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Abstract—A stochastic finite-difference time-domain (S-FDTD)
algorithm is presented for electromagnetic-wave propagation in
anisotropic magnetized plasma. This new algorithm efficiently
calculates in a single simulation not only the mean electromagnetic
field values, but also their variance as caused by the variability or
uncertainty of the electron and ion content of the ionosphere. The
structure of the ionosphere is often too variable and uncertain for
electromagnetic-wave propagation problems to be solved using
a deterministic formulation, particularly during space weather
events. For these cases, the S-FDTD ionospheric plasma algorithm
will serve as an important tool. For example, it could be used
to determine the confidence level at which a communications or
remote sensing or radar system will operate as expected under
abnormal ionospheric conditions.

Index Terms—Earth, electromagnetic wave propagation, fi-
nite-difference time-domain (FDTD), ionosphere, magnetized
cold plasma, statistics, stochastic finite-difference time-domain
(S-FDTD) method, uncertainty, variance.

I. INTRODUCTION

C OMMUNICATIONS, surveillance, and navigation capa-
bilities rely heavily on accurate knowledge of electro-

magnetic (EM) signal propagation characteristics through, and
reflected by, the Earth's ionosphere. Satellite communications,
over-the-horizon radar, and target direction finding are a few
example applications. Poor understanding of either the iono-
spheric state or the complete signal propagation characteristics
through the ionosphere can negatively affect the performance of
these applications. For example, inaccurate signal predictions
may lead to erroneous target identification and coordinate esti-
mation [1].
It is crucial for the performance of many of these systems to

have knowledge of not just the general (average) structure of
the ionosphere, but also its variability (or uncertainty). For ex-
ample, the variability of the ionosphere strongly effects trans-
ionospheric radio propagation. The irregularities in the elec-
tron density distribution cause phase and amplitude scintillation.
We note that there are now efforts to add variance electron and
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ion information to the International Reference Ionosphere (IRI)
dataset [2]–[9].
The variability of the ionosphere renders many propagation

problems too complex to be solved using a deterministic for-
mulation. The structure of the ionosphere can depend not only
on the altitude, time of day, and season, but also on the lati-
tude longitude, sunspot cycle, and occurrence of space weather
events. A useful approach to such a highly complex problem as
EM-wave propagation in the ionosphere is to consider it as a
random medium problem.
Numerical EM techniques, however, typically use only av-

erage (mean) values of the constitutive parameters of the mate-
rials and then solve for expected (mean) electric and magnetic
fields. TheMonte Carlo method is a well-established and widely
used brute force technique for evaluating randommedium prob-
lems via multiple realizations [10]. Depending on the nature of
the statistical correlation, a random medium problem may re-
quire tens or hundreds of thousands of realizations. This yields
an extremely inefficient brute force approach, particularly for
two-dimensional and three-dimensional problems, and is there-
fore rarely used in EM modeling.
The finite-different time-domain (FDTD) method [11], [12]

has been demonstrated as a robust and efficient computational
electromagnetic technique for Earth-ionosphere wave propaga-
tion problems (e.g., [13]–[19]). Several techniques have been
proposed recently to solve uncertainty quantification problems
involving the FDTD solution toMaxwell's equations. Stochastic
FDTD (S-FDTD) is an efficient formulation that runs the en-
semble averages in a single realization scheme [20], [21]. Ref-
erence [20] provides a direct estimate of both the mean and
variance of the electromagnetic fields within layered biological
media at every point in space and time. The advantage of this
method is that it requires only about twice as much computer
simulation time and memory as a traditional FDTD simulation,
regardless of the number of random variables. On the other
hand, its limitation is that it can only bound the field variances
according to a best estimate approximation for the cross-corre-
lation coefficients.
The approach in [21] proposes a single-realization scheme to

obtain the ensemble average of the scattered fields. The advan-
tage of the approach of [21] is that it makes use of an itera-
tive technique to reformulate a multiplicative noise into an ad-
ditive noise. However, the limitation of this algorithm is that it
must meet the condition of a weakly scattering randommedium,
wherein the deviation from the mean electrical material values
is small.
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Another approach [22], [23] makes use of the generalized
polynomial chaos (gPC) method, which is an extension of ho-
mogeneous chaos introduced by Wiener in 1938. The gPC ex-
pands the time-domain electric and magnetic fields in terms of
orthogonal polynomial basis functions of the uncertain vari-
ables. The infinite sum of the polynomial chaos expansion is
truncated to a finite number of terms of orthogonal basis
functions. The number of terms is given by

, where is the highest polynomial order in the ex-
pansion and is number of random variables. It follows that
grows very quickly with the dimension and order of the decom-
position. In general, the gPC method increases memory con-
sumption by a factor and the simulation time proportional
to . The gPC results, however, typically converge sig-
nificantly faster than theMonte Carlo method in a number of ap-
plications. It is also a mathematically robust method. However,
the method has an inherent limitation. It can handle only a lim-
ited number of uncertain inputs. For large numbers of random
variables, polynomial chaos becomes very computationally ex-
pensive, and Monte Carlo methods are typically more feasible.
In summary, each of the above approaches has its own

strengths and limitations. Given the fact that the ionosphere
content can vary even up to 100% or more, the S-FDTDmethod
proposed in [20] and the gPC method are good candidates for
electromagnetic-wave propagation modeling in ionosphere
plasma.
An FDTD fully three-dimensional (3-D) anisotropic mag-

netized plasma model is reported in [17] and [18] for appli-
cation to electromagnetic-wave propagation in the ionosphere.
This model solvesMaxwell's equations coupled to current equa-
tions derived from the Lorentz equation of motion. By providing
3-D solutions, it yields the ability to simulate Faraday rotation
and the complete 3-D spatial variations of the magnetized cold
plasma. The accuracy, stability, and formulation of this method
is fully described in [17, Sections I and II]. In [19], the Cartesian
magnetized plasma ionosphere algorithm of [17] is extended to
the global latitude-longitude FDTD model of the Earth-iono-
sphere waveguide.
In the algorithm of [17], the governing stochastic equations

take the form of a large, complex matrix. As a result, the com-
plexity of the physical model presents a computational chal-
lenge. If the gPC method is applied for variation analysis of
uncertainty effects on the ionospheric plasma electromagnetic
field, the derivation of the explicit equations for the gPC coeffi-
cients may be very difficult, or even impossible to obtain.
Comparing all the above strengths and weaknesses of the dif-

ferent stochastic modeling approaches, currently the S-FDTD
method presented in [20] is the only suitable method for mod-
eling large-scale, complex problems of Earth-ionosphere wave
propagation. Therefore, in this paper, we extend the method-
ology of Maxwell's equations S-FDTD [20] to Maxwell's equa-
tions coupled to the Lorentz equation of motion as in the 3-D
FDTD magnetized plasma algorithm of [17] and [18]. We also
propose an initial method for determining a good approximation
for the cross correlation coefficients.
The new S-FDTD ionosphere plasma model presented here

has broad potential applicability. The ability to determine not
only the mean values of the ionospheric EM fields but also

their variance will, for example, provide the capability of de-
termining the confidence level that a communications/remote
sensing/radar system will operate as expected under abnormal
ionospheric conditions. It may also be useful in a wide variety
of geophysical studies.

II. METHODOLOGY

A. Governing Equations

The plasma algorithm methodology presented in [17] is iden-
tical for each electron, positive and negative ion species within
the ionosphere. Since the effect of ions on EM-wave propaga-
tion may sometimes be neglected, and to simplify the presenta-
tion of the S-FDTD ionosphere algorithm in this paper, we will
consider a simplified case of a plasma comprised of only elec-
trons. The cold plasma is characterized by a free-space permit-
tivity and a free-space permeability that is biased by an applied
magnetic field .
The magnetized cold plasma governing equations are cast in

terms of Maxwell's equations coupled to current equations de-
rived from the Lorentz equation of motion. The resulting whole
governing equation set is given by

(1)

(2)

(3)

Here, , , and are the collision frequency, the current
density, and the plasma frequency of electrons, respectively.
The plasma frequency is given by

(4)

It should be noted that the electron plasma frequency is a
function of the electron density . Ionosphere electron densi-
ties vary in a complex manner as a function of location and time.
Thus, we consider the electron density as a random variable with
its own statistical variation. This variability in the electron den-
sity causes variability in the EM fields, whichwill also be treated
as random variables.
The current density can be written using Cartesian coordi-

nates as

(5)

is the cyclotron frequency of the electrons given by
with a Cartesian coordinate expressions as

(6)

Note also that the cyclotron frequency is a function of the
applied magnetic field, which is taken to be constant. Thus, the
cross-product terms in (3) makes the plasma anisotropic so that
the wave behavior depends on its propagation direction relative
to the direction of the magnetic field.

B. Mean Field Equations

For the S-FDTD derivation, there are initially three stochastic
equations (1), (2), and (3) that for Cartesian coordinates contain
ten random variables for the 3-D case: , , , , , ,
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, , , and . By using the delta method [24], Smith
and Furse demonstrated that the average (or expected) fields can
be found by solving the field equations using the mean or av-
erages of the variables [20]. Analogously, we find for the case
of the S-FDTD magnetized cold plasma model that the equa-
tions for the mean values of the EM fields and current densities
are also equal to those of the regular 3-D FDTD magnetized
cold plasma model equations presented in [17] and [18] (corre-
sponding for the -component case to (7), (8), and (9) of [18]),
as follows:

(7)

(8)

(9)

Thus, the mean EM field and current density values are
found by using the mean plasma frequency of , or
equivalently, the mean of electron density . Note that the
magnetic fields and current densities are scaled such that

and to
avoid instabilities and inaccuracies caused by the large iteration
coefficients. Note also for brevity, we use the notation

Further, the mean calculations presented here are a first-order
accurate single-realization ensemble average scheme. The accu-
racy may be improved in the future by developing higher order
methods that include the higher order terms from the Taylor se-
ries. However, the validation test cases presented in this paper
have demonstrated that the first-order accurate scheme is a very
good approximation for magnetized cold plasma model. More-
over, the primary purpose of S-FDTD is to quantify the variance
of the fields rather than the mean field values.

C. Variance Field Equations

When solving only Maxwell's equations, the variance field
equations can be solved separately from the mean field equa-
tions no matter the dimensionality of the problem [25]. How-
ever, in the 3-D magnetized cold plasma model, the Lorentz (3)
is coupled to the Maxwell (2), which leads to a complicated but
linear system, as can be seen in (8) and (9). As a result, the
electric field and current density variances must be computed
simultaneously. When variance equations are derived, covari-
ances are needed of the , fields and current density in
both time and space. The equations also relate the electric field
to the plasma frequency of the ionosphere, resulting in addi-
tional covariance terms between the electric field and the plasma
frequency. For the S-FDTD method, a critical step is to approx-
imate the correlation coefficients.
As for the 3-D Maxwell's equations S-FDTD methodology

of [25], for the 3-D S-FDTD magnetized cold plasma algo-
rithm, the magnetic fields, electric fields, and current densities
are highly correlated to each other. As such, the correlation co-
efficients of the and fields and current density may be
approximated as 1. The approximation of the remaining corre-
lation coefficients between the electric field and the plasma fre-
quency will control the accuracy of the algorithm.
In order to derive the standard deviation (or variance) equa-

tions, we must take the variance of (7), (8), and (9). This step
results in two cases as described below:
Case 1: If a function is formed by the sum of multiple vari-

ables ((7) and (8)), its variance is

(10)

Here, is the correlation coefficient
. The closer this coefficient is to zero, the more independent

the terms are from each other. If the correlation coefficients
, we obtain

(11)

or (12)

Case 2: If a function is formed by the product of multiple
variables ((9)), its variance is solved by using the delta method
[24], as follows:

(13)

Equations (12) and (13) will be used in the derivation of the
variance equations (14), (15), and (16).
Now the S-FDTD plasma update equations will be derived,

starting with the -fields. For illustration purposes, only the
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update equation for the -component of the -field will be de-
rived. We start by rearranging (7) and taking its variance. This
yields

Applying the following approximations:

and applying (12) and rearranging, the resulting equation from
taking the variance of (7) yields

(14)

Next, we will work with (8). Again, for illustration purposes,
we will only drive the update equations for the -component of
the fields. Rearranging (8) and taking its variance yields

Applying the following approximations:

and applying (12) and rearranging, the resulting equation from
taking the variance of (8) yields

(15)

Finally, we will work with the -component equation of (9).
Rearranging (9) and taking its variance yields

Apply the following approximations:

From (13) and setting , the
left-hand side is computed using delta method, yielding
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Neglecting the remainder term
, we then have

Since , we ar-
rive at

Rearranging, the resulting equation from taking the variance of
(9) yields

(16)

Although only the -component equations are derived here,
analogous equations can be obtained for the -component and
-component equations.
Since both the electric field and its deviation are

in (16), all of the state variables for the deviations of and
will depend on the mean of electric field as well. All of the
required equations can be combined to 18 scalar equations with
18 state variables. After the discretization of these equations
using – collocation, these equations can be divided into three
groups. The first group consists of six difference equations for
the magnetic field and its deviation update similar to

(7) and (14) given for . The second group consists of six
linear equations of all the components of , which can be
given as

(17)

Finally, the third group consists of six linear equations of all the
components of and , which can be given as

(18)

where , , , and are the co-
efficient matrixes that depend on the plasma properties and the
modeling parameters [(19)–(22) at the bottom of the next page].
Note that in this derivation, – collocation is utilized such that

are all at the same locations,
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Fig. 1. Yee cell (including stochastic variables) indicating the spatial posi-
tioning of the field components.

and are located at the same positions, as shown in
Fig. 1.
Fig. 2 shows a diagram of the iteration process for each time

step. What is changed from the regular FDTD update is the ad-
dition of the calculation of the variances after the mean values
are obtained. In addition, since both the mean fields and their
variances behave like waves, both require boundary conditions.
Thus, the Mur's boundary condition developed for the magne-

Fig. 2. S-FDTD flowchart.

tized plasma as implemented in [26] is applied to the S-FDTD
variance values as well as to the mean values.

III. VALIDATION OF THE ALGORITHM

The performance of the fully 3-D S-FDTD cold plasmamodel
of Section II is evaluated by running a similar validation test as

(19)

(20)

(21)

(22)
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Fig. 3. Mean of (observed at a point ten cells away from the source).

Fig. 4. Standard deviation of (observed at a point ten cells away from the
source).

for the FDTD plasma model of [17]. An -polarized, -directed
Gaussian-pulsed plane wave is modeled using

(23)

The lattice space increments in each Cartesian direction of
the grid are 1 mm, the time step

. The plasma medium has a mean electron den-
sity m , and the assumed electron density
has a statistical variation given by m
(equivalently, ). A constant magnetic field

is applied to the plasma as for the validation tests of
[17]. For simplicity, a collisionless plasma is tested. This large
magnetic field value (relative to the geomagnetic field as would
be applied to the ionosphere) is used so that we can see a strong
effect of the plasma over a short propagation distance and permit
a smaller simulation. The -field component shown in Fig. 3 is
recorded ten cells away from the source in the -direction. The
standard deviation and the variance are both important parame-
ters that measure the spread of the distribution about the mean.
The standard deviation and variance of the field are shown
in Figs. 4 and 5, respectively.
For validation, 100Monte Carlo simulations is used to predict

the exact mean, standard deviation, and variance of the fields.

Fig. 5. Variance of (observed at a point ten cells away from the source).

The input electron densities for each simulation are gener-
ated in a random manner with a normal distribution given by

(24)

All of the simulation responses are collected and analyzed to
obtain their statistical properties (mean, standard deviation, and
variance values). Then, using S-FDTD, three separate simula-
tion cases are run using approximations for the correlation co-
efficients between the plasma frequency and the electric fields
of 1, 0.5, and 0.05, respectively.
In Fig. 3, there is a strong agreement between the mean values

of the Monte Carlo and S-FDTD results. That is, it is found
that evaluating the mean values using numbers generated by
the random generator is consistent with the mean values ob-
tained directly from the Maxwell's equations/current equation
solutions. Fig. 4 shows that a higher correlation coefficient leads
to a higher standard deviation (or variance) of the electric field.
As expected, the approximations for the cross correlation of the
plasma frequency and the electric fields have a direct impact
on the accuracy of the S-FDTD method. The correlation coeffi-
cient of 1.0 yields a maximum (upper bound) of the variance. In
this dataset, a cross-correlation value of 0.05 provides the best
agreement with the Monte Carlo simulations.
It is challenging to decide which method should be used

to evaluate the cross-correlation coefficients. So far, we have
considered the correlation coefficients between the plasma
frequency and each of the three components of the field to be
equal. Now instead, Fig. 6 shows results for cases wherein the
correlation coefficients are not identical for each of the three
Cartesian directions. For example, if we keep
and change and to 0, Fig. 6 clearly shows that
the variance of the field mainly depends on . This can
be explained as follows: For an -polarized, -directed plane
wave, the -component is always equal to zero with any value
of electron density. The , therefore, should also be equal
to zero, since a variable and a constant are always indepen-
dent. Moreover, when the -component is much larger than
the -component, the value of primarily affects the
variance of the field. Note that for a wave that is undergoing
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Fig. 6. Variance of with changing and (observed at a point
ten cells away from the source).

Fig. 7. Correlation coefficient with changing standard deviation of
(observed at a point ten cells away from the source).

Faraday rotation, the - and -component amplitudes could
change with propagation distance. It appears that there are
many factors in choosing the best values, such as the field
component orientation, the cell's location relative to the source,
the type of source wave, and the direction of the background
magnetic field.
Next, the is gradually increased from 2 to 8.

Fig. 7 graphs the resulting change in the required for
the S-FDTD simulations in order to provide a good agreement
with Monte Carlo results. We can see that there is a linear
relationship between the choice of correlation coefficients for
this range of . We also observe similar trends when
changing other input parameters such as the source or mean
value of the electron density.
The results shown in Fig. 7 provide an indication as to how to

set the cross-correlation coefficient values in the S-FDTD code.
That is, twoMonte Carlo simulations along with the linear prop-
erty observed in Fig. 7 can be used to predict the correlation co-
efficients for an S-FDTD model having an ionosheric plasma at
least within the weak scattering range (having, for example,

1 and 2). Note that a relatively small number of simu-
lations is needed for the Monte Carlo method to obtain reason-
ably accurate results in the cases wherein the standard deviation

is small. In contrast, the Monte Carlo method for validating the
linear property of the S-FDTD algorithm in the cases of large
standard deviation presents a much more significant challenge.
More specifically, in a Monte Carlo simulation, the standard
error of the mean of the distribution is

error (25)

where is the confidence multiplier of a two-tailed normal
distribution. For a 95% confidence, . For 99%,
, etc. is the portfolio's standard deviation. The term
represents the number of runs in the Monte Carlo simulation.
Thus, the error is higher for either a high standard deviation
or a small number of runs. Note the accuracy improves as the
square root of the ratio of the number of additional runs. As a
consequence, tens of thousands of simulations are necessary for
Monte Carlo validations when increasing up to 100
or more. Monte Carlo simulations of 3-D magnetized plasma
model for more dense plasma may thus be prohibitively com-
putationally expensive.
As part of future research, systematic studies will be per-

formed to evaluate the best methodology for determining the ap-
propriate correlation coefficients for a wider variety of plasma
modeling scenarios. In the S-FDTD methodology of [20] ap-
plied to only Maxwell's equations, the correlation coefficients
were set to neighboring reflection coefficients. For the modeling
presented in this paper, however, there are no reflection surfaces,
and so there are no reflection coefficients that can be used for
the correlation coefficients. Further, when applied to the iono-
sphere, the S-FDTD plasma model will use ionospheric param-
eters that will continuously vary with position and altitude. As a
result, a different and more advanced methodology must be fol-
lowed for determining the appropriate correlation coefficients
between the electric field and the plasma frequency. Extensive
studies and simulations will be performed as part of future re-
search to develop these best approximations for the correlation
coefficients.
In addition, a new and more efficient FDTD magnetized

plasma algorithm involving no matrix equations has been
recently developed wherein all of the equations are explicit
[27]. Using this more efficient algorithm, the gPC method
may potentially be applied to electromagnetic-wave propa-
gation in the ionosphere. A gPC-plasma simulation will be
derived as part of future work and its results compared with the
S-FDTD modeling and Monte Carlo results for validation of
the algorithm.
Alternatively, to take advantage of the benefits of the dif-

ferent stochastic modeling approaches, it may possible to create
a hybrid method to achieve optimal and efficient results. For ex-
ample, the gPC method could help the S-FDTD simulations by
providing correlation coefficients for cases involving larger de-
viations of electron density wherein a Monte Carlo validation is
extremely inefficient. Note that the computational performance
of the S-FDTDmethod is better than the gPC method since it re-
quires only about twice as much computer simulation time and
memory as a traditional FDTD simulation, regardless of num-
bers of random variables. Overall, the ultimate objective is to
develop a stochastic optimization FDTD-based algorithm that



312 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 63, NO. 1, JANUARY 2015

is well suited for large uncertainty quantification of the iono-
sphere so that the variability of the EM-wave propagation is well
understood.

IV. CONCLUSION

A 3-D Stochastic FDTD (S-FDTD) model of EM-wave prop-
agation in anisotropic magnetized cold plasma was introduced.
The plasma S-FDTD model of this paper is an extension of the
S-FDTD model developed by Smith and Furse for Maxwell's
equations and applied to biomedical applications [20], [25]. The
plasma S-FDTD model of this paper is derived from Maxwell's
equations coupled to the current equations derived from the
Lorentz equation of motion. When applied to the ionosphere,
it uses as input not only average electron (or ion) densities, but
also their variance due to uncertainties or variances due to fac-
tors such as space weather events.
S-FDTD offers an exceptional improvement in simulation

time compared with the brute-force Monte Carlo method.
S-FDTD may therefore serve as an important tool for EM iono-
spheric propagation studies, especially for large 3-D plasma
scenarios where Monte Carlo simulations would be impractical
to run.
Example S-FDTD simulation results were provided and

compared with Monte Carlo results. Different cross-correlation
values for the electric fields and the plasma frequency were
tested. An upper bound of the variance was obtained by setting
these cross-correlation values to 1.0. Future research will be
conducted to provide the best methodology for determining
these cross-correlation values for different modeling scenarios,
particularly for the complex cases of a continuously-varying
ionosphere.
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