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FDTD Calculations of the Diffraction Coefficient
of Vibrating Wedges
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Abstract—The full-vector Maxwell’s equations finite-difference
time-domain (FDTD) method is employed to calculate diffrac-
tion coefficients of vibrating conducting and dielectric wedges.
Two-dimensional FDTD models of right-angle wedges are con-
structed to include total-field scattered-field incident plane-wave
source conditions as well as convolutional perfectly matched-layer
boundary conditions. These models are first validated by calcu-
lating the diffraction coefficient of a stationary perfect electrical
conducting (PEC) right-angle wedge for comparison to uniform
geometrical theory of diffraction (UTD) analytical solutions. Next,
a brute-force FDTD technique for modeling wedge vibrations
is utilized to calculate the Doppler diffraction coefficients of
vibrating lossless and lossy wedges.

Index Terms—Diffraction coefficient, finite-difference time
domain (FDTD), vibration, uniform geometrical theory of diffrac-
tion (UTD).

I. INTRODUCTION

S TRATIS et al. [1] have employed the full-vector Maxwell’s
equations finite-difference time-domain (FDTD) method

[2], [3] to calculate diffraction coefficients of right-angle con-
ducting and dielectric wedges. Their work is motivated by the
fact that classical theories such as the uniform geometrical
theory of diffraction (UTD) can be utilized to solve diffraction
coefficient problems for perfect electrical conducting (PEC)
wedges, but there is no analytical solution for the diffraction
coefficient of problems that involve dielectric or imperfectly
conducting wedges.

We extend the FDTD modeling of Stratis et al. to calculate
diffraction coefficients of vibrating conducting and dielectric
wedges. From an applied perspective, this letter is in support of
recently developed signal-processing algorithms designed to es-
timate ground-object vibrations using synthetic-aperture radar
platforms [4].
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We employ two-dimensional (2-D), transverse mag-
netic (TM ) FDTD models containing the wedge of in-
terest, a total-field scattered-field (TFSF) incident plane-wave
source condition [3], and a convolutional perfectly matched
layer (CPML) boundary condition [5] to prevent unwanted
reflections from the outer grid boundaries.

A brute-force method of modeling the object vibrations is
implemented. This approach requires two FDTD simulations
in which the diffracted and scattered fields are computed for
the same plane-wave illumination, but for different stationary
scattering wedges comprising: 1) the unperturbed wedge; and
2) the same wedge under peak applied strain. This brute-force
technique requires that we employ a high-resolution FDTD grid
in order to resolve the vibrations of the wedge. Note that, for
efficiency, the recently developed surface impedance boundary
condition (SBC) [6], [7] may be employed to model object vi-
brations in FDTD models instead of the brute-force technique.
Previously, benchmark comparisons between results of FDTD
models employing SBC have shown good agreement with cor-
responding analytical results [6] and [7] as well as with brute-
force FDTD results [8].

This letter has application to a number of situations involving
electromagnetic (EM) wave interactions with arbitrary vibrating
material objects. Of particular interest is the interaction of syn-
thetic aperture radar signals with buildings having character-
istic vibration signatures due to internal operating machinery
and activities.

II. CALCULATION OF THE DIFFRACTION COEFFICIENT

A. Methodology

Stratis et al. [1] implement time-gating in their FDTD models
to obtain diffracted-only signals for subsequent calculations of
the diffraction coefficient. Time-gating takes advantage of the
different arrival times at specific observation points of the in-
cident, reflected, near-edge diffracted, and far-edge diffracted
waveforms. As a result, only the diffracted fields from the in-
tended edge are extracted from FDTD models in a straightfor-
ward manner. These time-gated waveforms may subsequently
be used to calculate the diffracted impulse response, .
Taking the discrete Fourier transform of the diffracted impulse
response to yield would provide, in turn, the varia-
tion of the diffracted field over the spectral range of the incident
wave. The diffraction coefficient is then calculated via the
following:

(1)
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Fig. 1. Layout of the FDTD grid for computing the diffraction coefficient at
Point F.

where is the observation point and is the distance from
the scattering edge to the observation point.

B. Model Geometry and Validation Study

A validation study for the FDTD-calculated diffraction coef-
ficient is performed for the case of a stationary PEC right-angle
wedge. The FDTD-calculated results are compared to the ana-
lytical solutions obtained via UTD [9].

A 2-D TM FDTD model is generated having a total grid
size of 4908 4908 cells and containing a square PEC object
of dimension 2400 2400 cells. The bottom of the square PEC
( -direction side) is located 2184 grid cells from the bottom
of the grid, and the right side of the square PEC is located
2184 grid cells from the right side of the grid. The incident
plane-wave source is a Gaussian modulating a sinusoid at a
center frequency of 850 MHz and having a 1.3-ns duration (full
width at half-maximum). The angle of incidence is 80 . The grid
cell increment in the - and -directions is set to 2.9 mm. High
resolution is chosen so that the small-amplitude vibrations con-
sidered in Section III may be resolved by this same grid.

The model is run for a total of 11 039 time-steps, and the
time-step increment is set to 6.8 ps (Courant limit [3]). An ob-
servation point, denoted by Point F in Fig. 1, is chosen to be
located slightly to the right of the square PEC at and

, in the diffracted-field-only region (Region III).
The edge yielding the diffracted waves considered in this letter
is located at the bottom right of the square PEC (here, a 90
wedge angle), edge A. This arrangement is analogous to the
wedge scenario of [1].

In order to obtain the diffraction coefficient, the Fourier trans-
form is taken of the electric field time-waveform at the observa-
tion point F and normalized relative to the incident plane-wave
source

(2)

where the subscript “dif” denotes the diffracted field values at
Point F and the subscript “inc” denotes the incident field values.

The diffraction coefficient is then computed via (1). Note that
Point F is in the shadow scattering region, which is of practical
interest for diffraction problems.

Fig. 2. Comparison between the analytical UTD solution and the FDTD re-
sults for the diffraction coefficient for right-angle PEC wedge at Point ��� �
���� � � ������ �.

Fig. 3. Comparison between the diffraction coefficients for lossless, unper-
turbed dielectric right-angle wedges having a relative permittivity of 2, 5, and
7, respectively.

To obtain the UTD analytical solution for comparison to the
FDTD results, the computer code provided in [9] is utilized.
This computer code computes the diffraction coefficient for TM
(soft) polarization using the equation

(3)

where , is the wedge factor, which is
1.5 for a right-angle wedge, and F(X) is the Fresnel’s transition
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Fig. 4. Comparison between the Doppler diffraction coefficients for the loss-
less dielectric wedges of Fig. 3 vibrating horizontally, by 6 mm in the ��-di-
rection under peak applied strain.

function computed by the asymptotic expressions for large and
small arguments

for (4)

for (5)

As shown in Fig. 2, there is very good agreement between the
analytical UTD results and the FDTD simulated results. Specif-
ically, the relative error is less than 1% from 50 to 1500 MHz.

III. DIFFRACTION COEFFICIENTS OF VIBRATING CONDUCTING

AND DIELECTRIC WEDGES

The model described in Section II-B is now employed to cal-
culate the diffraction coefficients of vibrating wedges composed
of different materials. For comparison, the diffraction coeffi-
cients of the unperturbed stationary wedges are also shown.

First, Fig. 3 shows the FDTD-calculated diffraction coef-
ficient at Point F for three unperturbed dielectric right-angle
wedges of relative permittivity 2, 5, and 7. Fig. 4 then shows
the FDTD-calculated Doppler diffraction coefficient at the
same Point F for the same wedges vibrating 6 mm (two grid
cells) horizontally to the right (in the -direction). To obtain
the Doppler diffraction coefficient, the electric field time-wave-
form at Point F from the FDTD model having the unperturbed
wedge is subtracted from that of the FDTD model having the
wedge under peak applied strain (shifted 6 mm to the right), as

Fig. 5. Comparison between the Doppler diffraction coefficients for the loss-
less dielectric wedges of Fig. 3 vibrating vertically, by 6 mm in the��-direction
under peak applied strain.

Fig. 6. Comparison between the diffraction coefficients for lossy, unperturbed
dielectric right-angle wedges having a relative permittivity 7 and a conductivity
0, 10, and 3.0E7, respectively.

shown in (6) at the bottom of the page. The Doppler diffraction
coefficient is then calculated as

(7)

Note in this case the surface of the wedge is not deformed.
Under peak applied strain in this scenario, the entire right,
straight side of the wedge is shifted to the right by 6 mm.
However, arbitrary deformations may be considered, either
through higher resolution FDTD brute-force models or via
lower resolution FDTD models employing the SBC method to
resolve the vibrations.

(6)
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Fig. 7. Comparison between the Doppler diffraction coefficients for the lossy
dielectric wedges of Fig. 6 vibrating horizontally, by 6 mm in the��-direction
under peak applied strain.

Fig. 8. Comparison between the Doppler diffraction coefficients for the lossy
dielectric wedges of Fig. 6 vibrating vertically, by 6 mm in the ��-direction
under peak applied strain.

We first notice by comparing the results of Figs. 3 and 4 that
the amplitude of the Doppler diffraction coefficient is reduced
by an order of magnitude relative to the stationary diffraction
coefficient. Also, the amplitude of the Doppler diffraction coef-
ficient increases with increasing frequency.

Fig. 5 shows the Doppler diffraction coefficient at Point F
for the same wedges of Fig. 3, but this time vibrating 6 mm
vertically downward (in the -direction). Comparing Fig. 5
to Fig. 4, we see that the Doppler diffraction coefficient is re-
duced by another order of magnitude when the wedge is vi-
brating downward versus to the right.

Next, Fig. 6 illustrates the FDTD-calculated diffraction coef-
ficients at Point F for three unperturbed right-angle wedges of
permittivity 7 and conductivity 0, 10, and 3.0E7, respectively.

Figs. 7 and 8 then illustrate the FDTD-calculated Doppler
diffraction coefficient at Point F for the same wedges of Fig. 6
vibrating 6 mm horizontally to the right (in the -direc-
tion) and 6 mm vertically downward (in the -direction),
respectively.

IV. CONCLUSION

The diffraction coefficient of stationary and vibrating lossless
and lossy dielectric wedges have been calculated via brute-force
2-D FDTD models. Depending on the direction of vibration, the
Doppler diffraction coefficients are found to be between one and
two orders of magnitude lower than the diffraction coefficient
of the stationary wedge. Furthermore, the Doppler diffraction
coefficient amplitude increases with increasing frequency over
the spectrum of interest.

Although right-angle wedges are considered in this letter,
note that FDTD modeling permits diffraction coefficient calcu-
lations for wedges and objects of arbitrary shapes and vibration
characteristics. For instance, diffraction coefficients for a 45
stationary wedge were calculated using FDTD in [10]. Also, the
recently developed SBC algorithm provides an efficient means
of modeling arbitrary vibration characteristics in FDTD models.
For example, in [6] and [7], a variety of vibration modes of
both square and circular objects are accounted for in the FDTD
models using SBC.
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