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ADE-FDTD Scattered-Field Formulation
for Dispersive Materials

Soon-Cheol Kong, Member, IEEE, Jamesina J. Simpson, Member, IEEE, and Vadim Backman

Abstract—This letter presents a scattered-field formulation for
modeling dispersive media using the finite-difference time-domain
(FDTD) method. Specifically, the auxiliary differential equation
method is applied to Drude and Lorentz media for a scattered
field FDTD model. The present technique can also be applied in
a straightforward manner to Debye media. Excellent agreement
is achieved between the FDTD-calculated and exact theoretical
results for the reflection coefficient in half-space problems.

Index Terms—Auxillary differential equation (ADE) method,
dispersive media, finite-difference time-domain (FDTD) method,
scattered-field.

I. INTRODUCTION

ELECTROMAGNETIC scattering is an important aspect of
phased arrays, microwave imaging, composite materials,

fiber optics, atmospheric optics, light diffusion in tissues, etc.,
[1]. The finite-difference time-domain (FDTD) method has been
applied to a wide variety of applications of electromagnetic scat-
tering problems [2]. The application of the FDTD scattered-field
formulation to lossy dielectric structures was reported in [3],
and the total-field/scattered-field formulation was presented in
[4] and [5].

To model frequency-dependent dielectric media, the recur-
sive convolution (RC) method [6], which was later improved to
the piecewise linear recursive convolution (PLRC) method [7],
was developed for the total-field FDTD approach. In addition,
the -transform method [8] and the auxiliary differential equa-
tion (ADE) method [2], [9], [10] were developed for modeling
frequency-dependent media using total-field FDTD. Compara-
tive merits and demerits of these techniques were described in
[7] and [11].

For the scattered-field FDTD approach, the RC and PLRC
methods were proposed [12], [13] for modeling dispersive
media. In [14], a direct relation between the electric field
and the electric field flux density was used to derive the scat-
tered-field formulation, but only a Debye model was described.

Total-field FDTD codes propagate the incident wave through
the grid, and therefore progressively accumulate errors of the
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incident wave due to numerical dispersion and anisotropy. On
the other hand, scattered-field codes accurately generate the in-
cident wave via an exact analytical function at each field vector
location. Also, scattered-field FDTD codes eliminate the non-
physical leakage into the scattered-field region that is an arti-
fact of total-field codes. If the scattered fields are weak com-
pared to the incident field, as for an important class of low-ob-
servable radar cross section (RCS) problems, the total-field ap-
proach thereby suffers from reduced dynamic range.

In this letter, we report a scattered-field FDTD formulation
for modeling Drude media (unmagnetized plasmas, especially
metals at visible wavelengths) and Lorentz media using the
ADE technique. Our technique can be applied to problems of
recent interest involving optical plasmons where visible light
interacts with metal nanostructures. Furthermore, our technique
can be applied to RCS problems where scattering reduction is
achieved by coating a structure with lossy materials. Example
calculations of reflection from Drude and Lorentz media are
reported for 1-D half-space problems and compared to the
exact theoretical results. For the formulations in this letter,
the electric field is related to the polarization current density.
We note that the technique presented in Section II can also be
applied to model Debye media in a straightforward manner.

II. FORMULATION

The electric and magnetic field components are decomposed
into incident and scattered terms so that
and [3]. For an incident field in free
space, Ampere’s Law is given by

(1)

For a medium with dispersive permittivity, the above equation
is expressed for the total field as follows [11]:

(2)

where denotes each Debye or Drude pole or Lorentz pole-pair.
First, the update equations are derived for Drude media. Here,

instead of relating the electric field and the electric field flux
density [14], the electric field and the polarization current den-
sity (which is associated with the polarization vector) are re-
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lated. Thus, the following relation is used for the polarization
current density in (2) for the Drude case [2]

(3)

where is the angular plasma frequency and is the colli-
sion frequency for each Drude pole . The polarization current
density term is expressed in a discretized form as

(4)

where

(5)

Subtracting (1) from (2) yields the scattered-field expression for
wave propagation in a dispersive medium described by zero con-
ductivity and a single pole, which is the case for most practical
problems. The scattered electric field and total current density
for the Drude case are

(6)

Solving for the scattered electric field, we obtain

(7)

The scattered at each grid point is obtained in the usual
manner from the Yee realization of Faraday’s Law for scattered
field [2]. Assuming that the required components have
been pre-calculated for every FDTD grid cell and time-step and
stored in a look-up table, we implement (7) to obtain .
Then, we implement (4) to obtain .

The update equations for Lorentz media can be formulated in
a similar fashion as for the above Drude model. For the Lorentz
case, the following relation is used for the polarization current
density term in (2) [2]:

(8)

where is the angular resonant frequency, is the static per-
mittivity, is the permittivity at infinite frequency, and is
the damping factor for each Lorentz pole-pair .

Assuming a dispersive medium of a single Lorentz pole-pair,
the resulting scattered electric field and total current density for
the Lorentz model is given by

(9)

(10)

where

(11)

(12)

(13)

The formulation for the Debye model is omitted in this letter
because of space limitations. However, note that the Debye
model is simpler in form than the Lorentz model and can be
derived in a straightforward manner using the same procedure
as for the Drude and Lorentz cases.

III. NUMERICAL RESULTS

We now present numerical examples and validations for the
formulations of Section II. Specifically, we calculate the reflec-
tion coefficient of a plane wave normally incident from vacuum
onto either a Drude half-space or a single pole-pair Lorentz
half-space. These 1-D examples are shown to permit compar-
isons of the FDTD and exact theoretical solutions. We note,
however, that this work can be extended to two and three di-
mensions in a straightforward manner.

We assume a -directed impulsive (Gaussian) incident
wave having significant spectral energy up to 100 GHz. The
FDTD algorithm computes , and components on
a uniform grid having 250 m and set to the
maximum value for numerical stability. The parameters for
the Drude half-space are 2 10 and 2
28.7 GHz, whereas the Lorentz half space is characterized by

3.0 1.5 2 25 GHz, and 0.1 .
Fig. 1 shows the FDTD-calculated time waveforms for the

scattered (reflected) electric fields in the free-space region for
both the Drude and Lorentz half-spaces. The observation point
is 10 grid cells from the surface of the dispersive half-space.

Fig. 2 compares the FDTD-calculated and exact analytical
results for the magnitude of the reflection coefficient up to
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Fig. 1. FDTD-calculated time-waveforms of the scattered (reflected) electric
field for both the Drude and Lorentz half-space examples. The maximum
Gaussian incident value is set to 1 V/m.

Fig. 2. Comparison of FDTD and exact theoretical results from dc to 100 GHz
for the magnitude of the reflection coefficient for both the Drude and Lorentz
half-space examples.

100 GHz for both the Drude and Lorentz examples. For the
FDTD results, the reflection coefficients are obtained by taking
the ratio of the discrete Fourier transforms of the reflected and
incident field time-waveforms. For the exact analytical data, the
reflection coefficients are obtained in the phasor domain from
the complex-valued wave impedance of each half-space. From
Fig. 2, we see that the FDTD results and the exact analytical
solution are in excellent agreement for both the Drude and
Lorentz cases.

IV. CONCLUSION

In this letter, a scattered-field FDTD formulation based on the
auxiliary differential equation method was presented for both

Drude and Lorentz dispersive media. Excellent agreement was
obtained between the FDTD models and exact theoretical cal-
culations. Although 1-D examples were provided here, the pro-
posed algorithms can be applied to multidimensional problems
in a straightforward manner.
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