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Finite-Difference Time-Domain (FDTD) Method

« Solves Maxwell’'s equations

 May be applied across the
electromagnetic spectrum

* Introduced in 1966 by Kane
Yee.

 1000’s of FDTD-related
papers published each year

e 100’s of commercial FDTD
solvers available

UEEE g

(i.j,k)

>y

Source: A. Taflove and S. C. Hagness,
Computational Electrodynamics: The

Finite-Difference Time-Domain Method,
Norwood, MA: Artech House, 2005.



Model Generation #1:
A 3-D Latitude-Longitude Global Model
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Source: Simpson & Taflove, IEEE Trans. Ant. Prop., pp. 443-451, 2004. U



Model Generation #2:
An Efficient Geodesic Global Model
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Unfolding of grid cells for parallel-processing on a supercomputer.
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[2] D. A. Randall et. al., Comput. Science and Eng., pp. 32 — 41, Sept./Oct. 2002.

[1] Simpson & Taflove, IEEE Trans. Ant. Prop., pp. 1734-1741, June 2006.
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Topography, Bathymetry, and Oceans Included

Source: mapsnet.org and ngdc.noaa.gov/mgg/topo
(ETOPO 1 =2 1 arc minute or ~1.9 km resolution at the Equator)




Varying 3-D Lithosphere Electrical Characteristics
According to Location and Depth

Global data is at 2° x 2° resolution;
the continental U.S. region is at 1° x 1° resolution

Source: Anna Kelbert, USGS, EMC-GlobalEM-2015-02x02 and
https://doi.org/10.1002/9781119434412.ch8



Magnetized lonospheric Plasma
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Latitude

lonospheric Conditions assumed for the
Propagation Scenario on the Next Slide

Horizontal Plane of the lonospheric Conductivity
At an altitude of 80 km on Jan. 1, 2020 and at 3 pm in Salt Lake City, UT, corresponding to 10 pm UTC

Sources: Data provided by Prof. Reichler




FDTD-Calculated Global Propagation of an
Electromagnetic Wave

Horizontal Plane of Radial Electric Field Components (Plotted on a Log Scale)
Immediately above the Earth's surface at time = 0.0015 s for a 300-Hz pulse
occurring at Salt Lake City, UT at 3 pm local time, corresponding to 10 pm UTC
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Animation created by Kaiser Niknam
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