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Abstract ─ Finite-Difference Time-Domain 
(FDTD) modeling of electromagnetic wave 
propagation in the Earth-ionosphere waveguide has 
gained significant interest over the past two 
decades. Initially, FDTD modeling capabilities 
were largely limited to two-dimensional models 
assuming a plasma ionosphere (but incapable of 
accounting for Faraday rotation), or to three-
dimensional global models assuming a simple, 
isotropic conductivity profile ionosphere. Two 
algorithm developments have recently advanced 
the state-of-the-art in electromagnetic wave 
calculation capabilities in the ionosphere: 
(1) A new, three-dimensional efficient FDTD 

magnetized plasma model. 
(2) A Stochastic FDTD (S-FDTD) model of 

magnetized ionospheric plasma. 
The first capability permits longer-distance, higher 
frequency and higher altitude propagation studies 
by greatly reducing the memory requirements and 
simulation time relative to previous plasma models. 
The second capability introduces for the first time a 
way of solving for not only mean electromagnetic 
field values, but also their variance. This paper 
provides an overview of these two recent advances. 

Index Terms ─ Earth, electromagnetic wave 
propagation, Finite-Difference Time-Domain 
(FDTD), global propagation, ionosphere, 
magnetized plasma, plasma, stochastic processes. 

I. INTRODUCTION 
Many communications, radar, and geophysical 

studies and applications rely on accurate knowledge 
of both the state of the ionosphere and the 
characteristics of Electromagnetic (EM) signal 
propagation through or reflected by the ionosphere. 

Satellite communications, the Global Positioning 
System (GPS), over-the-horizon radar, target 
direction finding, and ionospheric remote sensing 
are some example applications. The success of 
these applications would be greatly improved with 
the availability of accurate modeling capabilities. 
Three major challenges, however, must be 
overcome in order to perform realistic calculations 
of EM propagation through the ionosphere: 
(1) For most applications, the EM wave frequency 

is high enough such that complex magnetized 
plasma physics must be accommodated. 

(2) The ionosphere exhibits high variability and 
uncertainty in both time and space. 

(3) The ionosphere is comprised of both large and 
small-scale structures that often need to be 
accommodated. 
Several approximate methods involving ray 

tracing have been proposed to calculate trans-
ionospheric EM wave propagation (e.g., [1-4]); 
however, these methods are incapable of taking into 
account the full ionospheric variability and/or 
terrain between the transmitters and receivers. 
Further, as the frequency of the EM wave is 
reduced, their calculated results diverge from the 
true solution as the physical reality departs from the 
short-wavelength asymptotic assumptions 
underlying geometrical optics and ray tracing. 
Finally, for techniques such as phase screen or 
Rytov approximations, the calculated results are 
only valid for weak fluctuations of the ionosphere. 

The Finite-Difference Time-Domain (FDTD) 
method [5,6] is a robust computational EM 
technique that has been applied to problems across 
the EM spectrum, from low-frequency geophysical 
problems below 1 Hz and up into the optical 
frequency range [6]. The advantages of FDTD for 
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Earth-ionosphere wave propagation problems 
include [7,8]: 
> As a grid-based method, the 3-D spatial 

material variations of the ionosphere 
composition, topography/bathymetry, 
lithosphere composition, geomagnetic field, 
targets, and antennas, etc., may be 
accommodated. Figure 1 for example, shows 
FDTD-calculated global EM propagation in the 
Earth-ionosphere waveguide below 1 kHz that 
includes details of the Earth’s topography, 

bathymetry, oceans, and an (isotropic) 
conductivity layering in the ionosphere, which 
is sufficient for propagation below 1 kHz. 

> The complex shielding, scattering and 
diffraction of EM wave may be calculated in a 
straightforward manner. 

> Any number of simultaneous sources may be 
accommodated (antennas, plane waves, 
lightning, ionospheric currents, etc.). 

> Any number of observation points may be 
accommodated, and movies may be created of 
the time-marching propagating waves. 

> As a time-domain method, FDTD can model 
arbitrary time-varying source waveforms, 
movement of objects, and time variations in the 
ionosphere. 

> Results may be obtained over a large spectral 
bandwidth via a discrete Fourier transform. 

> A fully 3-D magnetized ionospheric plasma 
FDTD algorithm may be used to calculate all 
important ionospheric effects on signals, 
including absorption, refraction, phase and 
group delay, frequency shift, polarization, and 
Faraday rotation. 
The downside of being able to accommodate all 

of the above details and physics, is that the FDTD 
model may quickly become very memory- and 
time-intensive, and thus, require significant 
supercomputing resources. This makes real-time 
calculations difficult or sometimes even impossible 
to obtain. Further, if the EM frequency is high 
enough (and the required grid resolution low 
enough), the required grid size may become 
computational infeasible, especially for long 
propagation paths. 

Fig. 1. Snapshot visualizations of round-the-world 
EM propagation below 1 kHz as calculated by a 3-
D FDTD model, including details of the Earth’s 

topography, oceans, and isotropic ionosphere 
(figure courtesy of [7]). 

Although supercomputing capabilities continue 
to improve, efficient FDTD algorithms are needed 
to make EM wave propagation modeling in the 
ionosphere feasible and manageable. Section II 
provides an overview of the current state of the art 
for trans-ionospheric EM wave propagation. 
Section III then describes a new, efficient, 3-D
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FDTD magnetized ionospheric plasma model [9] 
that may be used to greatly advance the current state 
of the art. Next, Section IV describes a new 
capability: Stochastic FDTD (S-FDTD) [10,11] 
magnetized ionospheric plasma modeling [12],
which can yield both average as well as variance 
electric and magnetic fields due to variances and 
uncertainties in the ionosphere composition. 
Section V gives an overview of the input 
parameters that may be used to populate the Earth-
ionosphere models. The paper then concludes with 
a discussion of application possibilities of these 
models. 

II. CURRENT STATE OF THE ART 
In 1837, W. R. Hamilton introduced a system 

of differential equations describing ray paths 
through general anisotropic media [13]. In 1954, J. 
Haselgrove proposed that Hamilton’s equations 

were suitable for numerical integration on 
electronic computers and could provide a means of 
calculating ray paths in the ionosphere [14]. In 
1960, Haselgrove and Haselgrove implemented 
such a ray-tracing program to calculate “twisted ray 

paths” through a model ionosphere using Cartesian 

coordinates [15,1].
In 1975, M. Jones and J. J. Stephenson 

generated “an accurate, versatile FORTRAN 

computer program for tracing rays through an 
anisotropic medium whose index of refraction 
varies continuously in three dimensions” [16]. This 
model and variations of it are still in use today, and 
have been applied to such applications as over-the-
horizon radar [1]. Additionally, many other related 
techniques have now been generated especially for 
higher frequency scintillation studies, including the 
phase screen [3] or Rytov approximation, parabolic 
equation method [2], and even hybrid methods, 
such as combining the complex phase method and 
the technique of a random screen [4].

These techniques, however, are only valid 
under certain conditions. The complex phase 
method, for example, is only valid for EM wave 
propagation above 1 GHz. The phase screen or 
Rytov approximation is only valid for weak 
fluctuations of the ionosphere. And for all of these 
methods involving ray tracing, as the frequency of 
the EM wave is reduced and its wavelength 
increases, the calculated results diverge from the 

true solution as the physical reality departs from the 
short-wavelength asymptotic assumptions 
underlying geometrical optics and ray tracing [17]. 

Ray tracing has been traditionally employed for 
ionospheric propagation because it is 
computationally inexpensive; however, it is: 
> Incapable of taking into account the variable 

terrain and structural material properties of and 
between the transmitters and receivers. 

> Restrictive, in that particular methodologies of 
implementing the ray tracing are limited to 
certain frequency ranges, and its accuracy 
depends on the plasma properties. 

> It provides solutions at only individual 
frequencies (steady-state solutions may be 
obtained; pulses cannot be studied). 

An alternative to ray tracing is full-vector 
Maxwell’s equations FDTD modeling, which is not 

limited by the above issues. 
FDTD plasma models have been developed by 

a number of groups [e.g., 18-20]. However, all of 
these models require large amounts of computer 
memory, require very small time steps linked to the 
plasma parameters rather than the Courant limit, or 
produce nonphysically spurious electrostatic waves 
(of numerical origin) due to the spatially non-
collocated status of electric fields and current 
densities, resulting in late-time instabilities [17]. 
Section III describes an FDTD plasma method [12] 
that does not suffer from these drawbacks. 

To study the performance capability of an 
example FDTD plasma algorithm, FDTD plasma 
model results have previously been compared to 
ray-tracing results for the application of reducing 
the radar cross-section of targets [21]. Although 
Chaudhury and Chaturvedi limited their study to 
unmagnetized, collisional cold plasmas, they 
conclude that FDTD is more accurate and less 
restrictive than ray tracing, at the cost of being more 
computationally demanding. For example, they 
determine that ray tracing only yields accurate 
results in their study when both the density scale 
length is long compared to the free-space 
wavelength of the incident wave, and when the 
conduction current is small as compared to the 
displacement current in the medium. Additionally, 
ray tracing provides solutions at only individual 
frequencies (i.e., for sinusoidal steady-state signals, 
not for pulses). 
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III. MAGNETIZED IONOSPHERIC 
PLASMA ALGORITHM 

The new FDTD plasma modeling methodology 
is analogous for each of the electrons, positive ions, 
and negative ions, so due to space constraints, only 
electrons will be considered here. In the new 
formulation [12], the coupled Maxwell’s equations-
Lorentz equation of motion plasma model may be 
solved using an algorithm originally used by Borris 
[22] to calculate the velocity of particles in Particle-
In-Cell (PIC) plasma models [23]. PIC codes track 
trajectories of particles or groups of particles 
(“super-particles”) and solve for electrodynamic 

fields. By using the Borris approach, the resulting 
FDTD plasma model is stable while also reducing 
the memory requirements and the execution time 
compared to all previous FDTD plasma 
formulations [12,17].

A. Collisional plasma algorithm 
The plasma may be considered collisionless or 

collisional. This section will consider the more 
general collisional cases. Under the cold plasma 
condition and by assuming a known electron 
density, the momentum equation can be simplified 
as follows [18]: 

, (1) 

where  is electric current due to electrons,  is the 
collision frequency,  is the electric permittivity, 

 is the electron plasma frequency, and  is the 
electron gyro-frequency. 

The difficulty in solving equation (1) in the 
collisional regime is that the current density vector 
is needed at time step , which is not yet 
known. In order to solve this issue, a two-step 
method known as the predictor-corrector method is 
employed. In the first (predictor) step, the current 
vector at  is used to predict the current density 

at . In the second (corrector) step, the 
predicted current density vector from the first step 
is used and all the equations are solved again. A 
second, new current density vector is found at 
, that is known as the corrector current density 

vector. The average of the predicted current density 
vector and the corrector current density vector at 

is used for current density vector at .
The predictor-corrector method is second order 

accurate [24,25]. 
Equation (1) in discrete form in the predictor 

step [12,22] is as follows: 

. (2) 

In equation (2), it appears that the current 
density components should be collocated with the 
electric field component. However, in the time 
domain, the current densities are solved out of sync 
with the electric fields, which are solved at each 
integer time step; i.e., (n). Instead, the current 
densities are solved at the same time step as the H-
fields (or at each half time step); i.e., ( ). In 
order to simplify equation (2), the E-field should be 
incorporated into the current vector term. We define 
two auxiliary current density components [12,22] 
as follows: 

, (3)

. (4) 
The cross product does not change the energy; 

therefore, . However, the direction of 
the vector is changed. Figure 2 demonstrates the 
rotation of the current density vector around 
that is for simplicity (only for the figure) assumed 
to be perpendicular to the current density 
components. The direction of the  and the B-
field is out of the paper. 

Fig. 2. Rotation of the current vector around .
Figure adapted from [23].
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From Fig. 2, the angle of rotation is: 

. (5)
The sampling frequency should be twice the 

electron gyro-frequency to accurately model it. 
Therefore, , which means . For

smaller angles the results are more precise. The 
can be found in four steps as follows [12,22,23]:

, (6.1) 
, (6.2) 

, (6.3) 
, (6.4) 

where , and .

As part of the predictor-corrector method, 
equation (1) is discretized in the corrector step as
follows [12,22]: 

. (7) 

The auxiliary current density vectors are then 
defined as [12,22]: 

, (8) 

. (9) 
The final current vector is [12,22]: 

. (10) 
The maximum allowed time step that may be 

used depends on the electron gyro frequency; i.e., 
.

Several validation tests are performed in 
[Samimi and Simpson, submitted] to demonstrate 
the accuracy and capability of the newly developed 
FDTD plasma model. Section III (B) below 
provides an example validation, and Section III (C) 
summarizes the performance of this new model. 

B. Example validation 
As an example validation, the propagation of an 

electromagnetic wave inside a small plasma 
spherical waveguide is investigated. This 
simulation case is chosen so that propagation over 
a short distance may be modeled and compared to 
theory. It serves as a high-resolution validation of 
the global FDTD plasma model of [26,12]. 
Additional validation cases are provided in [12]. 

The spherical waveguide has an internal radius 
2.673 m and external radius 3.6978 m. A magnetic 
field is considered in the south-north direction and 
its strength is . The electron density is 

. The source of the 
electromagnetic wave is located at  and 
propagation toward the equator is examined. The 
source creates a linearly polarized electromagnetic 
plane wave polarized in the radial ( )-direction and 
having a Gaussian time-waveform according to: 

. (11) 
This pulse is expected to excite the R-wave and L-
wave as well as low frequency whistler mode. The 
whistler mode is part of the R-wave dispersion 
relation that can propagate at frequencies less than 
the electron gyro-frequency. 

Figure 3 shows the time domain electric field in 
the -direction; i.e., , 40 cells (approximately 
40 mm) from the source. The low frequency 
whistler mode arrives at the observation point at 
around . Figure 4 shows the power spectrum 
of the electric field corresponding to the time-
waveform of Fig. 3. The L-wave cutoff frequency, 

, the R-wave cutoff frequency, , and the 
whistler mode with frequency band less than the 
electron cyclotron frequency ( ) are apparent 
in the figure. These results are also in very good 
agreement with plasma theory and the simulation 
results of the previous anisotropic model [26].

Note, that in this validation test, the time step 
value for solving Maxwell’s equations is chosen 

according to the Courant stability condition and is 
. This time step value corresponds to a 

rotation angle  that yields a numerical 
electron gyro-frequency error of less than .
Therefore, there is no need to use a different time 
step for solving the current equation compared to 
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Maxwell’s equations.

Fig. 3. Time-domain electric-field waveform in the 
r-direction recorded ~40 mm from the source along 
the magnetic field (figure courtesy of [12]). 

Fig. 4. Power spectrum of the electric field in the r-
direction recorded ~40 mm from the source along 
the magnetic field line (figure courtesy of [12]). 

C. Summary of performance 
The advantages of the new FDTD plasma 

model [12] over the previous formulation of [17]
are as follows:  
> It permits the use of two different time steps for 

solving the current equation vs. the Maxwell’s 

equations. The previous anisotropic model did 
include this capability, and so for some cases 
the time-step requirements of the current 
density solutions could drastically slow down 
the solutions to the Maxwell’s equations. As 

such, obtaining solutions for cases involving 
high collision frequencies was nearly 
impossible due to the necessary long 
computational time. 

> It is faster than the previous model. Depending 
upon the size of the time step needed to solve 
the current equation, the new algorithm is more 
than 50 percent faster than the previous version. 

> Implementation of the algorithm is much 
simpler and no matrix equation must be solved. 

> The memory requirements are drastically less 
than for the previous formulation (3 additional 
real numbers are stored per cell relative to 
traditional FDTD compared to 9 additional real 
numbers stored per cell as for the previous 
plasma formulation; also, it does not require 
storage or re-calculation of a coefficient 
matrices of size at least 6x6 at every grid cell).

The only disadvantage of the new algorithm is that 
for simulating wave propagation in dense plasma, 
the stability condition can be smaller than Courant 
limit. The plasma frequency puts an additional 
restriction on the maximum allowable time step 
value. Therefore, either the Courant condition or a 

, whichever is smaller, should be chosen 

for the time step for Maxwell’s equations.

IV. STOCHASTIC FDTD 
A second recent development that has 

advanced time-domain modeling of ionospheric 
propagation is a new stochastic FDTD plasma 
model that solves for mean as well as variance 
electromagnetic fields due to uncertainties or 
variances in the ionosphere composition. The 
variability of the ionosphere renders many 
propagation problems too complex to be solved 
using a deterministic formulation. The structure of 
the ionosphere can depend not only on the altitude, 
time of day, and season, but also on the latitude, 
longitude, sun spot cycle, and occurrence of space 
weather events. A useful approach to such a highly 
complex problem is to consider it as a random 
medium problem. 

Numerical EM techniques, however, typically 
use only average (mean) values of the constitutive 
parameters of the materials and then solve for 
expected (mean) electric and magnetic fields. The 
Monte Carlo method is a well-established and 
widely-used brute force technique for evaluating 
random medium problems via multiple realizations 

NGUYEN, SAMIMI, SIMPSON: RECENT ADVANCES IN FDTD MODELING OF ELECTROMAGNETIC WAVE PROPAGATION 1008



[10]. Depending on the nature of the statistical 
correlation, a random medium problem may require 
tens or hundreds of thousands of realizations. This 
yields an extremely inefficient brute force 
approach, particularly for 2-D and 3-D problems, 
and therefore is rarely used in EM modeling. 

Stochastic FDTD (S-FDTD) is an efficient 
formulation that runs the ensemble averages in a 
single realization scheme [10,11]. S-FDTD was 
recently extended to EM wave propagation in the 
ionosphere by extending the stochastic variables to 
both Maxwell’s equations and the Lorentz equation 

of motion [9]. The electric fields, magnetic fields, 
current densities, electron/ion densities and 
collision frequencies all are treated as random 
variables with their own statistical variation. The 
resulting mean and variance calculations of the EM 
fields and current densities provides new 
capabilities; for example, the ability to determine 
the confidence level that a communications/remote 
sensing/radar system will operate as expected under 
abnormal ionospheric conditions. It may also be 
useful in a wide variety of geophysical studies. 

The advantage of S-FDTD is that it requires 
only about twice as much computer simulation time 
and memory as a traditional FDTD simulation 
regardless of the number of random variables. On 
the other hand, its limitation is that it can only 
bound the field variances according to a best 
estimate approximation for the cross correlation 
coefficients. 

In [9], an S-FDTD method is developed for the 
previous (less efficient) magnetized plasma 
algorithm of [17]. Recently, a more efficient 
magnetized plasma model was developed [12] as 
presented in Section III of this paper. In the 
remainder of this section, general guidelines are 
provided for extending the S-FDTD approach to the 
more efficient magnetized plasma model of Section 
III and [12]. The general approach is analogous to 
that of [9].

A. Mean field equations 
Using the Delta method [27], the average (or 

expected) EM fields and current density values may 
be found by solving Maxwell’s equations and the 

current equation while using mean (average) values 
of the variables [10]. For the S-FDTD magnetized 

cold plasma model, the equations for the mean 
values of the EM fields and current densities are of 
the same form as for those of the regular 3-D FDTD 
magnetized cold plasma model. Thus, the mean EM 
field and current density values are found by using 
the mean plasma frequency of ωPe, or equivalently, 
the mean of electron density ne.

B. Variance field equations 
The variance fields may also be derived by 

using the delta method and the statistical values.
When solving only Maxwell’s equations, the 

variance field equations may be solved separately 
from the mean field equations no matter the 
dimensionality of the problem [10]. However, in 
the 3-D magnetized cold plasma model, the 
momentum equation (1) is coupled to Maxwell 
equations, which leads to a complicated but linear 
system. As a result, the electric field and current 
density variances must be computed 
simultaneously. When variance equations are 
derived, covariances are needed for the E, H fields 
and current density Je in both time and space. 
Equation (1) also relates the current density to the 
collision frequency and the electric field to the 
plasma frequency of the ionosphere, resulting in 
additional covariance terms of between the current
density and collision frequency, and the electric 
field and plasma frequency. For S-FDTD method, a 
critical step is to approximate these correlation 
coefficients, which controls the accuracy of the 
algorithm.  

Figure 5 shows a diagram of the iteration 
process for each time step of the S-FDTD method. 
What is changed from regular FDTD updating is the 
addition of the calculation of the variances after the 
mean values are obtained. Therefore, the running 
time as well as the memory required for S-FDTD is 
roughly double that needed for traditional FDTD 
(and double that for the regular FDTD plasma 
model). Also, since both the mean fields and their 
variances behave like waves, both require boundary 
conditions. Thus, an absorbing boundary condition 
is needed for the E, H, and Je mean values as well 
as for their variances. In [9], Mur’s boundary 

conditions are used because that boundary 
condition was found to provide good absorption 
regardless of the magnetic field direction [28].
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Fig. 5. S-FDTD flow chart (figure adapted from 
[10]). 

V. INPUT TO THE FDTD MODELS 
Since the FDTD model may account for highly 

detailed structures and materials, it is useful to 
populate the FDTD grid with realistic data. The 
Earth’s topography and bathymetry data may be 
obtained; for example, from the National Oceanic 
and Atmospheric Administration (NOAA) National 
Geophysical Data Center (NGDC). The Earth’s 

magnetic field data and its direction and amplitude 
variation with position may be obtained from the 
International Geomagnetic Reference Field 
(IGRF). 

For an isotropic conductivity profile 
ionosphere to be used in lower frequency EM 
propagation models, relatively simple profiles 
based on measurements and analytical calculations 
may be used, such as an exponential conductivity 
profile [29] or a knee profile [30]. To model an 
anisotropic magnetized plasma ionosphere to be 
used in higher frequency EM propagation models,
electron and ion densities and collision frequencies 
and their variation with time and position may be 
obtained from the International Reference 
Ionosphere (IRI) and other sources. IRI has recently 
been expanded to include stochastic information 
about the ionosphere composition (e.g., [31]). 

VI. CONCLUSION 
This paper provided an overview of two recent 

advances in FDTD EM wave propagation modeling 
in the ionosphere: 
(1) A new, efficient 3-D magnetized ionospheric 

plasma model. 

(2) A stochastic FDTD model of ionospheric 
plasma. 

The combination of these models provides the 
capability to model high frequency EM wave 
propagation over longer distances than previously 
possible, while also solving for not only mean but 
also variance electric and magnetic fields due to 
uncertainties or variances in the ionosphere. 
Applications of these models range from remote 
sensing to communications and space weather. 
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