mn−1.
Therefore, the hardware design of sequential GF multipliers



is based on mappings of A ·Mn ·BT into AND-XOR gates and
cyclic shift operations.

This paper verifies the implementation of two distinct archi-
tectures of sequential multipliers with parallel output (SMPO),
namely: i) the Agnew-SMPO [2] by G. B. Agnew, which is
a straight-forward implementation of the λ-matrix; and ii) the
more recent, more complicated, yet very efficient RH-SMPO
[3], by Reyhani-Masoleh and Hasan, depicted in Fig. 2.
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Fig. 2: A 5-bit RH-SMPO

IV. PRELIMINARIES

Let q = 2k and Fq[x1, . . . ,xd ] be the polynomial ring with
indeterminates x1, . . . ,xd . A polynomial f = c1X1 + c2X2 +
· · ·+ ctXt is a finite sum of terms, where c1, . . . ,ct are co-
efficients and X1, . . . ,Xt are monomials. A monomial ordering
X1 > X2 · · · > Xt is imposed on the polynomials to process
them systematically. Then, LT ( f ) = c1X1,LM( f ) = X1 denote
the leading term and the leading monomial of f , respectively.
Given polynomials f ,g, if cX is a term in f that is divisible
by LT (g), then f

g−→ r denotes a one-step reduction (division)
of f by g, resulting in remainder r = f − cX

LT (g) ·g. Similarly, f
reduces to r modulo the set of polynomials F = { f1, . . . , fs},
denoted f F−→+ r, such that no term in r is divisible by the
LT ( fi) of any polynomial in fi ∈ F .

Let f1, . . . , fs be polynomials in Fq[x1, . . . ,xd ], then we set
J = 〈 f1, . . . , fs〉 =

{
∑

s
i=1 hi fi : h1, . . . ,hs ∈ Fq[x1, . . . ,xd ]

}
. J =

〈 f1, . . . , fs〉 forms an ideal in Fq[x1, . . . ,xd ], and f1, . . . , fs are
its generators. Let a = (a1, . . . ,ad) ∈ Fd

q be a point. For any
ideal J = 〈 f1, . . . , fs〉 ⊆ Fq[x1, . . . ,xd ], the affine variety of J
over Fq is: V (J) = {a ∈ Fd

q : ∀ f ∈ J, f (a) = 0}. The variety
V (J) corresponds to the set of all solutions to f1 = · · ·= fs = 0.
Any finite set of points can be construed as the variety of an
ideal — a concept we exploit to model the set of (finite) states
of the machine.

An ideal may have many generating sets. The set G =
{g1, . . . ,gt} is called a Gröbner basis of J if and only if
the leading term of all polynomials in J is divisible be the
leading term of some polynomial gi in G: i.e. ∀ f ∈ J,∃gi ∈
G s.t. LT (gi) | LT ( f ). The famous Buchberger’s algorithm,
given in textbook [15], is used to compute a Gröbner basis
(GB). Operating on input F = { f1, . . . , fs}, and subject to the

imposed term order >, it derives G = GB(J) = {g1, . . . ,gt}.
Buchberger’s algorithm repeatedly computes S-polynomials.
For pairs ( fi, f j)∈F , Spoly( fi, f j) =

L
lt( fi)
· fi− L

lt( f j)
· f j, where

L = LCM(LM( fi),LM( f j)). Reducing Spoly( fi, f j)
F−→+ r can-

cels the leading terms of fi, f j and gives a polynomial r with
a new leading term. This remainder r is added to the current
basis and Spoly( fi, f j) computations are repeated for all pairs
of polynomials until all S-polynomials reduce to 0.

Fermat’s little theorem over Fq: For any α ∈ Fq,α
q = α.

Therefore, the polynomial xq − x vanishes (= 0) over Fq,
and is called a vanishing polynomial. We denote by J0 =
〈xq

1 − x1, . . . ,x
q
d − xd〉 the ideal of all vanishing polynomials

in Fq[x1, . . . ,xd ]. When q = 2k,xq− x = xq + x as −1 = +1
over F2k .

Gröbner bases can be used to eliminate variables from
an ideal. Given ideal J = 〈 f1, . . . , fs〉 ⊂ Fq[x1, . . . ,xd ], the lth

elimination ideal Jl is the ideal of Fq[xl+1, . . . ,xd ] defined by
Jl = J∩Fq[xl+1, . . . ,xd ]. Variable elimination can be achieved
by computing a Gröbner basis of J w.r.t. elimination orders:

Theorem IV.1. (Elimination Theorem[15]) Let
J ⊂ F2k [x1, . . . ,xd ] be an ideal and let G be a Gröbner
basis of J with respect to a lexicographic ordering where
x1 > x2 > · · · > xd . Then for every 0 ≤ l ≤ d, the set
Gl = G ∩ F2k [xl+1, . . . ,xd ] is a Gröbner basis of the l-th
elimination ideal Jl .

A. Polynomial Abstraction with Elimination & Gröbner Bases

The authors of [7] showed that for any combinational logic
block, a canonical word-level polynomial representation can
be derived through Gröbner bases computed with elimination
orders. Our approach is based on their result, which we
reproduce here:

Lemma IV.1. (From [7]) Given a combinational circuit C
with k-bit input A = (a0, . . . ,ak−1) and k-bit output R =
(r0, . . . ,rk−1). Denote by x1, . . . ,xd all the bit-level variables
of C. Let J = 〈 f1, . . . , fs〉 ⊂ F2k [x1, . . . ,xd ,R,A] denote all the
polynomials corresponding to the logic gates of the circuit.
Let J0 = 〈x2

1−x1, . . . ,x2
d−xd ,Rq−R,Aq−A〉 be the vanishing

ideal, so that J + J0 = 〈 f1, . . . , fs, x2
1− x1, . . . ,x2

d − xd ,Rq−
R,Aq−A〉. Compute Gröbner basis G = GB(J + J0) w.r.t. lex
term order with x1 > x2 > · · · > xd > R > A. Then Gd =
G∩F2k [R,A] eliminates the internal variables x1, . . . ,xd of the
circuit. Gd also contains the word-level polynomial R = F (A)
which canonically represents the function of the circuit.

The authors referred to the elimination (lex) order with
{internal variables x1 > · · ·> xd}> {word-level output R}>
{word-level input A} as the abstraction term order (ATO).
We will now show how to repeatedly apply Gröbner basis
computations with ATO to verify sequential GF circuits.

V. VERIFICATION OF SEQUENTIAL GF CIRCUITS

We follow the sequential GF circuit model of Fig. 1, with
word-level variables A,B,R denoting present states (PS) and
A′,B′,R′ denoting next states (NS) of the machine; where A =

∑
k−1
i=0 aiβ

2i
for the PS variables and A′ = ∑

k−1
i=0 a′iβ

2i
for NS



variables, and so on. Variables R (R′) correspond to those that
store the result, and A,B (A′,B′) store input operands. E.g., for
a GF multiplier, Ainit ,Binit (and Rinit = 0) are the initial values
(operands) loaded into the registers, and R = F (Ainit ,Binit) =
Ainit×Binit is the final result after k-cycles. Our approach aims
to find this polynomial representation for R.

Each gate in the combinational logic is represented by
a Boolean polynomial. To this set of Boolean polynomials,
we append the polynomials that define the word-level to bit-
level relations for PS and NS variables (A = ∑

k−1
i=0 aiβ

2i
). We

denote this set of polynomials as ideal J = 〈 f1, . . . , fs〉 ⊂
F2k [x1, . . . ,xd ,R,R′,A,A′,B,B′], where x1, . . . ,xd denote the
bit-level (Boolean) variables of the circuit. The ideal of
vanishing polynomials J0 is also included, and then the implicit
FSM unrolling problem is setup for abstraction.

The configurations of the flip-flops are the states of the
machine. Since the set of states is a finite set of points, we can
consider it as the variety of an ideal related to the circuit (from
Section IV). Moreover, since we are interested in the function
encoded by the state variables (over k-time frames), we can
project this variety on the word-level state variables, starting
from the initial state Ainit ,Binit . Projection of varieties (geom-
etry) corresponds to elimination ideals (algebra), and can be
analyzed via Gröbner bases. Therefore, we employ a Gröbner
basis computation with ATO: we use a lex term order with
bit-level variables > word-level NS outputs > word-level PS
inputs. This allows to eliminate all the bit-level variables and
derives a representation only in terms of words. Consequently,
k-successive Gröbner basis computations implicitly unroll the
machine, and provide word-level algebraic k-cycle abstraction
for R′ as R′ = F (Ainit ,Binit).

Algorithm 1 describes our approach. In the algorithm, f romi
and toi are polynomial ideals whose varieties are the valuations
of word-level variables R,A,B and R′,A′,B′ in the i-th iteration;
and the notation “\” signifies that the NS in iteration (i)
becomes the PS in iteration (i + 1). Line 5 computes the
Gröbner basis with the abstraction term order. Line 6 computes
the elimination ideal, eliminating the bit-level variables and
representing the set of reachable states up to iteration i in terms
of the elimination ideal. These computations are analogous to
those of image computations performed in FSM reachability.

ALGORITHM 1: Abstraction via implicit unrolling for Sequen-
tial GF circuit verification

Input: Circuit polynomial ideal J, vanishing ideal J0, initial
state ideal R(= 0),G(Ainit),H (Binit)

1 f rom0(R,A,B) = 〈R,G(Ainit),H (Binit)〉;
2 i = 0;
3 repeat
4 i← i+1;
5 G←GB(〈J+ J0 + f romi−1(R,A,B)〉) with ATO;
6 toi(R′,A′,B′)← G∩F2k [R′,A′,B′,R,A,B];
7 f romi← toi({R,A,B}\{R′,A′,B′});
8 until i == k;
9 return f romk(R f inal)

Example V.1. We demonstrate our approach to verify the 3-
bit RH-SMPO circuit of Fig.2. The normal element β in F23

is known to be β = α3, where α is the primitive element. The
circuit can be described with an ideal by translating AND and

XOR gates accordingly. For the first iteration:

J =d0 +b2 ·a2,c1 +a0 +a2,c2 +b0 +b2,d1 + c1 · c2,

e0 +d0 +d1,e2 +d1,r′0 + r2 + e0,r′1 + r0,r′2 + r1 + e2,

A+a0α
3 +a1α

6 +a2α
12,B+b0α

3 +b1α
6 +b2α

12,

R+ r0α
3 + r1α

6 + r2α
12,R′+ r′0α

3 + r′1α
6 + r′2α

12;

The last 4 polynomials are translated from the definition of
word-level variables. This represents ideal “J” from line 5
in Algorithm 1. “J0” is the ideal of vanishing polynomials in
all bit-level variables (e.g. a2

0− a0) and word-level variables
(e.g. A8−A). “ f romi−1” represents the set of current states
for iteration i. In the first iteration, f rom0 = {R,Ainit +a0α3+
a1α6 +a2α12,Binit +b0α3 +b1α6 +b2α12}.

After the GB computation is performed with ATO, as
line 6 in Algorithm 1, we find a polynomial in variables
R′,Ainit ,Binit in to1 : R′ + (α2)A4

initB
4
init + (α2 + α)A4

initB
2
init +

(α2 +α)A4
initBinit +(α2 +α)A2

initB
4
init +(α2 +α+1)A2

initB
2
init +

(α2)A2
initBinit +(α2 +α)AinitB4

init +(α2)AinitB2
init .

Line 7 in Algorithm 1 simply replaces NS output R′ with PS
output R in this example; so in second iteration f rom1 = {R′+
(α2)A4

initB
4
init + (α2 + α)A4

initB
2
init + (α2 + α)A4

initBinit + (α2 +
α)A2

initB
4
init + (α2 + α + 1)A2

initB
2
init + (α2)A2

initBinit + (α2 +
α)AinitB4

init +(α2)AinitB2
init ,Ainit +a2α3 +a0α6 +a1α12,Binit +

b2α3 +b0α6 +b1α12}.
Finally, after 3 iterations we obtain: to3 =
{R′+AinitBinit, Ainit + a′0α3 + a′1α6 + a′2α12, Binit +
b′0α3 + b′1α6 + b′2α12} as the image. The final result is
f rom3(R f inal) = R f inal + Ainit · Binit , which verifies the
multiplier.

VI. IMPROVING OUR APPROACH

Computing Gröbner bases with elimination orders is infeasi-
ble for large circuits; the complexity of Buchberger’s algorithm
to compute GB(J + J0) in Fq is qO(d) [6]. To overcome
this complexity, [7] proposed a refinement of ATO (called
RATO), and simplified the Gröbner basis computation. They
exploited Buchberger’s product criteria [16], which states that:
If the leading monomials of fi, f j are relatively prime, then
Spoly( fi, f j) reduces to zero modulo the generating set, i.e.
Spoly( fi, f j)

F−→+ 0. This concept was exploited in RATO as
follows:

Perform a reverse topological sorting of the nodes in the
combinational logic, and define a lex term order by the fol-
lowing relation >r: bit-level circuit variables ordered reverse
topologically > word-level output variables > word-level
input variables. Representing the polynomial ideal J in RATO
has the effect that there exists one and only one pair of
polynomials in J that do not have relatively prime leading
terms (see Section 5 in [7] for details). All other polynomial
pairs will have leading terms that are relatively prime, so
these polynomial pairs are not considered in Buchberger’s
algorithm. The authors of [7] exploited this concept and
showed how the Gröbner basis of (J + J0) can be computed
by a subset of polynomials, which improves the scalability of
their approach. Their approach, however, cannot circumvent
the Gröbner basis computation altogether. Consequently, their



approach fails to derive a canonical polynomial abstraction
when the representation is dense, and contains monomials of
high-degrees (e.g. in case of buggy designs).

It turns out that RATO can be applied to sequential circuits
in much the same way: {bit-level circuit variables ordered
reverse topologically x1 > .. .xd} > {word-level NS variables
R′ > A′ > B′} > {word-level PS variables R > A > B}.
Importantly, we show that using RATO, the polynomial ab-
straction can be derived without resorting to a Gröbner basis
computation. Perform the following operations:

1) Represent the polynomials of the sequential circuit S
using RATO.

2) Due to RATO, only one pair of polynomials ( fi, f j) will
have leading terms that will not be relatively prime.

3) Reduce Spoly( fi, f j)
F−→+ h.

As described in [7], remainder h will contain: i) the word-level
variables, and ii) bit-level inputs to the combinational logic,
i.e. bit-level present-state variables. All other internal circuit
variables will not appear in h, as they will be canceled by
division due to RATO.

Example VI.1. Let us re-visit Example V.1 and the RH-
SMPO circuit of Fig. 2. For this circuit, the term or-
der under RATO is lex with: {r′0,r′1,r′2} > {r0,r1,r2} >
{e0,e2},{d0,d1},{c1,c2},{a0,a1,a2,b0,b1,b2} > R′ > R >
{A,B}.

Among all the generators of the ideal J from Ex.V.1, using
RATO we find only one pair of polynomials whose leading
monomials are not relatively prime: ( fi, f j), fi = r′0 + r2 +
e0, f j = r′0α3 + r′1α6 + r′2α12 +R′. Then:

Spoly( fi, f j)
J+J0−−−→+

r1 +α
4r2 +α

5b1a1 +αb1a2 +α
6b1A+αb2a1 +α

5b2a2 +α
2b2A

+α
6a1B+α

2a2B+α
4R′+R+AB

As shown above, the remainder h contains both bit-level
variables and word-level state variables ai,bi,ri,R,A,B. We
desire a polynomial in only word level variables (e.g. R′+
F (A,B)), without computing a Gröbner basis. This can be
achieved if we represent the bit-level state variables ai,bi,ri
in terms of their word-level variables A,B,R, respectively. We
exploit the following property of finite fields:

Lemma VI.1. For α1, . . . ,αt ∈ F2k , (α1 +α2 + · · ·+αt)
2i
=

α2i

1 +α2i

2 + · · ·+α2i
t , for i = 1,2, . . ..

Consider the polynomials that define the relationship be-
tween the word-level and bit-level variables. Let A = a0β+

a1β2 + · · ·+ ak−1β2k−1
. Due to Lemma VI.1, we have A2 =

a0β2 + a1β4 + · · · + ak−1β2·2k−1
(as a2

i = ai). By repeated
squaring:

A = a0β+a1β
2 + · · ·+ak−1β

2k−1

A2 = a0β
2 +a1β

4 + · · ·+ak−1β
2·2k−1

...
...

...
A2k−1

= a0β
2k−1

+a1β
2k−1·2 + · · ·+ak−1β

22(k−1)

Consider the above as k linear equations with a0, . . . ,ak−1
as k-unknowns, with β and its powers as coefficients, and
A,A2, ... . . . ,A2k−1

as k constants. Then, we can solve for the

unknowns a0, . . . ,ak−1 and obtain expressions for them in
terms of A and β. The problem can be setup in matrix form:


β β2 · · · β2k−1

β2 β4 · · · β2k−1·2

...
...

. . .
...

β2k−1
β2k−1·2 · · · β22(k−1)




a0
a1
...

ak−1

=


A
A2

...
A2k−1


Gaussian elimination on this system of equations can be

applied, and each bit-level variable ai can be represented as
a function of the word-level variables: ai = gi(A). These bit-
level variables can be easily substituted in the remainder h
obtained by reduction due to RATO. What we will obtain is
a word-level polynomial of the form h : R′+F (A,B) which
canonically represents the k-cycle function of the circuit. It is
also easy to show that this polynomial is a unique, canonical
representation because it is reduced modulo J+ J0.

Thus, Algorithm 1 can be modified using our improved
approach: line 5 is replaced by reduction Spoly( fi, f j)

J+J0−−−→+ h
by means of RATO; line 6 is replaced by the proposed bit-
level to word-level substitution. The implicit k-cycle unrolling
is still performed.

VII. EXPERIMENTAL RESULTS

We have implemented our approach within the SINGULAR
symbolic algebra computation system [v. 3-1-6] [17]. Using
our implementation, we have performed experiments to verify
two SMPO architectures — Agnew-SMPO [2] and the RH-
SMPO [3] — over F2k , for various datapath/field sizes. Bugs
are also introduced into the SMPO designs by modifying a
few gates in the combinational logic block. Experiments using
SAT-, BDD-, and AIG-based solvers are also conducted and
results are compared against our approach. Our experiments
run on a desktop with 3.5GHz Intel CoreTM i7 Quad-core
CPU, 16 GB RAM and 64-bit Linux.

Evaluation of SAT/ABC/BDD based methods: To verify
circuit S against the polynomial F , we unroll the SMPO over
k time-frames, and construct a miter against a combinational
implementation of F . A (pre-verified) F2k Mastrovito multi-
plier [18] is used as the spec model. This miter is checked for
SAT using the Lingeling [19] solver. We also experiment with
the Combinational Equivalence Checking (CEC) engine of the
ABC tool [20], which uses AIG-based reductions to identify
internal AIG equivalences within the miter to efficiently solve
verification. The BDD-based VIS tool [21] is also used for
equivalence check. The run-times for verification of (unrolled)
RH-SMPO against Mastrovito spec are given in Table I –
which shows that the techniques fail beyond 23 bit fields.

TABLE I: Run-time for verification of bug-free RH-SMPO circuits
for SAT, ABC and BDD based methods. TO = timeout 14 hrs

Word size of the operands k-bits
Solver 11 18 23 33

Lingeling 593 TO TO TO
ABC 6.24 TO TO TO
BDD 0.1 11.7 1002.4 TO



CEC between unrolled RH-SMPO and Agnew-SMPO also
suffers the same fate (results omitted). In fact, both SMPO
designs are based on slightly different mathematical con-
cepts and their computations in all clock-cycles, except for
the kth one, are also different. These designs have no in-
ternal logical/structural equivalences, and verification with
SAT/BDDs/ABC is infeasible.

Evaluation of Our Approach: Our algorithm inputs the
circuit given in BLIF format, derives RATO, and constructs
the polynomial ideal from the logic gates and the register/data-
word description. We perform one Spoly reduction, followed
by the bit-level to word-level substitution, in each clock cycle.
After k iterations, the final result polynomial R is compared
against the spec polynomial. The run-times for verifying bug-
free and buggy RH-SMPO and Agnew-SMPO are shown in
Table II and Table III, respectively. We can verify, as well
as catch bugs in, up to 100-bit multipliers. Beyond 100-bit
fields, our approach is infeasible – mostly due to the fact
that the intermediate abstraction polynomial R is very dense
and contains high-degree terms, which can be infeasible to
compute. However, it should be noted that if we do not use
the proposed bit-level to word-level substitution, and compute
reduced Gröbner bases with RATO, then our approach does
not scale beyond 33-bit datapaths.

TABLE II: Run-time (seconds) for verification of bug-free and
buggy RH-SMPO using our approach

Operand size k 33 51 65 81 89 99
#variables 4785 11424 18265 28512 34354 42372

#polynomials 3630 8721 13910 21789 26255 32373
#terms 13629 32793 52845 82539 99591 122958

Runtime(bug-free) 112.6 1129 5243 20724 36096 67021
Runtime(buggy) 112.7 1129 5256 20684 36120 66929

TABLE III: Run-time (seconds) for verification of bug-free and
buggy Agnew’s SMPO using our approach

Operand size k 36 66 82 89 100
#variables 6588 21978 33866 39872 50300

#polynomials 2700 8910 13694 16109 20300
#terms 12996 43626 67322 79299 100100

Runtime(bug-free) 113 3673 15117 28986 50692
Runtime(buggy) 118 4320 15226 31571 58861

VIII. CONCLUSIONS

This paper has described a method to verify sequential
Galois field multipliers over F2k using computer algebra and
algebraic geometry based approach. As sequential Galois field
circuits perform the computations over k clock-cycles, verifi-
cation requires an efficient approach to unroll the computation,
and represent it as a canonical word-level multi-variate poly-
nomial. Using algebraic geometry, we show that the unrolling
of the computation at word-level can be performed by Gröbner
bases and elimination term orders. Subsequently, we show that
the complex Gröbner basis computation can be eliminated
by means of a bit-level to word-level substitution, which is
implemented using the binomial expansion over Galois fields
and Gaussian elimination. Our approach is able to verify up to
100-bit sequential circuits, whereas contemporary techniques
fail beyond 23-bit datapaths.
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bases”, in Proc. Design Automation Conference (DAC), 2014.

[8] O. Coudert and J.C. Madre, “A Unified Framework for the Formal
Verification of Sequential Circuits”, in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pp. 126–129,
1990.

[9] K. L. McMillan, “Interpolation and SAT based Model Checking”, in
Computer-Aided Verification, 2003.

[10] A. Bradley, “Sat-based Model Checking Without Unrolling”, in
Verification, Model Checking and Abstract Interpretation (VMCAI), pp.
70–87, 2011.

[11] Maciej Ciesielski, Walter Brown, Duo Liu, and André Rossi, “Function
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