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Abstract— A 3-D stochastic finite-difference time-domain algo-
rithm is developed and applied to electromagnetic (EM) wave
propagation in collisional magnetized plasma characterized by a
variable electron density, collision frequency, and background
magnetic field. The proposed stochastic model is based on
the expansion of the random/variable time-domain electric
and magnetic fields in terms of orthogonal polynomials in
independent random variables representative of the variable
ionospheric content. EM wave propagation in magnetized plasma
having low variability (small deviations) and also high variability
(large deviations) of the electron density, collision frequency,
and background magnetic field is studied. The stochastic algo-
rithm is validated against brute-force Monte Carlo results. The
algorithm is considerably more computationally efficient than
Monte Carlo. When applied to EM wave propagation in the
ionosphere, the variability of the Earth’s magnetic field and
ionospheric parameters can be accounted for due to naturally
varying space weather conditions and day-to-day variations,
measurement errors, and so on. Although only electrons are
considered here, positive and negative ions may be accommodated
in a straightforward manner.

Index Terms— Collisional magnetized cold plasma, electro-
magnetic (EM) wave propagation, finite-difference time-domain
(FDTD), ionosphere, polynomial chaos, uncertainty.

I. INTRODUCTION

THE finite-difference time-domain (FDTD) method [1], [2]
is a robust numerical modeling approach that has been

widely utilized to solve for electromagnetic (EM) wave prop-
agation in the Earth-ionosphere waveguide (e.g., [3]–[11]).
Initially, 2-D “moving window” FDTD models were developed
in [3] and [4]. More recently, fully 3-D global FDTD models of
the Earth-ionosphere waveguide were generated that account
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for the anisotropic magnetized ionospheric plasma [11].
Specifically, a fully 3-D Cartesian plasma model developed
in [12] was applied to the 3-D FDTD latitude–longitude
global spherical grid [11] in [5]. By accounting for 3-D
magnetized ionospheric plasma physics, [12] was the first
global FDTD model to include the calculation of all important
ionospheric effects on signals, including refraction, absorption,
frequency shift, phase and group delay, polarization, and Fara-
day rotation. Subsequently, a more efficient magnetized plasma
algorithm which avoids the complex matrix formulation used
in [11] was published and adapted to the 3-D FDTD latitude–
longitude global model [13].

All of the above 2-D and 3-D FDTD plasma models,
however, account for only average (mean) composition val-
ues of the lithosphere and ionosphere and then solve for
only expected (mean) electric and magnetic fields with-
out considering the associated uncertainties in these phys-
ical quantities. One exception is Reference [14], in which
a stochastic FDTD model of the global Earth-ionosphere
waveguide is generated, however, it assumes an isotropic
ionospheric plasma which may only be used at extremely
low frequencies and below. Not accounting for the magne-
tized ionospheric plasma as well as the variability of the
lithosphere and ionosphere content can limit the utility of
EM propagation modeling for communications, surveillance,
navigation, and geophysical applications. As one example,
the ionosphere strongly effects transionospheric EM propa-
gation: the irregularities in the electron density distribution
can cause highly complex phase and amplitude scintillation.
In these situations, it is highly desirable to consider models
which account for random variability within the propagation
media.

To account for the the variable/uncertain composition and
dynamics resulting from solar and geomagnetic activities,
the ionosphere may be treated as a random medium. Past
and recent investigations (see [15]–[22]) on the temporal and
spatial ionospheric variations have improved our understand-
ing of the dynamics of the ionosphere under normal and
disturbed conditions. This knowledge should be incorporated
into numerical EM propagation models. The brute-force Monte
Carlo method could be used, but it is computationally expen-
sive, and quickly becomes computationally infeasible for 3-D
problems.
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To overcome this problem, stochastic FDTD (S-FDTD)
was proposed [23]. The advantage of the S-FDTD plasma
algorithm is that it provides a direct estimate of both the mean
and variance of the EM fields within a variable ionosphere at
every point in space and time, while requiring only about twice
as much computer simulation time and memory. However,
its accuracy is limited by the fact that it requires estimates
for the cross-correlation coefficients of the plasma frequency
and the electric fields. A good procedure for determining the
best estimates for these cross correlations is not yet known.
Moreover, the Taylor series truncations may lead to insufficient
accuracy in some cases.

This paper presents an alternative approach to S-FDTD
and instead uses the spectral expansion or polynomial chaos
expansion (PCE) method [24], [25] to represent the stochastic
variability of the EM wave propagation in the magnetized
cold plasma medium model. Polynomial chaos has previously
been applied to computational fluid dynamics [26], [27] and
some specific computational EM problems (see [28]–[37]).
PCE is a robust method based on the expansion of the random
output quantities of interest into a sum of a limited number
of orthogonal polynomials of random input variables. It is
versatile in that it can be applied to non-Gaussian problems,
and its accuracy may be improved by simply increasing
the order of the orthogonal polynomials. Recently, the PCE
method was applied to investigate the impact of fire on the
indoor wireless channel where fire is modeled as a cold plasma
medium without considering the ambient magnetic field B (i.e.,
isotropic unmagnetized plasma) [38].

Here, we apply the PCE method to EM propagation in the
ionosphere in the presence of a magnetic field, B. Specifically,
realistic ionospheric electron densities and collision frequen-
cies are used, but the ambient B is stronger than the Earth’s
actual magnetic field so that it will alter particle trajectories
over a relatively short distance (i.e., behave as an anisotropic
magnetized plasma). Using a larger B allows the use of smaller
FDTD grids, which makes a comparison with Monte Carlo
results more feasible.

In considering the variability of the ionosphere content, B
is also treated as a 3-D random parameter since the Earth’s
magnetic field changes over time. The variation of B arises
from the variation of currents in the ionosphere and magne-
tosphere or from the motion of molten iron alloys in its outer
core. Our ultimate objective is to develop an optimal (efficient
and accurate) stochastic FDTD-based algorithm that is well
suited for large uncertainty quantification of the ionosphere
and Earth’s magnetic field. Note that relative to [39], this paper
addresses collisional plasma (versus collisionless plasma),
addresses the multivariable case (versus the univariate case),
and provides significantly more details/results such that others
may better understand and replicate our work as needed.
Finally, although only electrons are considered in this paper,
the PCE formulation presented here is identical for handling
positive or negative ions as well.

II. FORMULATION

This section presents the primary relevant aspects of
the magnetized collisional ionospheric plasma algorithm

of [13] (presented in Section II-A) that are needed to
understand the PCE magnetized plasma formulation (presented
in Section II-B). Finally, the methodology for calculating the
global sensitivities of each input parameter on the EM fields
is provided in Section II-C.

A. 3-D FDTD Collisional Magnetized Plasma Formulation

Plasma in the presence of an ambient magnetic field, for
example, the ionosphere in the presence of the Earth’s mag-
netic field, becomes an anisotropic medium. The governing
equation set is comprised of Maxwell’s curl equations and the
Lorentz force equation as follows:

∇ × E = −μ0
∂H
∂ t

(1)

∇ × H = ε0
∂E
∂ t

+ Je (2)

∂Je

∂ t
+ veJe = ε0ω

2
PeE + ωCe × Je (3)

where Je is the electron current density and ve (the electron
collision frequency), ωCe (the electron cyclotron frequency),
and ωPe (the electron plasma frequency) are fundamental
plasma parameters which define various characteristics of a
plasma. The plasma frequency may be calculated via the
electron density ne as follows:

ωPe =
√

q2
e ne

ε0me
. (4)

The electron cyclotron frequency is a function of the applied
magnetic field B as follows: ωCe = |qe|B/me.

By taking advantages of the Boris algorithm (which has
been widely applied to particle-in-cell plasma modeling [40],
[41]) and the MacCormack predictor–corrector method [42],
[43], [13] provides an efficient 3-D FDTD magnetized plasma
algorithm in which the Lorentz equation is derived explicitly
and incorporated into the traditional FDTD Maxwell’s equa-
tions [e.g., the x-component equations are provided in (5)–(8),
as shown at the top of the next page]. Now, the Lorentz
equation involves a predicted current density vector Je,p and
a corrected current density vector Je,c, where θ is an angle
between two auxiliary current density vectors J+ and J−
via Boris scheme. Then, the final current density vector is
the average of the predicted current density vector and the
corrected current density vector. Fig. 1 illustrates the positions
of the EM field and current density components in the Yee
cell, where all of the current density components are solved
at the position of Ex . More details on this algorithm may be
found in [13]. In this paper, we have applied a simple PEC
boundary condition at all of the boundaries, and have used a
sufficiently large computational grid to avoid any reflections
from the boundaries over the time span of interest. A more
suitable boundary condition that accounts for the plasma as
well as the uncertainty is challenging and beyond the scope
of this paper. It will be important for follow-on work.

B. 3-D-PCE-FDTD Collisional Magnetized Plasma
Formulation

The ionosphere exhibits large variations in both time and
space. Previous studies showed that the ionosphere content,
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Regular H-Field Update:

Hx
∣∣n+1/2
i, j+1/2,k+1/2 = Hx

∣∣n−1/2
i, j+1/2,k+1/2 + �t

μ0

[
Ey |ni, j+1/2,k+1 − Ey

∣∣n
i, j+1/2,k

�z
−

Ez
∣∣n
i, j+1,k+1/2 − Ez

∣∣n
i, j,k+1/2

�y

]
. (5)

For the Predictor Step:
Jex,p

∣∣n+1/2
i+1/2, j,k

= Jex
∣∣n−1/2
i+1/2, j,k +�tε0ω

2
Pe Ex

∣∣n
i+1/2, j,k −�tve Jex
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i+1/2, j,k − sinθ

|ωCe|
(
Jey
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i+1/2, j,kωCez − Jez

∣∣n−1/2
i+1/2, j,kωCey

)
− �tε0sinθ

2|ωCe| ω
2
Pe

(
Ey

∣∣n
i+1/2, j,kωCez − Ez

∣∣n
i+1/2, j,kωCey

) + �tsinθ

2|ωCe| ve
(

Jey
∣∣n−1/2
i+1/2, j,kωCez − Jez

∣∣n−1/2
i+1/2, j,kωCey

)

+ tan θ2 sinθ

|ωCe|2
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)
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]
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2|ωCe|2 ω2
Pe
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)
ωCez − (
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ωCey
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− �t tan θ2 sinθ

2|ωCe|2 ve
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Jez
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i+1/2, j,kωCez
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ωCey

]
. (6)

For the Corrector Step:
Jex,c

∣∣n+1/2
i+1/2, j,k

= Jex
∣∣n−1/2
i+1/2, j,k +�tε0ω

2
Pe Ex
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E-Field Update:

Ex
∣∣n+1
i+1/2, j,k = Ex
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ε0

⎡
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⎤
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(8)

i.e., the electron density and the collision frequency, vary
in the ionosphere according to solar activity (see [20]–[22]).
Similarly, the Earth’s magnetic field which extends from the
Earth’s interior out into space may also change over short-
time scales (ms) due to disturbed currents in the ionosphere
and over long-time scale (years) due to changes in the Earth’s
interior, particularly the iron-rich core [44]. The electron den-
sities, collision frequencies, and geomagnetic field intensity,
i.e., B = |B|, are considered here as random variables, each
having its own statistical distribution. This variation in the
ionosphere structure and geomagnetic field impresses variation
in the EM fields and current densities (E, H, and Je), which
in turn are treated as output random variables. The exact
distributions of the electron densities, the collision frequencies
and the geomagnetic field intensities are unknown, so these
input parameters are assumed to be characterized by a normal

(Gaussian) or uniform probability distribution. For example,
the electron density ne, the collision frequency ve, and the
geomagnetic field intensity B are defined by⎧⎪⎨

⎪⎩
ne(ξ1) = μne + σneξ1

ve(ξ2) = μve + σveξ2

B(ξ3) = μB + σBξ3

(9)

where μne , μve , and μB are the mean value of the parameters,
σne , σve , and σB are the standard deviation values, and ξ1, ξ2,
and ξ3 are independent normalized Gaussian random variables
with a zero mean and unit standard deviation.

In order to implement the PCE method, the uncertain fields
are expanded as an infinite summation of orthogonal basis
functions ψa(ξ). Similar to Taylor expansion, the infinite
summation is often truncated to finite order P . For example,
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Fig. 1. Yee cell illustrating the spatial positioning of the magnetized plasma
field components.

the x-components of the uncertain fields may be expressed as

Hx(x, y, z, t, ξ ) =
∞∑

a=0

ha
x (x, y, z, t)ψa(ξ )

≈
P∑

a=0

ha
x (x, y, z, t)︸ ︷︷ ︸
deterministic

ψa(ξ )︸ ︷︷ ︸
stochastic

(10)

Jex (x, y, z, t, ξ ) =
∞∑

a=0

j a
ex(x, y, z, t)ψa(ξ)

≈
P∑

a=0

j a
ex(x, y, z, t)︸ ︷︷ ︸
deterministic

ψa(ξ)︸ ︷︷ ︸
stochastic

(11)

Ex (x, y, z, t, ξ ) =
∞∑

a=0

ea
x (x, y, z, t)ψa(ξ )

≈
P∑

a=0

ea
x (x, y, z, t)︸ ︷︷ ︸
deterministic

ψa(ξ )︸ ︷︷ ︸
stochastic

(12)

where ha
x , j a

ex , and ea
x are the weighting coefficients, ξ =

[ξ1, ξ2, . . . , ξn] represents a vector containing an n number
of independent random variables, and ψ are Hermite poly-
nomials. By expanding the uncertain values in this manner,
the dependence of the output fields on the random parameter
ξ is separated from their dependence on time and spatial
position. The choice of the orthogonal basis functions follows
an Askey scheme to ensure optimal exponential convergence
rate [25]. Here, Hermite polynomials are chosen due to the
normal distribution of the random variables being considered
in this case.

The total number of expansion terms is (P + 1) and is
determined by

P + 1 = (n + d)!
n!d! (13)

where d is the order of the highest order Hermite polynomial
used in the expansion and n is the number of random variables.

Upon choosing a proper basis, a numerical technique is
needed to solve the coefficients ha

x , j a
ex , and ea

x . This may
be done either by repetitive executions or by modification
of the existing deterministic solver. These two options are
termed the collocation (nonintrusive) method and the Galerkin
(intrusive) method, respectively. This paper focuses on the
intrusive approach, since the Galerkin method typically offers
more accurate and efficient solutions, even though it is more
cumbersome to implement. The truncated expansions of the
Hx , Jex , and Ex solutions and input data are substituted
into the governing equations (5)–(8). A Galerkin projection
is then used by successively evaluating the inner product of
the expansion equations with each basis element ψb(ξ), where
b = 0, . . . , P . Then, the orthogonality condition

〈ψa(ξ ), ψb(ξ )〉 = 〈
ψ2

b (ξ )
〉
δa,b (14)

is used where δa,b is the Kronecker delta function (δa,b = 0
if a �= b and δa,b = 1 if a = b). Utilizing this orthogonality
condition yields a set of P +1 coupled deterministic equations
as shown in (15) and (16) for the Hx-field and Ex -field
updates, and in (17)–(18) for the Jex -field updates, that can
then be solved using the FDTD method
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= hb
x
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i, j+1/2,k+1/2 + �t
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�z
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z
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z
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�y

]
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= eb
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+�t

ε0

⎡
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z
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�y

−
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y
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y
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i+1/2, j,k−1/2

�z
− j b

ex

∣∣n+1/2
i+1/2, j,k

⎤
⎦ .
(16)

Note that a standard (nonstochastic) FDTD simulation of
plasma will calculate H (x, y, z), Je(x, y, z), E(x, y, z) at
every time step, while a PCE-FDTD simulation will calcu-
late (P + 1) weighting coefficients ha(x, y, z), j a

e (x, y, z),
ea(x, y, z) (a = 0, . . . , P) at every time step. Therefore, if we
are using (P + 1) polynomials to represent the stochastic
problem, the coupling between coefficients will generate a
system (P + 1) times larger. As a result, for the PCE-
FDTD method, the memory consumption generally increases
by a factor of (P + 1) and the simulation time increases
approximately by a factor of (P + 1)2 than that of a standard
(nonstochastic) FDTD simulation, since there are (P +1) field
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For the Predictor Step:
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(17)

coefficients to solve for and each calculation requires the sum
of the product of (P +1) field coefficients with (P +1) plasma
inner products as shown in (17), as shown at the top of this
page and (18), as shown at the top of the next page. Note
that the simulation time needed for the J -fields calculations is
longer than that of the E-fields and H -fields due to the higher
complexity of the J -field update equations.

Here, all inner products should be precalculated for all
a, b = 0, . . . , P using numerical integration. Note that the
multivariate polynomial chaos basis functions are constructed
from tensor products of the univariate polynomials as follows:

ψb(ξ) =
n∏

i=1

φmb
i
(ξi ) (19)

where φmb
i
(ξi ) is a univariate orthogonal basis in ξi , and mb =

[mb
1, . . . ,mb

n] is the multi-index of the polynomial ψb. Also,
by using the multi-index definition and due to the statistical
independence of the ξ ’s, the multivariate triple/quadruple prod-
ucts may be determined from the univariate triple/quadruple

products. For example,

〈ve(ξ )ψb(ξ )ψc(ξ)〉
=

〈(
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v i
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)(
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φma
i
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i
(ξi )
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=
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i=1
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v i

e(ξi )φma
i
(ξi )φmb

i
(ξi )

〉
(20)

where v i
e = μve + σveξ2 with i = 2 and v i

e = 1 with
i �= 2. Now, the calculation of these inner products must be
performed only once. The statistics (mean, standard deviation,
and variance) of the output fields may be calculated based on
the results of the coefficients ea

u , ha
u , j a

u (u = x, y, z). The Ex

field is provided as an example as

μ[Ex,i+1/2, j,k(ξ )] = e0
x,i+1/2, j,k (21)

σ 2[Ex,i+1/2, j,k(ξ )] =
P∑

a=1

(ea
x,i+1/2, j,k)

2〈ψ2
a

〉
. (22)
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For the Corrector Step:
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(18)

C. Global Sensitivities

Global sensitivities are calculated to assess the relative
impact of each input parameter on the output EM fields of
the PCE plasma model. Sobol indices are widely used in this
context [45]. It is straightforward to compute global sensitivity
indices of the model response related to the input parameters
with a minimum computational cost via PCE [46], [47]. The
Sobol indices, for the output field Ex , and the set of inputs u
are given by [47]

Su =
∑

m∈Ku

(
em

x,i+1/2, j,k

)2〈
ψ2

m

〉
σ 2[Ex,i+1/2, j,k(ξ)] (23)

where Ku is an index to the terms in (12) that contain u. For
n input variables, (23) yields 2n − 1 indices and they all sum
up to 1

∑
u⊆{1,2,...,n}

Su =
n∑

i=1

Si +
∑

1≤i< j≤n

Si j + · · · + S1,2,...,n = 1.

(24)

Since this number becomes quickly large when n increases,
and in order to avoid the need to consider too many sensitivity
measures, in practice it is more useful to define the total
indices [48], namely, STi (which express the total sensitivity of
the variance of the output field Ex due to each input variable
ξi alone and all its interactions with the other variables)

STi =
∑
u�i

Su . (25)

For example, in the case of three input parameters n = 3,
we have ST1 = S1 + S1,2 + S1,3 + S1,2,3.

III. NUMERICAL EXAMPLES

The Galerkin-based PCE algorithm is now applied to exam-
ine uncertainty of 3-D EM wave propagation in magnetized
cold plasma. A similar test as for the FDTD plasma model
of [12] is used for the validation of the proposed algorithm.
An x-polarized, z-directed Gaussian-pulsed plane wave (with
no uncertainty in the source) is implemented to excite the
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Fig. 2. Mean of Ex for small input deviation case (observed at a point
40 cells away from the source).

FDTD grid. The first weighting coefficient of a source that
has no uncertainty is just its mean value (i.e., the source
waveform), and all of the other weighting coefficients are zero.
This is written as

ea
x,source =

{
exp

[−(t−50�t)2

2(7�t)2

]
, if a = 0

0, if a > 0.

This is because the first weighting coefficient (a = 0) of
a stochastic function represents its mean value. As a result,
we only need to assign the first weighting coefficient to the
source waveform and set the remaining weighting coefficients
(a > 0) to zero. The lattice space increments in each Cartesian
direction of the FDTD grid and the time step are �x = �y =
�z = 1 mm and �t = �x/(c × 0.55), respectively. In order
to observe an effect of the plasma over a short distance for
validation purposes, a large mean value of the magnetic field
B =0.06 T is applied to the plasma.

For validation, the input electron densities ne, collision
frequency ve, and intensity of geomagnetic field B for each
simulation are first generated in a random manner with a
normal distribution given by Table I (the standard deviation σ
in the Table I is defined by %σ/μ). These sets of data serve
as inputs in Monte Carlo simulations to provide the actual
statistical properties (mean and standard deviation values) of
the output fields. Then, using the proposed PCE-based FDTD
model, three separate simulation cases are run using Hermite
polynomials of order d = {1, 2, 4} to compare with the Monte
Carlo results. Although in this paper we only study a normal
distribution case as a numerical example, we find the same
trend of the output, not shown, for the uniform distribution
case.

Fig. 2 shows good agreement between the Monte Carlo
and all three PCE FDTD model results for the mean electric
field Ex time-domain waveform as recorded 40 cells away
from the source in the z-direction for the “small deviation”
case of Table I. The corresponding standard deviations for
each case are shown in Fig. 3. The results in Fig. 3 indicate
that in the early time, an order higher than d = 2 does not
yield much improvement in the standard deviation agreement
between the PCE model results and the Monte Carlo results.

TABLE I

INPUT PARAMETERS AND UNCERTAINTY

Fig. 3. Standard deviation of Ex for small input deviation case (observed
at a point 40 cells away from the source).

Fig. 4. Standard deviation of Ex for small input deviation case at early time
steps (observed at a point 40 cells away from the source).

This is highlighted in Fig. 4, which is a zoomed-in view of
the early time results of Fig. 3. The d = 2 and d = 4 results
in Fig. 3 are nearly identical, but the d = 2 case has the
advantage of running faster than the d = 4 case. Finally,
the late time results of Fig. 3 illustrate that the late-time results
are improved by using a higher-order PCE model. As the
order is increased, however, the simulation time increases and
eventually can be as long or longer than all of the Monte Carlo
simulations.

Next, Figs. 5 and 6 show the mean and standard deviation,
respectively, of the electric field Ex recorded 40 cells away
from the source in the z-direction when the deviation of each
input parameter is increased by a factor of 5, corresponding
to the “large deviation” case of Table I. First, as would
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Fig. 5. Mean of Ex for large input deviation case (observed at a point
40 cells away from the source). The zoomed-in view extends along the x-axis
from 300 to 1600 time steps.

Fig. 6. Standard deviation of Ex for large input deviation case (observed at
a point 40 cells away from the source).

Fig. 7. Mean of Ex for large input deviation case at early time steps (observed
at a point 40 cells away from the source).

be expected, the standard deviation in Fig. 6 has a higher
amplitude than the “small deviation” standard deviation of
Fig. 3. More specifically, the results as shown in Figs. 2,
3, 5, and 6 indicate that the “small deviation” case results
in a peak variation of 5.6% for the Ex -component, and the
“large deviation” case results in a peak variation of 27.7%

Fig. 8. Standard deviation of Ex for large input deviation case at early time
steps (observed at a point 40 cells away from the source).

Fig. 9. Relative contribution of each input parameter to the uncertainty
computed using the order d = 4 expansion for large input deviation case.

variation in Ex (by comparing the peak mean value with the
corresponding peak standard deviation value). Next, in the
early time of Figs. 5 and 6, at least an order d = 4 is required
for the mean and the standard deviation to agree well with
the Monte Carlo results. This is better shown in Figs. 7 and 8,
which are zoomed-in views of Figs. 5 and 6, respectively.
This finding is similar to the Monte Carlo method wherein
higher standard deviations require an increased number of
Monte Carlo simulations to converge to the same level of error.
However, for the PCE-based Galerkin approach, the accuracy
depends on the order of the PCE (higher order leads to higher
accuracy). Finally, as time progresses, higher order PCE sim-
ulations may be desirable in order to obtain better agreement
with the Monte Carlo results. This should only be pursued
when long-time spans are of interest, however, because the
simulation time of the PCE models increases as the order is
increased. We also note that the reason for the divergence of
the PCE method after a short-time span is because the PCE
method is known to fail for long-term integrations, losing its
optimal convergence behavior [49]. A more efficient method,
such as multielement PCE method [50], may be investigated
to overcome this problem, i.e., in order to maintain an optimal
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PCE when progressing to longer times. This is especially
important for higher deviation problems.

Using the methodology of Section II-C, global sensitivities
are calculated. Fig. 9 shows the relative contribution of each
input parameter to the uncertainty in Ex computed via (25).
The uncertainty in Ex is dominated by the electron density
ne in the early time. The Gaussian pulse source used in
the test case in this paper is expected to excite a lower
frequency whistler mode wave after about 500 time steps,
and this whistler mode travels along the Earth’s magnetic
field lines. Therefore, the uncertainty in the geomagnetic field
B has a greater impact during the later time steps. Also,
the modeling results indicate that the collision frequency
variations influence the propagating EM waves far less than
the geomagnetic field and the electron density variations. This
agrees with the observations in [51] and [52]. The figure also
clearly demonstrates that the model is nonadditive and there

is significant interactions between the parameters (as indicated
by the contributions to the uncertainty extending above 1 on
the y-axis). In other words, both the geomagnetic field and
electron density are important, either when taken alone (i.e.,
first-order indices) or together (i.e., higher order indices). This
may indicate that a higher order of the expansion in the PCE
model and more Monte Carlo simulations may be required to
improve accuracy of the results.

Table II compares the computational performance of the two
methods. All simulations were performed on the Blue Waters
supercomputer at the University of Illinois Urbana–Champaign
using 1024 computational cores as well as identical time-step
increments and grid sizes in order to obtain a fair comparison.
As seen in Table II, the Monte Carlo method takes more than
10× longer compared to the proposed PCE method in order
to obtain reasonable agreement (comparing 1000 Monte Carlo
simulations with the PCE simulation of order 2 for the “small
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TABLE II

SIMULATION TIME REQUIRED BY THE MC AND
THE PROPOSED PCE-BASED METHODS

deviation” case, and 5000 Monte Carlo simulations with the
PCE simulation of order 4 for the “large deviation” case).

Until this point, a general multivariate PCE method has
been considered that involves the variability of three input
parameters: the electron density, the collision frequency, and
the geomagnetic field. For cases in which fewer variable input
parameters are needed, the stochastic Lorentz equation for the
predictor and corrector steps may be simplified. For exam-
ple, when only electron density is modeled as an uncertain
input parameter, then the equation reduces to the univariate
random input parameter of the electron density as shown in
(26) and (27), as shown at the bottom of the previous page.
Accounting for only one random input variable (the electron
density) greatly enhances the computational performance. For
the PCE method, the memory consumption generally increases
by a factor of P + 1 and the simulation time increases by a
factor of (P + 1)2.

IV. CONCLUSION

The PCE Galerkin approach was developed and applied to
uncertainty quantification of EM wave propagation in mag-
netized cold plasma. The statistical characteristics (mean and
standard deviation) of the electric and magnetic fields were
studied under the effect of geomagnetic field and ionosphere
content (i.e., electron density and collision frequency) vari-
ability. The PCE FDTD results showed very good agreement
with Monte Carlo results, especially in the early time results.
In cases where late-time accuracy is needed, a higher order
PCE model may be used. For the simulations in this paper,
the PCE FDTD models ran more than 10× faster than the
corresponding Monte Carlo group of runs.

The tests of this paper involved relatively large values (high
amplitude background magnetic field) in order to efficiently
observe effects of the magnetized plasma on the propagating
EM wave over a short distance. However, the geomagnetic
field in the PCE FDTD model may be scaled in a straight-
forward manner to actual geomagnetic field amplitudes in
order to model EM wave propagation in the Earth-ionosphere
waveguide. It may therefore serve as an important tool for
reliably estimating EM wave propagation in an uncertain /
variable ionosphere, especially for large 3-D plasma scenarios
wherein Monte Carlo simulations would be impractical to run.
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