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An E-J Collocated 3-D FDTD Model of
Electromagnetic Wave Propagation in Magnetized

Cold Plasma
Yaxin Yu, Student Member, IEEE, and Jamesina J. Simpson, Member, IEEE

Abstract—A new three-dimensional finite-difference time-do-
main (FDTD) numerical model is proposed herein to simulate
electromagnetic wave propagation in an anisotropic magnetized
cold plasma medium. Plasma effects contributed by electrons,
positive, and negative ions are considered in this model. The
current density vectors are collocated at the positions of the elec-
tric field vectors, and the complete FDTD algorithm consists of
three regular updating equations for the magnetic field intensity
components, as well as 12 tightly coupled differential equations for
updating the electric field components and current densities. This
model has the capability to simulate wave behavior in magnetized
cold plasma for an applied magnetic field with arbitrary direction
and magnitude. We validate the FDTD algorithm by calculating
Faraday rotation of a linearly polarized plane wave. Additional
numerical examples of electromagnetic wave propagation in
plasma are also provided, all of which demonstrate very good
agreement with plasma theory.

Index Terms—Earth, electromagnetic wave propagation, finite-
difference time-domain (FDTD) method, ionosphere, magnetized
cold plasma.

I. INTRODUCTION

O VER the past two decades, the finite-difference time-do-
main (FDTD) [1], [2] method has been extended to

modeling electromagnetic (EM) wave propagation and in-
teractions with cold plasmas. First, FDTD algorithms were
developed for modeling nonmagnetized (therefore isotropic)
cold plasma [3]–[9], or dispersive media FDTD algorithms
were employed for isotropic plasma studies [10], [11]. A sys-
tematic analysis of these FDTD techniques has been published
by S. A. Cummer [12].

An important aspect of plasma-related research is to study
radio wave propagation through the ionosphere and to study
lightning-related ionospheric phenomena. Many FDTD models
have been developed to address these problems by treating
the ionosphere as a simple nonmagnetized isotropic medium
[13]–[15]. However, for accurate broadband investigations, ef-
fects introduced by the Earth’s magnetic field on the ionospheric
plasma cannot be ignored. Thus, a magnetized (anisotropic)
cold plasma ionospheric medium must be employed in the
FDTD simulations.
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A few two-dimensional (2-D) and three-dimensional (3-D)
FDTD models have been published that include the magnetic
field effect on the ionospheric plasma. Cummer [16] proposed
a 2-D cylindrical-coordinate FDTD model to study EM wave
propagation in the Earth-ionosphere waveguide. Thèvenot et al.
[17] reported another 2-D spherical-coordinate FDTD model
to simulate VLF-LF propagation in the ionosphere. More
recently, Hu and Cummer [18], [19] extended their full wave
2-D cylindrical coordinate FDTD model to explore lightning-
generated EM wave behavior in the ionosphere and to test the
sprite initiation theory. Unlike the H-J collocation method [20],
the stability condition of Hu and Cummer’s model involving the
E-J collocation method is independent of medium properties and
remains the same as for free space [12] (at the Courant stability
limit [2]). This is a very important characteristic of their plasma
algorithm. For some other FDTD plasma algorithms (see for
example [21]–[23]), the time-stepping increment is linked to
the plasma parameters, resulting in a strict time-step orders
of magnitude smaller than that permitted by the Courant limit
[2] when modeling the ionosphere [24], [25]. Further, some
plasma algorithms, such as that of [21], produce nonphysically
spurious electrostatic waves (of numerical origin) due to the
spatially non-collocated status of electric fields and current
densities [26] and thus exhibit seemingly incurable late-time
instabilities when used to model ionospheric plasma, or they
are only first-order accurate as for that proposed in [27], or
their implementation requires a great amount of additional
memory even for spatially unchanging plasma parameters as
in [12], [28].

In thispaper,weexpandHuandCummer’s2-DE-Jcollocation
FDTD model [18] to the fully 3-D case. As such, similar
accuracy attained previously by Hu and Cummer for their 2-D
model at both high altitudes and over long distances when
compared to experiments and mode theory is expected here
for the newly developed 3-D model. However, the 3-D model
described in this paper provides additional capabilities, such
as modeling of Faraday rotation and the inclusion of fully
3-D spatial variations in the magnetization and characteristics
of the cold plasma. These capabilities are essential for future
global 3-D studies of EM propagation and in many other
research areas.

In Section II, the governing equations for the 3-D magnetized
cold plasma are derived, as well as the resulting FDTD time-
stepping algorithm. In Section III, the plasma FDTD model is
validated, and Section IV illustrates some additional numerical
examples of EM propagation in plasma. Finally, Section V con-
cludes and describes ongoing work.
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II. METHODOLOGY

A. Governing Equations

In the derivation of the 3-D FDTD magnetized cold plasma al-
gorithm, wave propagation effects introduced by electrons, pos-
itive ions, and negative ions are included for generality. Here,
we consider a cold plasma characterized by a free space permit-
tivity and a free space permeability that is biased by an ap-
plied magnetic field . The magnetized cold plasma governing
equations are cast in terms of Maxwell’s equations coupled to
current equations derived from the Lorentz equation of motion.
The Lorentz current equations consist of three auxiliary partial
differential equations that model the response of each charged
particle species to the electric field and the applied . The
resulting whole governing equation set is given by

(1)

(2)

(3)

(4)

(5)

(6)

Here the subscript denotes the charged particle species in the
plasma ( , and as electrons, positive ions, and negative ions,
respectively). , and are the collision frequencies of each
species, and , and are the current densities of each
species, respectively. is the source current density. Cartesian
coordinate expressions of these current densities are as below

(7)

(8)

(9)

(10)

The total induced charged-particle current density is then the
combination of all three of the individual current densities as
shown in (6) and the sum of and forms the total current
density as in (2). Further, , and are the plasma
frequencies of each species, respectively. By construction

(11)

with , and as the charge, number density, and mass of
each particle species. In addition , and are the
cyclotron frequencies of each species given by
with Cartesian coordinate expressions

(12)

(13)

(14)

Notice that the cyclotron frequency is a function of the ap-
plied magnetic field. Thus, the cross-product terms in (3)–(5)
make the plasma anisotropic so that the wave behavior depends
on its propagation direction relative to the direction of the mag-
netic field. Without these cross product terms, the whole system
of (1)–(6) simply becomes the governing equation set of a non-
magnetized (isotropic) cold plasma.

By substituting (7)–(14) into (1)–(6) and separating out each
Cartesian expression, the whole governing differential equation
set is expanded into 15 scalar equations

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

B. FDTD Discretization Scheme

In this Section, the 15 scalar equations of (15)–(29) are ap-
plied to the FDTD mesh. Here, we adopt the E-J collocation
method as described in [12]. This locates the , , and
components at the same positions of , , and , respec-
tively. The Yee cell describing the spatial positioning of the elec-
tric, magnetic, and current density field vector components is
shown in Fig. 1. For central differencing of the space derivatives
in (15)–(29), we define a sample and at ,

and at , and at ,
at , at and at

.
The 3-D magnetized plasma FDTD updating equations of the
-fields derived from (15)–(17) are identical to those of the

standard Yee algorithm [2]. Equation (30) provides a sample
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Fig. 1. Yee cell for spatial positioning of the field components.

updating algorithm of the component as derived from (15)
and the spatial scheme of Fig. 1.

Then, referring to Fig. 1 and using the so-called semi-im-
plicit approximation [2], the 12 - and -related equations of
(18)–(29) can be discretized first at the -component position

. The 12 resulting tightly-coupled discretization
equations can then be written in matrix form as expressed in

(31), shown at the bottom of the page. The corresponding co-
efficient of each field component is then grouped into the three
coefficient matrixes , and ,
which are detailed in Appendix for reference. Where

and are scaled
values of the original magnetic field intensity and current
density . These scaled field values are actual quantities used for
updating and during the iteration. This scaling is required
to avoid instability and inaccuracies that would result from the
large iteration coefficients [18]. is not scaled.

Working towards an explicit expression, both sides of (31)
are multiplied by the inverse matrix to be transformed into
(32), shown at the bottom of the following page, which yields
all of the field components at time-step on the left-hand
side of (32) and all of the field values calculated at previous time
steps on the right-hand side of (32). This results in (32) to be an
explicit system suitable for FDTD implementation. In space do-
main, all of these field quantities are now assumed to be located
at -component position , we therefore name (32)
as the -equation. The same process can then be repeated at
the -component position and -component po-
sition to obtain the -equation and -equation,
respectively. These three explicit matrix equations are very sim-
ilar except different spatial positions of the field quantities and
derivatives.

We next notice that all of the non- field-components in the
-equation (32) have no field values defined at -component lo-

cation according to our leapfrog scheme in Fig. 1,

(30)

(31)
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which makes the direct implementing of the non-x field-quan-
tities in first column of the -equation (32) at their pre-de-
fined Yee-locations impossible. The same situation happens to
the non- field-quantities of the -equation and the non- field-
quantities of the -equation, similarly.

Notice that the coefficient matrix and are
analogous for the -, - and -equations, we then pick up the
4 linear -component updating equations from the -equation
( ) the
4 linear -component updating equations from the -equation
( ) and
the 4 -component updating equations from the -equation
( ) to
be recombined to obtain a new explicit equation (33), which
is the eventual iteration set used to implement the whole
system. The field quantities in the first column of (33) are
now all positioned at their pre-defined spatial locations, which
allow them to be linearly direct-implemented. To update the

-components, all of the field quantities and derivatives at the
right-hand side of (33) need to be evaluated at
just as shown in (32). Similarly, for updating the -components
and -components in the first column of (33), these quantities
then need to be calculated at and ,
respectively. This makes the spatial indices impossible to be
explicitly expressed for the field quantities and derivatives on
the right-hand side of (33) and they are therefore only denoted
in time domain.

The iteration coefficients needed for implementation are then
the matrix elements in and , which only depend on
the plasma properties and the modeling parameters. For time-in-
variant homogeneous plasma, these coefficients are only needed
to be calculated once. For inhomogeneous medium such as iono-
spheric plasma, these coefficients vary with height and posi-
tion around the Earth, and additional calculations and storage
are therefore required to account for the location-dependence
of the parameters. However, these additional coefficients may

(32)

(33)
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be efficiently pre-calculated and stored before time-stepping to
be used during the iteration.

It is important to note that for this method, spatial-averaging
is required for all of the spatially non-collocated state vari-
ables and derivatives to maintain the algorithm second-order
accuracy. For example, to update through (33),
all of the field quantities and derivatives at the right-hand side
of (33) need to be evaluated at as mentioned
above. However, according to our leapfrog scheme in Fig. 1,
there are no pre-defined field values at this precise location
for , , , , , , , , , ,

, , and
. For the spatially non-collocated and

components above, four neighboring diagonal field values are
thus averaged about in order to find the field
value at that position. As an example, the spatial averaging
of is illustrated in Fig. 2 and expressed as (34). For the
spatially non-collocated derivatives listed above, eight cubic di-
agonal field values surrounding are then utilized
to evaluate the corresponding derivative at that point. As an
example, the spatial averaging of derivative
is illustrated in Fig. 3 and expressed as (35). All of the other
spatially non-collocated field quantities are treated in a similar
manner where spatial-averaging is needed.

The iteration process of the whole system is realized by first
updating the -field components through the three regular dis-
cretized FDTD equations from (15)–(17), scaling the -fields,
then updating the - and -field components through (33),
de-scaling the -fields, and finally repeating this process in the
next iteration loop.

C. Stability and Accuracy Analysis of the Scheme

Unlike the H-J collocation method [20] and the algorithm
in [21], the most appreciable advantage of this E-J collocation
method is that the stability condition is independent of plasma
properties, which is a crucial characteristic when modeling the
ionosphere. The maximum stable Courant number in unmagne-
tized cold plasma for the E-J collocation method is unity just as

Fig. 2. The illustration of the spatial averaging of �� .

Fig. 3. The illustration of the spatial averaging of �� �� ���� .

for free space [12]. For magnetized plasma medium, the effect
of the anisotropy on the stability of the FDTD scheme is less
predictable due to the complexity of the algorithm. It has been

(34)

(35)
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found empirically that the stability condition in the unmagne-
tized case is still valid for the magnetized case [18], which has
been verified by our numerical results as well as the numerical
experiments presented in [17].

Due to the semi-implicit differencing of the current density
terms in (21)–(29), and must hold theo-
retically to maintain accuracy. However, as shown in the dis-
persion analysis of [12], the accuracy of this E-J collocation
method is comparable to other differencing methods even for

in unmagnetized cold plasma. Additionally, for both
the unmagnetized and magnetized cases, must hold
to approximate the analytical solutions of the original differen-
tial equations (21)–(29) since the homogeneous solutions of the
semi-implicit differencing equations of (21)-(29) have a growth
per time-step factor of . Therefore,
for the magnetized case, a suitable spatial grid-cell size must
be carefully chosen to satisfy both the stability condition and
accuracy requirements. Criteria for choosing this grid-cell size
may be obtained through dispersion analysis, however it is very
complex due to the anisotropy and will not be shown here. In
general, we see the E-J collocation method as having a major
advantage over other algorithms, because the grid parameters
may be chosen based on the Courant stability limit, and only
further reduced to the level that provides an acceptable level of
accuracy, as done in [18] for wave propagation in the ionosphere
(as opposed to being forced to use a time step dependent on
the plasma’s parameters [24] when implementing the method
of [21], which results in a time step three orders of magnitude
smaller than that imposed by the Courant limit [25]).

III. VALIDATION OF THE ALGORITHM

Having a fully 3-D cold plasma model, we choose to validate
our FDTD algorithm by testing the Faraday rotation effect in
a lossless electron plasma without ions. According to plasma
theory [29], a linearly polarized plane wave propagating in a
direction parallel to the direction of the applied magnetic field
will be decomposed to a right-hand (RH) and a left-hand (LH)
circularly polarized wave with different phase velocities. This
causes the plane of polarization of the linearly polarized wave to
rotate as the wave propagates through the plasma. The rotation
angle per unit distance can be written as

(36)

where is the total rotation angle over a distance . and
are the propagation constants for the LH- and RH- polar-

ized wave, respectively. By construction

(37)

(38)

Here, and are the plasma frequency and cyclotron fre-
quency of the electrons, respectively. is the frequency of the
linearly polarized plane wave.

We test the Faraday rotation effect by sending an initially
-polarized unit sinusoidal plane wave into the plasma. The

Fig. 4. The comparison of the simulated and analytical results of the Faraday
rotation angle per meter.

wave propagation and the applied magnetic field are both along
-coordinate. The simulation parameters are

(39)

(40)

(41)

(42)

Each simulation is run for 1750 time steps and repeated for mag-
netic field values ranging from 1.0 to 1.7 Tesla. The electric field
components and are recorded at several distances away
from the source plane wave. The FDTD-calculated Faraday ro-
tation angle per unit distance for each magnetic field value
is then given by

(43)

In Fig. 4, the simulation results of (43) are compared with the
analytical results of (36). The FDTD simulation results are seen
to be in very good agreement with the analytical results with an
average error of 0.0031%. The average error is defined as

(44)

where and are the simulated and analytical Faraday
rotation angles per unit distance, respectively, and, n is the sam-
pling numbers. In our case .

To demonstrate the Faraday rotation effect, tracings of the
total electric field vectors at different recording points along the
direction of propagation for the case are illustrated in
Fig. 5. These tracings show the rotation of the linearly polarized
wave, and they are obtained by plotting the recorded and
values over one cycle using the electric field magnitudes as the

- coordinates. The initial plane of polarization of the linearly
polarized wave is along -coordinate. As the wave propagates
through the plasma, it starts rotating as shown in Fig. 5 with a
constant rotation angle per unit distance stated in (36). Due to
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Fig. 5. Demonstration of the Faraday rotation effect.

the different phase velocities of the RH- and LH-circularly po-
larized wave as mentioned above, the traces of the total electric
field vectors become more elliptical with the increasing propa-
gation distance in the plasma.

IV. NUMERICAL DEMONSTRATIONS OF ELECTROMAGNETIC

WAVE PROPAGATION IN THE PLASMA

In this Section, the 3-D FDTD cold plasma model is used
to further demonstrate EM propagation characteristics in a
lossless plasma medium. We again generate an -polarized
Gaussian-pulsed plane wave propagating along the externally
applied magnetic field. The Gaussian pulse is described by

(45)

We first model the plasma as having an electron density of
1.0 without ions under an applied 0.06T magnetic
field. Thus the simulation is characterized by

(46)

(47)

(48)

(49)

(50)

(51)

Fig. 6 illustrates the time and frequency domain waveforms of
at the recording point located 40 cells away from the sourced

plane wave. Clearly shown in the frequency domain waveform
as in Fig. 6(b) is the slow whistler mode below the electron
cyclotron frequency, and a resonance at the cyclotron frequency.
The slow whistler mode is observed in the time-domain results
in Fig. 6(a) as a low frequency oscillation arriving at about 600
time-steps. Above the stop band extending between the electron
cyclotron frequency and the LHC cutoff frequency (for our case

Fig. 6. Waveforms for a Gaussian-pulsed plane wave propagating in the plasma
with an applied magnetic field (a) Time Domain and (b) Frequency Domain.

of ), the LH- and RH-circularly polarized modes are
observed with distinct cutoffs at and , respectively. These
numerical results of our 3-D FDTD model agree very well with
plasma theory.

We next repeat the above experiment, but without the applied
magnetic field. The solid lines in Fig. 7 illustrate the results of
this second case having only electrons. The cutoff at the elec-
tron plasma frequency is clearly shown in the frequency domain
waveform of Fig. 7(b). Further a long tail oscillating at the elec-
tron plasma frequency is observed in the time domain waveform
of Fig. 7(a). This results from the very slow group velocities near
the cutoff frequency.

As a final test, we introduce a positive ion species of with
atomic mass 32 into our model to study the impact of having a
plasma comprised of both ions and electrons. The ion density is
1.0 and all other parameters are kept the same as in
the electron-only case above. The ion plasma frequency and
the total plasma frequency are then given by

(52)

(53)
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Fig. 7. Waveforms for a Gaussian-pulsed plane wave propagating in the plasma
without external magnetic field (a) Time Domain (b) Frequency Domain.

The dashed lines of Fig. 7 illustrate the results of this third test
plasma case including both ions and electrons. The oscillating
frequency of the time-domain tail has clearly increased from
of the electron-only plasma case to as shown in Fig. 7(a) and
the frequency-domain cutoff has also shifted from to as

observed in Fig. 7(b). Again, these numerical results agree with
plasma theory very well.

V. CONCLUSION AND ONGOING WORK

We report a 3-D FDTD model of EM wave propagation in
anisotropic magnetized cold plasma. This model is based upon
the 2-D cylindrical FDTD model developed by Hu and Cummer
[18].

In this work, we expand their 2-D, tightly coupled E-J collo-
cation plasma method to the fully 3-D case. As a result, taking
into account all three particle species (electrons, positive ions,
and negative ions), our whole 3-D iteration system consists of 15
linear equations with 15 state variables. We use an equivalent set
of explicit iteration equations to derive the FDTD iteration coef-
ficients for these 15 linear equations (rather than deriving them
analytically). Unlike for a 2-D plasma code, using our newly
developed 3-D FDTD anisotropic plasma model, we are able to
model such effects as Faraday rotation and complete 3-D spa-
tial variations of the magnetized cold plasma. Our simulation
results for Faraday rotation and EM propagation characteristics
agree very well with plasma theory.

Ongoing work includes extending the 3-D plasma algorithm
developed here to the latitude-longitude [30] and geodesic [31]
global 3-D FDTD models of the Earth-ionosphere waveguide.
These global models could greatly improve simulation capabil-
ities and results for a wide variety of applications, such as those
described in [32] or [33].

APPENDIX

Iteration Matrix A: see the matrix at the bottom of the page.

Iteration Matrix B: see the first matrix at the top of the
following page.
Iteration Matrix C: see the second matrix at the top of the
following page.

ACKNOWLEDGMENT

The authors gratefully acknowledge Prof. S. Cummer of
Duke University and Dr. W. Hu for technical discussions
relating to their 2-D FDTD plasma model. The computing

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 9, 2010 at 11:13 from IEEE Xplore.  Restrictions apply. 



YU AND SIMPSON: E-J COLLOCATED 3-D FDTD MODEL OF ELECTROMAGNETIC WAVE PROPAGATION 477

support for this work was provided by the University of New
Mexico High Performance Computing Center (HPCC).

REFERENCES

[1] K. Yee, “A numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media,” IEEE Trans.
Antennas Propag., vol. 14, pp. 302–307, 1966.

[2] A. Taflove and S. C. Hagness, Computational Electromagnetics: Fi-
nite-Difference Time-Domain Method, 3rd ed. Norwood, MA: Artech
House, 2005.

[3] R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A frequency-depen-
dent finite-difference time-domain formulation for transient propaga-
tion in a plasma,” IEEE Trans. Antennas Propag., vol. 39, pp. 29–34,
Jan. 1991.

[4] L. J. Nickisch and P. M. Franke, “Finite-difference time-domain solu-
tion of Maxwell’s equations for the dispersive ionosphere,” IEEE An-
tennas Propag. Mag., vol. 34, pp. 33–39, Oct. 1992.

[5] J. L. Young, “A full finite difference time domain implementation
for radio wave propagation in a plasma,” Radio Sci., vol. 29, pp.
1513–1522, 1994.

[6] J. L. Young, “A higher order FDTD method for EM propagation in a
collisionless cold plasma,” IEEE Trans. Antennas Propag., vol. 44, pp.
1283–1289, Sep. 1996.

[7] Q. Chen, M. Katsurai, and P. H. Aoyagi, “An FDTD formulation
for dispersive media using a current density,” IEEE Trans. Antennas
Propag., vol. 46, pp. 1739–1746, Oct. 1998.

[8] J. Zhonghe et al., “Propagation of electromagnetic TM (S-polarization)
mode in two-dimensional atmospheric plasma,” Plasma Sci. Tech., vol.
8, pp. 297–299, May 2006.

[9] G. Bin, W. Xiaogang, and Z. Yu, “FDTD numerical simulation of
absorption of microwaves in an unmagnetized atmosphere plasma,”
Plasma Sci. Tech., vol. 8, pp. 558–560, Sep. 2006.

[10] D. F. Kelley and R. J. Luebbers, “Piecewise linear recursive convolu-
tion for dispersive media using FDTD,” IEEE Trans. Antennas Propag.,
vol. 44, pp. 792–797, Jun. 1996.

[11] D. M. Sullivan, “Z-transform theory and the FDTD method,” IEEE
Trans. Antennas Propag., vol. 44, pp. 28–34, Jan. 1996.

[12] S. A. Cummer, “An analysis of new and existing FDTD methods for
isotropic cold plasma and a method for improving their accuracy,”
IEEE Trans. Antennas Propag., vol. 45, pp. 392–400, 1997.

[13] M. Cho and M. J. Rycroft, “Computer simulation of the electric field
structure and optical emission from cloud-top to the ionosphere,” J.
Atoms. Terr. Phys., vol. 60, pp. 871–888, 1998.

[14] V. P. Pasko, U. S. Inan, T. F. Bell, and S. C. Reising, “Mechanism
of ELF radiation from sprites,” Geophys. Res. Lett., vol. 25, pp.
3493–3496, 1998.

[15] G. Veronis, V. P. Pasko, and U. S. Inan, “Characteristics of mesospheric
optical emissions produced by lightning discharges,” J. Geophys. Res.,
vol. 104, pp. 12 645–12 656, 1999.

[16] S. A. Cummer, “Modeling electromagnetic propagation in the earth-
ionosphere waveguide,” IEEE Trans. Antennas Propag., vol. 48, pp.
1420–1429, 2000.

[17] M. Thèvenot, J. P. Bérenger, T. Monedière, and F. Jecko, “A
FDTD scheme for the computation of VLF-LF propagation in the
anisotropic earth-ionosphere waveguide,” Ann. Télécommun., vol. 54,
pp. 297–310, 1999.

[18] W. Hu and S. A. Cummer, “An FDTD model for low and high altitude
lightning-generated EM fields,” IEEE Trans. Antennas Propag., vol.
54, pp. 1513–1522, May 2006.

[19] W. Hu, S. A. Cummer, and W. A. Lyons, “Testing sprite initiation
theory using lightning measurements and modeled electromagnetic
fields,” J. Geophys. Res., vol. 112, pp. 12645–12656, 2007.

[20] J. L. Young, A. Kittichartphayak, Y. M. Kwok, and D. Sullivan, “On
the dispersion errors related to (FD)2TD type schemes,” IEEE Trans.
Microw. Theory Tech., vol. 43, pp. 1902–1909, 1995.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 9, 2010 at 11:13 from IEEE Xplore.  Restrictions apply. 



478 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 2, FEBRUARY 2010

[21] J. H. Lee and D. K. Kalluri, “Three dimensional FDTD simulation of
electromagnetic wave transformation in a dynamic inhomogeneous
magnetized plasma,” IEEE Trans. Antennas Propag., vol. 47, pp.
1148–1151, 1999.

[22] L. Xu and N. Yuan, “FDTD formulations for scattering from 3-D
anisotropic magnetized plasma objects,” IEEE Antennas Wirless
Propag. Lett., vol. 5, pp. 335–338, 2006.

[23] S. Liu and S. Liu, “Runge-Kutta exponential time differencing FDTD
method for anisotropic magnetized plasma,” IEEE Antennas Wireless
Propag. Lett., vol. 7, pp. 306–309, 2008.

[24] J. A. Payne, U. S. Inan, F. R. Foust, T. W. Chevalier, and T. F. Bell, “HF
modulated ionospheric currents,” Geophys. Res. Lett., vol. 34, L23101,
2007.

[25] Personal Communication Apr. 21, 2009.
[26] T. W. Chevalier, U. S. Inan, and T. F. Bell, “Terminal impedance and

antenna current distribution of a VLF electric dipole in the inner mag-
netosphere,” IEEE Trans. Antennas Propag., vol. 56, pp. 2454–2468,
Aug. 2008.

[27] F. Hunsberger, R. Luebbers, and K. Kunz, “Finite-Difference time-do-
main analysis of gyrotropic media-I: Magnetized plasma,” IEEE Trans.
Antennas Propag., vol. 40, pp. 1489–1495, Dec. 1992.

[28] S. J. H. Huang and F. Li, “FDTD simulation of electromagnetic
propagation in magnetized plasma using z-transforms,” International
Journal of Infrared Millimeter Waves, vol. 25, no. 5, pp. 815–825,
May 2004.

[29] F. C. Francis, Introduction to Plasma Physics and Controlled Fusion,
2nd ed. New York and London: Plenum Press, 1984.

[30] J. J. Simpson and A. Taflove, “Three-dimensional FDTD modeling of
impulsive ELF antipodal propagation and Schumann resonance of the
earth-sphere,” IEEE Trans. Antennas Propag., vol. 52, pp. 443–451,
Feb. 2004.

[31] J. J. Simpson, R. P. Heikes, and A. Taflove, “FDTD modeling of
a novel ELF radar for major oil deposits using a three-dimensional
geodesic grid of the earth-ionosphere waveguide,” IEEE Trans. An-
tennas Propag., vol. 54, pp. 1734–1741, Jun. 2006.

[32] J. J. Simpson and A. Taflove, “A review of progress in FDTD
Maxwell’s equations modeling of impulsive sub-ionospheric propa-
gation below 300 kHz,” IEEE Trans. Antennas Propag.: Special Issue
on Electromagn. Wave Propa. Complex Environments: A Tribute to
Leopold Benno Felsen, vol. 55, no. 6, pp. 1582–1590, Jun. 2007.

[33] J. J. Simpson, “Current and future applications of full-vector 3-D
Maxwell’s equations FDTD global earth-ionosphere waveguide
models,” Surveys Geophys., vol. 30, no. 2, pp. 105–130, 2009.

Yaxin Yu received the B.S. degree in physics from
Northwest University, China, in 2000, the M.S.
degree in optics from Nankai University, China, in
2003, and the M.S. degree in electrical engineering
from the University of New Mexico, Albuquerque,
in 2006, where he is currently working toward the
Ph.D. degree.

His research interests include semiconductor op-
toelectronics, especially the III–V compound semi-
conductor materials and devices, and the finite-dif-
ference time-domain (FDTD) solution of Maxwell’s

equations. His current research focuses on FDTD simulation of electromagnetic
wave propagation in ionosphere.

Jamesina J. Simpson (S’01–M’07) received the
B.S. and Ph.D. degrees from Northwestern Univer-
sity, Evanston, IL, in 2003 and 2007, respectively.

She joined the Electrical and Computer Engi-
neering Department, University of New Mexico,
Albuquerque, as an Assistant Professor in August
2007. Her research focuses on the finite-difference
time-domain (FDTD) solution of Maxwell’s equa-
tions. To date, her work has spanned applications
ranging from geophysically induced electromagnetic
propagation and phenomena in the Earth-ionosphere

system, to electromagnetic compatibility issues arising in compact portable
electronic devices and to optical interactions with living tissues.

Dr. Simpson is a member of Tau Beta Pi and received the National Science
Foundation Graduate Research Fellowship, Walter P. Murphy Fellowship, IEEE
AP-S Graduate Research Award, and IEEE MTT-S Graduate Fellowship to sup-
port her graduate studies. She was also awarded the 2007 Best Ph.D. Disserta-
tion Award from the Northwestern Electrical Engineering and Computer Sci-
ence Department.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on February 9, 2010 at 11:13 from IEEE Xplore.  Restrictions apply. 


