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Abstract- In this paper, we study optimal power control for
multiple access channel with peak and average power constraints.
Perfect channel information is assumed to be available at both
the transmitter and the receiver. We characterize the structures of
the optimal power control policy and show that the optimal policy
allows multiple users to transmit at peak power and at most one
user to transmit at an intermediate power level. This is different
from the optimal TDMA policy (at most one user is allowed to
transmit at any given time) for the case of average power constraint
only. We find closed-form expressions for computing the optimal
power control policy and the maximal sum capacity. Numerical
results indicate that under the peak power constraint, the optimal
power control policy still achieves very close to the sum capacity
of the multiple access channel with average power constraint only.

I. INTRODUCTION

Due to the time-varying nature of wireless channels, it is
shown in [1] that for a single user system, when the channel
information is available at both the transmitter and the receiver,
the wireless user should exploit time-diversity to adapt trans-
mission power according to the channel state and transmit at
higher rates when the channel is good. In a multi-user system,
optimal power control policies ([2], [3]) are developed to exploit
both multi-user diversity and time-diversity with the goal of
maximizing the sum capacity of multiuser networks. For an
uplink cellular system, [2] shows that time division multiple
access (TDMA) schemes maximize the sum capacity. The
optimal power control policy depends on the channel conditions
of all users and it has a structure that, at any given time, only
one user with the best channel condition transmits. However,
since each user transmits only when his channel is the best
among all users, the amount of time that each user occupies
the channel decreases as the number of users increases. Under
the average power constraint, this implies that each user would
transmit at a higher power level when it is his turn to transmit.
Consequently, as the system size grows, each users' signal
transmission becomes increasingly bursty and large peak-to-
average power ratios occur (more details are included in Section
III).

In this work, we study optimal power control under both
peak and average power constraint. The peak power constraint
is independent of the number of users in the system, therefore
in our system we have a fixed peak to average power ratio. We
characterize the structures of the optimal power control policy
and provide close-form expressions for computing the optimal
sum capacity. Under the peak power constraint, we show that

the optimal policy is no longer a TDMA policy. Instead, it
allows multiple users to transmit simultaneously, possibly all
with the peak power. Our results show that the peak power
constraint does not impose much capacity penalties against the
case of average power constraint only. In addition, the number
of simultaneous transmissions can be kept small.

In other related work, optimal power control with peak power
constraint is studied in [4] for a single user system. In this work,
we consider a multi-user system. Optimal power control for
multiple antenna channels are studied in [5] under the average
power constraint.

II. UPLINK OPTIMAL POWER CONTROL

Consider an uplink cellular network with K users. Let -yi, i =
1,. ,K be the channel gain between user i and the base
station. Under Rayleigh fading, we assume that Aj_ has a
Rayleigh distribution and -yi has an exponential distribution
with parameter 1. Let -y = (-yr,--- , K) denote the channel
gain vector of all users and ui(-y) be the power allocation to
user i when the channel gain vector is -y. Under the power
control policy ui(y), the received signal at the base station can
be written as

K

y= xi+n,
i=l

(1)

where xi is the transmitted signal from user i which satisfies
E(xi 12) = 1, n is white Gaussian noise with zero mean and
unit variance.

For a fixed y, equation (1) represents a Gaussian multiple ac-
cess channel with a sum capacity of 2 log (1 + Z=-1 ui(Y)'Yi)
[6]. Assume that channel fading information is available at both
the transmitter and the receiver, we can average over all possible
fading realizations to obtain 'E [log (1 + K1 Ui(_Y)Yi)1 as
the sum capacity for the fading case. Our objective is to
find the optimal power control policy ui(-y),i = 1 K to
maximize the sum capacity under both peak and average power
constraints. Let p(y) be the probability density function of y.
We formulate the following optimization problem.

max ff... f " log (I + EK1 Ui(_Y)i) p(y)d 'y (2)

subjectto ff...fui(y)p(y)dy<i, i=1 KK(3)
and Ui)< P, i = 1,- K. (4)

Note that we consider both the average power constraint (3)
and the peak power constraint (4), while in [1], [2], [3] only
the average power constraint is considered.
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A. Structures of the optimal power control policy
In order to characterize the structures of the optimal power

control policy, we first introduce the Lagrange multipliers, Ai,
corresponding to each average power constraint in (3). The
Lagrangian function is expressed as

L(ui, {>i})= Jf... log ( + K)ui(y)-i p(7)d y

(AiJ ...f u i(-y)p(y)d ).

(5)
Due to the convexity of the logarithm, the Karush-Kuhn-Tucker
(KKT) conditions [7] are necessary and sufficient for optimality.
Taking the derivative with respect to ui, we obtain a set of KKT
conditions for every i = 1,.. ,K and -y.

K
7i > 1 + S uj(Q)4yj if 'uiQY) = P (6)Ai j=l

K

Ai = 1- u-5(aY)'Yj if O<ui(y)<P (7)
X ~~J=1

K

A- < l1--uj(7)'yj if uj(7)=0 (8)
j=l

Since the summation terms in (6)-(8) are the same for all
i.=1.. , K, we make the following observation:
(1) If s'-> a-Q then we must have ui1(y) >.uiQ)-
(2) At most one user can be allocated an intermediate power

level 0 < ui(-y) < P. This is true because the probability
that the left hand side of (7) is the same for two different
users equals 0. Hence, when there is no peak power constraint
(or P = oo), the optimal power control policy reduces to the
TDMA policy in [2].

(3) Let us reorder the sequence {-yi/Ai, i = 1, -K} such
that

JXl > JYi2 >X
>X1- A2 - AiK

It then follows from (1) and (2) that, the optimal power control
policy satisfies the following properties: (a) there exists an
integer N (which depends on -y) such that the best N users
il,-- -iN are allocated full power P. (b) User iN+1 either
uses an intermediate power level or is inactive (zero power
allocation). (c) Users iN+2,- - ,iK are all inactive.

Next, we will show how to determine the value ofN and the
optimal power allocation for user iN+1. For notation simplicity,
we assume that

71 > M-Y > ,,*K
A1 A2 AK

For every i = 1,- - , let ai =iand bi = 1+P 1Yj
Note that bi equals the summation term 1 + =1 uj ('y)-yj in
(6)-(8) if the first i users are allocated peak power and the
remaining users are inactive.

Since {ai} is an non-increasing sequence and bi is a non-
decreasing sequence, we can find an integer N such that aN .
bN and aN+I < bN+±I There are two cases shown in Figure 1,
in which we let N = 4 as an example.
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Fig. 1. Optimal power control policy with peak power constraint.

Case 1 Assume bN < aN+1 < bN+1. In this case, user
N + 1 should not be allocated peak power P. Otherwise the
KKT condition (6) will be violated. Since aN+1 > bN, we can
allocate an intermediate power level to user N + 1 to ensure
that the equality in the KKT condition (7) holds. The optimal
power allocation becomes

FP,
UiX, aN+1-bN

-
Qy) = YN+

0

if i < N
if i = N+ 1
else.

(9)

Using this power allocation, one can see that the summation
term in (6)-(8) equals aN+l. Due to the monotone property of
the sequence {ai}, the KKT conditions are clearly satisfied for
power control policies of the form (9).

Case 2 Assume aN+1 < bN. In this case, user N + 1 is
inactive. The optimal power allocation becomes

ui(\=P, if i < N
0 else.

(10)

The corresponding summation term in (6)-(8) equals bN which
also ensures that the KKT conditions are satisfied.
As seen from (9) and (10), we note a useful fact that the op-

timal power allocation for user i only depends on (y1,*- , y).

B. Computation of the optimal Lagrange multiplier
Given the structures of the optimal power control policy (9)

and (10), the optimal Lagrange multiplier can be found by
choosing {Ai} such that the average power constraint (3) is
satisfied for each user i. This, however, involves the evaluation
of K-dimensional integrals. In the following, we consider the
scenario when the average power constraint Pi = Pa is the
same for all users. By symmetry, all Ai must be equal and we
denote the common value by A. In order to find A that satisfies
(3), we need to simplify (3) as much as possible and reduce the
dimension of integration.



Let 1{.} denote the indicator function. Since the users are
symmetric, we have

K

E[ui(y)] = E [Ui(Y)l{user i has the m-th best channel}]
mg=i (11 )

= E E [EUmY)l{user m has the m-th best channel}]
m=1

The case when rn = 1 needs to be handled separately. For every
rn > 2, we have

E [Umr(7)1{user m has the m-th best channel}]

= (K_2) Jm[j(j....n() .Y-e-e(i1 )'d>dmax(-ym+l...YKl )<l-i .

= (-1) j [ju/n(i,) 1im)eam-1

j=1~ ~ ~ ~ (2

O m 'm

Inorrto c ute(-Et=ei+1te )drym+l(12d) e-onsideyr

(K-1)f |Um('i m = w mus hae- a.ba)
thererm m

d,y,.. d-Am-j (1-e-'-m )Kf-me-7m d-y.
(12)

In order to compute the integral in (12), we consider two
cases with ubm(-yi ......y) = P or O < ubm (-y ..... ym) < P.

(I) If Zu.(y- ym) = ,we must have a. > b. and
therefore

m-1 Y- 1

E -Yi < A
--vYm (13)

(2) If 0 < um("Ii,--- ,ym) < F, then we have bm_i <
am < bm and therefore

2-1-- m-1 Y-
A -Ym <.Y7j < A (14)

j=1
It follows from (9) that the optimal power allocation is

um(t1, ,'Ym) = 1 Z31' . (15)

(Note that if we let mn = 1, the optimal power allocation (15)
reduces to the optimal water-filling power control policy in [2]
with only average power constraint.)

Hence, the integral in (12) equals
00 [jx>.Jo ( {.

r<F1{m A -'n
j=1

()( Y in { 21L "Ym._ Y3._ p }J
I=1

m-1

*e =1 d-y * d7m-1 (1 - e-7m)K-emedym
(16)

gm-i (X) = xm-2e-x/(m - 2)!. The integral in (16) can be
simplified as

Joe [J rmY(-md)
I gm-, (x) dx

JO
--1

+]m-f1,A(1Ym, X) 9m-1 (X) dx qm (,Ym)dYm
(17)

where

qm(-ym) = [1-exp(--ym)]K m [exp(--yx)]m
fm-,A,(-ym,x) = 1/A-[1+P(x+ (m-l)"ym)]/-ym

rm,A(}ym) = niax(,(-m/A-1)/P-m-ym)

The formula for computing A is therefore given by

Pa = P]q/-1)d-'j + IA i( ) d(y1E (K_1) [ ~~~~A A,(71)K c F m,m

+ Z: (MD I ' mi(x) dx

+ fm-i ,,(Am,x) 9m-1 (X) dx qqm(rym)ddym,
(18)

where the first two terms correspond to m = 1.

C. Computation of the optimal sum capacity
Once the optimal A is found by solving (18), the optimal

power control policy is uniquely determined. In this section,
we derive analytical expressions for computing the optimal sum
capacity.

Let c(Qy) = 1 + Z§ 1 Uj(-y)yj, we have

Copt = E[og c(y)]

=2 L.E 10'(c(')) -l there are exactly m active users

= -K ) E Ilog(c(7)) - 1{m active users. user m has m-th best channel}]2

= 2K K (-1)E [1og(c()) 1 mactive users}2 Smr= 1

lfmin(-y .. ..y.m-j)>-m ,max(-y.+j ... ..YK )<Ym }]

1 K

= 2K 5 (m-D)E109(C(7) fmactive users}
m=1

l{min(-y,.... ,Ym-1) >'yrn,max(ym+i, .,rK).Ym}

(1{Um()=P} + 1{O<Um (Y)<P})]

(19)Let'ai= 3-' j = 1,* * * ,m-1and x = Emj1 ai. Then
the probability density function of x has a gamma distribution We again consider two cases.
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(1) Assume urn (-y) = P. To ensure that there are exactly m
active users, we require that a,m > bm > am+,. Hence, the
following conditions must be satisfied:

m

7Ym+1 < A (I+ P Z½)
j=1

m

z>yj
j=1

Am -I
< A
_p

(20)

(21)

m
c(?) = b l= I + PEZY

j=l

sum capacity can be written as

copt= [j /sl(-yL,O) d'7 + j|' l(Y )log (i-) d,l1
K K -o mAtm

+ E_ (K-1) sm[(fymf xmgm (x) dx d-ym

+fo g (ii\) IT ()r9m-1ym) dx qmQtYm)dAYrn]
(27)

(22) where

Note that (21) and (20) imply that -ym1+ <'m It follows that
the integral term in (19) that involves 1{U ()=} equals

Sm(Qm , ) = log (1 + P(mTym + x)) * (e Ym)
* [1 - eA\(P(Mrym+2))]K-m.

and the first two terms in (27) correspond to m = 1.

III. NUMERICAL RESULTSoo OCroo rO m

m

A(1(I +E') Z=PEKm1K

a y j=l ~~e- j=+1 r77?)d-Ym+l ***d-W

*e(-Z='yj)d7yl ... dYm i] e-Ym d7Ym

-A (1+eP (K-r) -( Jyjd)1*(-e j=1 ) e j=1 d-yj- drym-j e-md7tm
(23)

(2) Assume 0 < un(7) < P. We have bm-I < am < bn
which guarantees that there are exactly m active users. Hence,
we must have

Ey - 1A _ X
p

m-1 E---1
i< A

_ l, - P

tYrc(y) = a = A
A

It follows that the integral

1{o<u(Y)<P} equals

term in (19) that involves

log

i [ Ja1 ( > ) { A l ' E<m- I Yj < e

e( 3=1 Yjd7j ... d'yrn1] (1 e-e)K ne dm-y
(26)

Finally, we use the transformation yj = -y m and x =

2in-I y* to arrive at a Gamma distribution and hence reduce
the dimensions of the integral. After simplifications, the optimal

In this section, we present numerical results based on the
close-form expressions derived in Section II.

First, we study the case with only average power constraint
to establish our performance benchmark. We assume an average
transmission power of P, = 10 such that the received signal-
to-noise power ratio 10 log1oPa equals 10 dB. Given a total
of K users in the system, the optimal power control policy
(average power constraint only) allows a maximum transmission
power Pmax(K) = 1/A. As shown in Figure 2, the maximum to
average power ratio Pmax(K) /Pa increases linearly with respect
to K due to the fact that as K increases, the amount of time each
user transmits decreases. When K = 16, we have Pmax/Pa =

16.03 and the optimal sum capacity equals 4.4947 bits.

22
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Fig. 2. Maximum to average power ratio versus the total number of users in
a system with average power constraint only.

Next, we examine the sum capacity under both peak and
average power constraints. Compared to the average power con-

straint only scenario where the maximum transmission power

Pmax(K) increases linearly with K, here we require that at
any time each users' transmission power is no more than P,
which is independent of K. In Figure 3, we plot the optimal
sum capacity as a function of the peak-to-average power ratio

10
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P/Pa For each P/Pa, we first solve (18) numerically to find
the Lagrange multiplier A. Then we apply (27) to compute the
sum capacity corresponding to the optimal power control policy
given by A. Figure 3 shows that as P increases, the sum capacity
also increases. When P/Pa = 16, the capacity with peak power
constraint equals the capacity with average power constraint
only (4.4947 bits). When P/Pa = 8, the sum capacity with
peak power constraint attains about 4.3968/4.4947 = 97.82%
of the sum capacity with average power constraint only. Note
that by imposing the peak power constraint, we reduce the
maximum to average power ratio from Pmax(16)/Pa 16 to
P/Pa, = 8, which is a 3 dB reduction, with only a 2% loss
in sum capacity. When P/Pa = 2, which corresponds to a
9 dB reduction from Pmrax(16)/Pa 16, the sum capacity
achieved is about 89.3% of the sum capacity with average power
constraint only. However, as shown in Figure 4, in this case we
would require many users to transmit simultaneously with large
probabilities.
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Fig. 3. Optimal sum capacity versus peak to average power ratio.

In Figure 4, we study the probability distribution of the
number of active users under the peak power constraint. Let
m denote the number of active users. Given P, the probability
that there are exactly m active users can be computed by
evaluating the integral terms in (27) that correspond to m active
users, and replacing smy(m,x) and log () by 1. In Figure 4,
multiple points are plotted for each P/Pa. The number to the
right of each point represents m, the number of active users.
The y-coordinate of each point represents the probability that
there are exactly m active users. The highest point for a given
P/Pa represents the most likely (with the largest probability)
number of active users. For instance, three points are plotted for
P/Pa = 8. From top to bottom, we see that with probabilities of
0.61, 0.36, and 0.03, there are two, three, and one active users,
respectively. The probability that there is no active user is close
to 0, hence not shown in the figure. We also observe that when
P/Pa is small, it is likely to have a large number of active users.
For instance, when P/Pa = 2, with a probability of 0.31, there
are 8 active users. However, as P/P,a increases, the number of
active users reduces. When P/Pa = 8, there are at most three
active users. When P/Pa = 16, with a probability of 0.987

there is only one active user, hence the resulting optimal power
control policy is almost TDMA as in the case of average power
constraint only.
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Fig. 4. Probability distribution of the number of active users

IV. CONCLUSION
In this paper, we study optimal power control for multiple

access channel with peak and average power constraints. We
obtain a complete characterization of the optimal power control
policy which generalizes previous results on the optimality of
TDMA type policies for multiple access channels with only
average power constraint. Analytical expressions are derived for
computing the optimal policy, the optimal sum capacity, and the
probability distribution of the number of active users, assuming
that users in the network are symmetric. By allowing more than
one user to transmit at a given time, the proposed power control
policies under the peak power constraint have the advantage of
reducing the maximum to average power ratio and shortening
the transmission delay due to opportunistic scheduling in the
multi-user network. In addition, the sum capacity achieved by
the proposed policies are close to that achieved with only the
average power constraint.

REFERENCES
[1] A. Goldsmith and P. Varaiya, "Capacity of fading channel with channel

side information," IEEE Trans. InJormn. Theory, vol. 43, pp. 1986-1992,
Nov. 1997.

[2] R. Knopp and P. A. Humblet, "Information capacity and power control in
single-cell multi-user communications," IEEE Inter Conf: Commnnln. (ICC),
vol. 1, pp. 331-335, Jun. 1995.

[3] D. Tse and S. Hanly, "Multi-access fading channels: part I: Polymatroid
structure, optimal resource allocation and throughput capacities," IEEE
Tranis. InJbrin. Theory, vol. 44, pp. 2796-2815, Nov. 1998.

[4] M. A. Khojastepour and B. Aazhang, "The capacity of average and peak
power constrainted fading channels with channel side information," IEEE
Wireless Cotnitnnications and Networking Conference (WCNC), vol. 1,
pp. 77-82, Mar. 2004.

[5] W. Yu, W. Rhee, and J. M. Cioffi, "Optimal power control in multiple access
fading channels with multiple antennas," IEEE Inter ConfJ Comtninn. (ICC),
vol. 2, pp. 575-579, Jun. 2001.

[6] J. M. Cover and J. A. Thomas, Elements of Inforimnation Theort. New York,
Wiley and Sons, 1991.

[7] D. P. Bertsekas, Nonlinear Progranmming. Belmont, Massachusetts: Athena
Scientific, 1995.

1411

1

*2

*2

*3
*8
*
* 7 X*1
X 10

6 *11, 2


