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Abstract� This paper considers in parallel the scheduling problem for multi�
class queueing networks� and optimization of Markov decision processes� It is
shown that the value iteration algorithm may perform poorly when the algo�
rithm is not initialized properly� The most typical case where the initial value
function is taken to be zero may be a particularly bad choice� In contrast� if
the value iteration algorithm is initialized with a stochastic Lyapunov function�
then the following hold

�i�� A stochastic Lyapunov function exists for each intermediate policy�
and hence each policy is regular �a strong stability condition��

�ii�� Intermediate costs converge to the optimal cost�
�iii�� Any limiting policy is average cost optimal�

It is argued that a natural choice for the initial value function is the value
function for the associated deterministic control problem based upon a �uid
model� or the approximate solution to Poisson�s equation obtained from the
LP of Kumar and Meyn� Numerical studies show that either choice may lead
to fast convergence to an optimal policy�
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�� Introduction

This paper presents a convergence proof for the value iteration algorithm for
general Markov decision processes� and also develops methods for the application of
this algorithm to the synthesis of optimal scheduling policies for multiclass queueing
networks� The latter results are based upon the close connection between optimiza�
tion of a network� and optimal control of an associated �uid network model�

Over the past ten years there have been several successful attempts to approxi�
mate a network model with a more tractable process to reduce the complexity of the
control synthesis problem� The recent paper �MSS��� treats the optimal control of
a multiclass queueing network by relating this problem to the optimal control of an
associated di�usion process in heavy tra	c� following the work of �HW���� Meth�
ods for translating an optimal policy for the Brownian system model back to an
implementable policy for the discrete�stochastic model are introduced in �Har����
In �Mey��b� Mey��� it is shown that the value function for the network sched�
uling problem can be approximated by the value function for an associated �uid
limit model� Some heuristics based upon this result are developed in �Mey��� to
translate a policy for the �uid model back to the original discrete network� The re�
sults reported here provide a more exact approach to translating an optimal policy
for the �uid model back to the original problem of interest�

We begin with the analysis of a general Markov Decision Process model with
one step cost c and state process � 
 f��t � t � �g evolving on a countable
state space X� Our goal is to solve the average cost optimal control problem by
constructing a stationary policy w with minimal average cost

J�w� x �
 lim sup
n��

�

n

n��X
t��

Ex�c���t� w���t������

Value iteration is perhaps the most common approach in practice to constructing an
optimal policy� The idea is to consider the �nite time problem with value function

Vn�x 
 minEx

hn��X
t��

c���t� a�t � V����n
i
�����

where fa�t � t � �g is a sequence of actions determined by some policy� and the
minimum in ���� is with respect to all policies� The function V� � X � R� is a
penalty term � the standard value iteration procedure uses V� � �� Letting vn

denote a policy which attains this minimum� it may be assumed without loss of
generality that there is a sequence of state feedback functions wk � X � A� k � ��
such that for any n� the policy vn is a Markov policy whose �rst n actions may be
expressed

v
n
���n��� 
 �wn������� � � � � w����n� ��

The value iteration algorithm is then the standard dynamic programming approach
to recursively computing an optimal sequence �Vn� w

n � n � ��
Various convergence proofs and counterexamples have appeared since the early

sixties� with most of the general positive results holding in the case of �nite state
space models only� A thorough survey is found on pages ������� of �Put�	�� In
early papers the analyses typically focus on the di�erential cost function gn�x 

Vn���x�Vn�x and the normalized value function hn�x 
 Vn�x�Vn��� where �
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is some distinguished state� Under various conditions one may show that as n���
possibly through a subsequence�

gn � ��� hn � h� wn � w�

where �� is the average minimum cost� and the triple ���� w
�� h is a solution of the

average cost optimality equation �see �������� below�
Recently there has been a resurgence of interest in understanding the algorithm

when the state space is unbounded� The paper �Cav��� treats countable state space
models where the state space is a single communication class under any stationary
policy� Convergence holds under two natural assumptions� the stabilizability con�
dition that the steady state cost is �nite for some stationary policy� and the almost
monotone condition on the cost function of �Bor���� The irreducibility assumption
was relaxed in �CF�
� by imposing a global Lyapunov function condition similar
to that of �Hor���� The global Lyapunov function condition is expressed as�

E
w�V ���t� � j ��t 
 x� � V �x� c�x�w�x � b�lS�x� t � Z������

where V is a positive function on the state space� b � �� and S is a �nite set� or
more generally a compact set� It is assumed in �CF�
� that there exists a single
function V such that ���� holds for every Markov policy w� where S 
 f�g is a
singleton� Under this assumption it may be shown that Evx ���� is uniformly bounded
over all policies� for each initial condition x� where �� is the �rst return time to the
state � � X�

In the paper �Sen���� conditions are determined under which the optimal cost
�� is computable through the limit �� 
 limn�� Vn�x�n� x � X� The analysis
is based upon the discounted control problem� and the use of a truncated value
function to avoid the di	culties associated with unbounded costs� The paper be�
gins with some implicit bounds on the relative discounted value function for the
truncated control problem� These assumptions are related to more readily veri�
�able conditions such as the near monotone condition of �Bor���� and the Lya�
punov condition of �Hor���� Hence �Sen��� captures some aspects of the results
of �CF�
� Cav����

None of these contributions are applicable in general for multiclass network
models since both the Lyapunov condition and the irreducibility condition fails
for many models� A contribution of the present paper is to establish conditions
for convergence which are valid in the networks context� Both the assumptions
imposed and the methods of analysis are based on the recent treatment of the
policy iteration algorithm of �Mey��b��

The major contribution of this paper is to resolve a signi�cant drawback to the
value iteration approach � it can be extremely slow� On page ��� of �Put�	� the
author writes �In average reward models� value iteration may converge very slowly�
and policy iteration may be ine	cient in models with many states ���� Indeed� we
have applied value iteration to network models with approximately ������ states
where policy iteration is not directly applicable� and we have found that conver�
gence is slow even for very simple models� The explanation in the network case
is easily seen� One is attempting to approximate the relative value function h�x
by the di�erence hn�x 
 Vn�x � Vn��� When V� is taken to be zero� then each
approximation hn is bounded by a linear function of x� and can grow by at most
one in each iteration� The actual relative value function h is equivalent to a qua�
dratic on the state space �Mey��b� Mey���� so there is a large mismatch between
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the two functions whenever the state is large� For this reason� each of the state
feedback laws fwng generated by the value iteration algorithm can actually induce
a transient state process � �see Section ��

We show in this paper that if the value iteration algorithm is initialized with
V� equal to a stochastic Lyapunov function satisfying ���� for just one policy w�
then the value iteration algorithm constructs recursively solutions to a version of
the drift inequality ���� for each n� Hence we reach the same conclusion estab�
lished for the policy iteration algorithm in the companion paper �Mey��b�� the
strong stability condition ���� is super�uous when working with the value iteration
algorithm because the algorithm automatically generates stabilizing policies� It is
only necessary to �nd an initial stabilizing policy to initialize the algorithm� Based
upon this observation we prove that the intermediate average costs J�wn� x are
�nite for each n� and independent of x� that the average costs J�wn� x converge to
the optimal cost �� as n��� and that any limiting policy is average cost optimal�

Some of these ideas have been generalized to the risk sensitive control problem�in
�BM����

In the network optimization problem the relative value function for the op�
timal policy may be approximated by the value function for the associated �uid
control problem� It is thus natural to use the latter value function to initialize
the value iteration algorithm� A second approach we consider is based on com�
puting an approximate solution to Poisson�s equation through the stability LP of
�KM�
�� Results from numerical experiments show that either choice may lead to
fast convergence to an optimal policy� We thus arrive at a new way of using the
information gained from solving a deterministic optimization problem to solve the
original discrete scheduling problem of interest�

The paper is organized as follows� In the following section we present the main
results concerning the convergence of the value iteration algorithm� The assump�
tions are satis�ed for general multiclass queueing networks of the form described in
Section �� Methods for constructing suitable initializations for the value iteration
algorithm for the network scheduling problem are described in Sections ���� The
appendices contain proofs of the main results and some background theory�

�� Value iteration

Consider a general Markov Decision Process whose state space X and action
space A are countable� Detailed treatments of Markov Decision Processes can be
found in� for instance �Put�	�� We present here a bare�bones description of the
general model�

Associated with each x � X is a non�empty subset A�x 	 A whose elements are
the admissible actions when the state �t takes the value x at time t� The transitions
of the state process � are governed by the conditional probability distributions
fPa�x� yg which describe the probability that the next state is y � X given that
the current state is x � X� and the current action chosen is a � A� A policy w
is a sequence of actions fa�t � t � Z�g which is adapted� that is� a�t can only
depend on the history f���� � � � ���tg� We will consider primarilyMarkov policies
of the form w 
 fw������ w������ w������ ���g� where for each i the function
wi maps X to A� with wi�x � A�x for each x� For a Markov policy w we denote
the resulting Markov chain �w �
 f�w�t � t � �g � we simply write � if it is clear
from the context which policy has been applied�
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A stationary policy is a Markov policy for which wi 
 w for all i� for some
�xed state feedback law w� The action w�x is applied whenever the state takes
the value x� independent of the past and independent of the time�period� We shall
write Pw�x�B 
 Pw�x�x�B for the transition law corresponding to a stationary
policy w� The n�step transition probabilities are denoted

Pn
w�x� y 
 P��w�n 
 y j �w�� 
 x� x� y � X�

We also use the operator�theoretic notation�

Pn
wh �x �
 E�h��w�n j �w�� 
 x��

where h is any real�valued function on X�
The resolvent kernel is de�ned for a feedback law w as

Kw 


�X
t��

���t��P t
w�

We will occasionally extend this de�nition to a Markov policy v 
 �v�� v�� � � �  via

Kv�x� y �
 E
v
x

h �X
t��

���t���l���t 
 y
i
� x� y � X�

We assume that a cost function c � X 
A � ���� is given� The average cost
of a particular policy w is� for a given initial condition x� de�ned as

J�w� x �
 lim sup
n��

�

n

n��X
t��

E
w
x �c��w�t� a�t��

A policy w� is then called optimal if J�w�� x � J�w� x for all policies w� and any
initial state x�

A central concept in this paper is the notion of f �regularity� as developed in
�MT���� with f equal to some function on the state space� In the present paper
the functions of interest take the form f 
 cw with cw�y 
 c�y� w�y� y � X�
The de�nition takes a simple form since the state space is assumed to be countably
in�nite� the controlled chain is cw�regular if for some distinguished state � � X�

E
w
x

h����X
t��

cw���t
i
��� x � X�

where �� is the �rst return time to the state ��
Following �Mey��b�� a state feedback law w will be called regular if the con�

trolled chain is a cw�regular Markov chain� a policy w is also called regular pro�
vided that w is a stationary Markov policy de�ned by a regular state feedback
law� This a highly desirable stability property for the controlled process� If the
feedback law w is regular� then necessarily an invariant probability measure �w
exists such that �w�cw � �� Moreover� for a regular w� the resulting cost is
J�w� x 


P
�w�ycw�y� independent of x� The following result is a consequence

of the f �norm ergodic theorem of �MT��� Chapter ����

Theorem ���� For any regular feedback law w� there exists a unique invariant
probability �w� and the controlled state process � satis�es �w �


P
cw�x�w�x ���
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For each initial condition the average cost is equal to �w� independent of x� and the
following limits hold�

J�w� x 
 �w 
 lim
n��

�

n

nX
t��

Ex�cw���t� 
 lim
n��

�

n

nX
t��

cw���t� a�s� �Px��

ut

In view of Theorem ���� we denote the average cost J�w 
 J�w� x when the
policy w is regular�

The construction of an optimal policy typically involves the solution to the
following equations

�� � h��x 
 min
a�A�x

�c�x� a � Pah� �x�����

w��x 
 argmin
a�A�x

�c�x� a � Pah� �x�� x � X�����

The equality ����� a version of Poisson�s equation� is known as the average cost
optimality equation �ACOE� The second equation ���� de�nes a stationary policy
w� �see e�g� �Put�	� ABF���� Bor��� for further discussion�

The value iteration algorithm� or VIA� is de�ned inductively as follows� If the
value function Vn is given� the action wn�x is de�ned as

wn�x 
 argmin
a�A�x

�PaVn �x � c�x� a�� x � X�

For each n the following dynamic programming equation is satis�ed�

Vn���x 
 cwn�x � PwnVn�x 
 min
a�A�x

�PaVn �x � ca�x�

which then makes it possible to compute the next function wn���
To simplify notation we denote throughout the remainder of this paper

cn 
 cwn � Pn 
 Pwn � Kn 
 Kwn �

and we let En denote the expectation operator induced by the stationary policy

w
n �
 �wn����� wn����� wn����� � � � �

Suppose that � � X is some distinguished state� and de�ne

hn�x 
 Vn�x � Vn��� gn�x 
 Vn���x� Vn�x� x � X� n � Z������

Then for each n we have the identity Pnhn 
 hn�cn�gn� which at least super�cially
resembles the ACOE� We show below that the pair fhn� gng does indeed converge
to a solution fh�� ��g to ����� ���� under reasonable conditions on the model and
on the initial value function V��

We assume that at least one regular policy w�� exists� so that there also exists
a function V� � X� R� and an � �� such that

P��V� � V� � c�� � ������

This stabilizability assumption is a generalization of that used in �Cav��� and many
other papers� If the value iteration algorithm is initialized with this function V��
then the resulting penalty term in Vn� n � �� �regularizes� the intermediate policies
to ensure that each is stabilizing� and in the examples considered it also appears to
speed convergence�

We assume throughout the paper that there exists a regular� optimal policy
w
�� a Pw��invariant probability �w� � and a relative value function h� satisfying
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the ACOE with �� 
 �w��cw�� The quantities �w�� �w� � h� may not be unique�
but we �x one such triple throughout the paper in our assumptions and in the
analysis to follow� These conditions will be met under the stabilizability part of
Assumption �A�� and Assumptions �A�� �A� below �the conditions of �Sen���
may be veri�ed� following the approach of �Mey��b��

Assumptions �A� and �A� are related to the near�monotone assumption of
�Bor���� We call a function c norm�like if the sublevel set fx � c�x � bg is a
�nite subset of X for any �nite b� It is assumed in Assumption �A� below that
for any �reasonable� policy w� the cost cw �x dominates a norm�like function c
on X� Assumption �A� then imposes an accessibility condition on the sublevel set
S� � X de�ned as

S� 
 fx � c�x � ��g�����

Although this assumption imposes an accessibility condition on all Markov policies�
Assumption �A� is only used for the optimal policies vn� and the stationary policies
wn� n � Z�� Assumption �A� is weaker than the Lyapunov condition of �CF�
��
It is satis�ed for the network scheduling problem described in Section �� and other
storage and routing models found in the operations research area�

Formally� our assumptions are summarized as follows�

A��� There exists a policyw��� a function V� � X� R� � and � �� satisfying
���� and for the optimal policy w��

lim
n��

�

n

�
Pn
w�V�

�
�x 
 �� x � X�

A��� For each �xed x� the function c�x� �  is is norm�like on A� and there
exists a norm�like function c � X � R� such that for any regular polcy w
satisfying J�w � ��

cw �x � c�x� x � X�

A��� There is a �xed state � � X and a 	 
 � such that for any Markov
policy v�

Kv�x�� � 	 for all x � S������

where S� is de�ned in ����� and for any action a � A���

Pa���� � 	�

We will occasionally also assume

A	�� For any regular optimal policy w the controlled chain is irreducible in
the usual sense that

Kw�x� y 
 �� x� y � X�

The main results of this section are summarized in the following two theorems�

Theorem ���� For the value iteration algorithm initialized with the function
V�� suppose that Assumptions �A�	
�A�	 are satis�ed� Then

i�� For each x the sequences fgn�xg and fhn�xg are bounded� and

lim
n��

�

n
Vn�� 
 lim

n��
gn�� 
 ���

lim sup
n��

�

n
Vn�x � lim sup

n��
gn�x � ��� x � X�
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ii�� Each intermediate state feedback law wn is regular� and each Vn serves as
a Lyapunov function for the nth policy�

PnVn � Vn � cn � �� n � ��

iii�� The average cost J�wn converges to the optimal cost�

J�wn� �� as n���

iv�� Any point�wise limit point of the feedback laws fwn � n � Z�g is regular
and optimal�

ut

Theorem ���� Under Assumptions �A�	
�A�	 the conclusions of Theorem �
hold� and in addition� as n���

hn�x � h��x� h���

gn�x � ���

�

n
Vn�x � ��� x � X�

ut

Proof of Theorem ���� The two limits in �i follow from Lemma B�� �ii�
The bounds on the two limit supremums follow from Lemma B�� �i and the formula

�

n

n��X
t��

gt�x 

�

n
�Vn�x � V��x�

The bound in �ii� and hence also regularity� is established in Proposition B���
Result �iii requires the lower bound cw � c� From Proposition B�� and this

lower bound we have �n�c � � for all n� which shows that the probabilities f�n �
n � Z�g are tight� From Proposition B�� and the Comparison Theorem A�� we
have �n�cn � �n�gn where gn � �� Since the probabilities f�ng are tight� for any
preassigned � 
 � there exists a �nite set C � X with �n�C 
 ��� for all n� Thus�

� � lim sup
n��

J�wn � lim inf
n��

�� � �n�gn

� lim inf
n��

X
x�C

�n�x�� � gn�x

� ��� ��� � ���

Since � is arbitrary� this shows that lim supn�� J�wn � ��� as desired�
Finally� result �iv is immediate from �i and Fatou�s lemma applied to the

identity Pnhn 
 hn � cn � gn obtained in Proposition B��� ut
Proof of Theorem ���� The convergence of hn follows from Lemma B����

We may then use the identity gn�x 
 gn���hn���x�hn�x and Theorem ��� �i
to prove that gn�x converges to �

�� The convergence of Vn�x�n to �� then follows
as in the proof of Theorem ��� �i� ut

�� Discrete and �uid models for multiclass networks

Consider a network of the form illustrated in Figure �� composed of d single
server stations� indexed by � 
 �� � � � � d� The network is populated by K classes
of customers� and an exogenous stream of customers of class � arrive to machine
s��� A customer of class k requires service at station s�k� If the service times
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and interarrival times are assumed to be exponentially distributed� then after a
suitable time scaling and sampling of the process� the dynamics of the network can
be described by the random linear system�

��t� � 
 ��t �
KX
i��

Ii�t� ��ei�� � ei�wi���t�����

where the state process � evolves on X 
 Z
K
� � The random variable �i�t denotes

the number of class i customers in the system at time t which await service in bu�er i
at station s�i� The function w � X � f�� �gK�� is the policy to be designed� If
wi���tIi�t � � 
 �� this means that at the discrete time t� a customer of class
i is just completing a service� and is moving on to bu�er i � � or� if i 
 K� the
customer then leaves the system� The set of admissible control actions A�x when
the state is x � X is de�ned as follows for a 
 �a�� � � � � aK� � A�x � f�� �gK���

i�� a� 
 �� and for any � � i � K� ai 
 � or ��
ii�� For any � � i � K� xi 
 � ai 
 ��
iii�� For any station �� � �

P
i�s�i�� ai � ��

iv�� For any station ��
P

i�s�i�� ai 
 � whenever
P

i�s�i�� xi 
 ��

Condition �iv is the non�idling property that a server will always work if there
is work to be done� With the one step cost cw�x 
 jxj �


P
i xi� the non�idling

condition may be assumed without any loss of generality �Mey����

λ

Machine 1

Machine 2

μ
1

μ
2

μ3

Φ (t)1 Φ (t)2

Φ (t)3

Figure �� A multiclass network with d 
 � and K 
 ��

The random variables fI�t � t � �g are i�i�d� on f�� �gK��� with Pf
P

i Ii�t 

�g 
 �� and E�Ii�t� 
 i� For � � i � K� i denotes the service rate for class
i customers� and for i 
 � we let � �
 � denote the arrival rate of customers of
class �� For � � i � K we let ei denote the ith basis vector in RK � and we set
e� 
 eK�� �
 �� It is evident that these speci�cations de�ne a Markov Decision
Process whose state transition function has the simple form�

Pa�x� x � ei�� � ei 
 iai� � � i � K�

Pa�x� x 
 ��

KX
�

iai�

We assume throughout the paper that the usual load conditions are satis�ed

�� 

X

i�s�i��

�

i
� �� � � � � d�����

For concreteness we consider exclusively the one step cost cw�x 
 jxj� It
is now known that for a network model with this cost criterion� regularity of a
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stationary policy w is closely connected with the stability of an associated �uid
limit model �Dai�
� DM�
�� For each initial condition �w�� 
 x �
 � of the
controlled chain �w we construct a continuous time process �x�t as follows� If jxjt
is an integer� set

�x�t 

�

jxj
�w�jxjt�

For all other t � �� de�ne �x�t by linear interpolation� so that it is continuous and
piecewise linear in t� Note that j�x��j 
 �� and that �x is Lipschitz continuous�
The collection of all ��uid limits� is de�ned by

L �


��
n��

f�x � jxj 
 ng

where the overbar denotes weak closure� The process � evolves on the state space
R
K
� � We shall also call L the �uid limit model� in contrast to the �uid model which

is de�ned as the set of all continuous solutions to the di�erential equation

d

dt
��t 


KX
i��

i�e
i�� � ei�ui�t� a�e� t � R� �����

where the function u�t is analogous to the discrete control� and satis�es similar
constraints �CM����

The �uid limit model L is called Lp�stable if

lim
t��

sup
��L

E�j��tjp� 
 ��

It is shown in �KM��� Mey��� that L��stability of the �uid limit model is equiv�
alent to a form of c�regularity for the network�

Theorem ���� The following stability criteria are equivalent for the network
under any nonidling� stationary Markov policy w�

i�� The drift condition holds

PwV �x � V �x � jxj� �� x � X�����

where � � R� � and the function V � X � R� is equivalent to a quadratic in
the sense that� for some � 
 ��

� � �jxj� � V �x � � � ���jxj�� x � X�

ii�� For some quadratic function V �

E
w
x

h ��X
n��

j��nj
i

� V �x� x � X�

iii�� For some quadratic function V and some � ���

�

N

NX
n��

E
w
x �j��nj� �

�

N
V �x � �� for all x and N � ��

iv�� The �uid limit model L is L��stable�
v�� The total cost for the �uid limit L is uniformly bounded in the sense that

sup
��L

E

hZ �

�

j���j d�
i
���

ut
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Using Theorem ��� it is shown in �Mey��b� that the optimal control of a
network and the optimal control of the �uid model are also related� As an illustra�
tion� consider the three bu�er example illustrated in Figure �� We have taken the
parameters

� 
 ������� � 
 ������� � 
 ����� � 
 
 ����������

so that �� 
 ��� � ��
 
 ����� and �� 
 ��� 
 ����� The optimal policy for
the �uid model illustrated in Figure � was computed in �Wei�
�� It can be de�ned
succinctly as

Serve bu�er one if and only if x
 
 �� or x� � x
�����l�x� 
 ����

The form of the policy is logical� If the second bu�er is non�empty� then the last
bu�er receives exclusive service� When the second bu�er x� is empty and x� � x

then� because service at bu�er two is slow� the �rst bu�er releases �uid to avoid
starvation at the second machine�

The optimal policy was computed for the stochastic model with the perfor�
mance index

Jn�x 

�

n

nX
t��

Ex�j��tj��

To compute the policy numerically we used value iteration� terminated at n 

 � ���� The bu�er levels were truncated so that xi � �� for all i� This gives rise to
a �nite state space Markov Decision Process with ��
 
 ��� ��� states� In Figure �
we see the result of this computation� Again there is a roughly linear or a	ne
switching curve � bu�er one is served provided that bu�er two is small� and the
population at bu�er one is reasonably large compared with that at bu�er three�
The policy illustrated in Figure � is closely approximated by the formula

Serve bu�er one if and only if x
 
 �� or x� � x
������ exp�x����

The �uid limit of this approximation is precisely the optimal �uid policy illustrated
in Figure ��

	� Initialization of the VIA

For the optimal scheduling policy the relative value function h� is equivalent
to a quadratic on X 
 Z

K
� in the sense that for some � 
 ��

�jxj� �
�
h��x� h���

�
� ���jxj�� x � X�

where � is the vector of zeros in X �Mey��b�� However� in the standard VIA� for
each n

Vn�x 
 minEwx

hn��X
t��

j��tj
i

� minEwx

hn��X
t��

�j���j� t
i

� njxj� �
�n

��

where we are using the skip�free property of the network that j��t��j � j��tj���
t � Z�� It follows that� for each n� the function hn�x 
 Vn�x� Vn�� is bounded
from above by a linear function of x� Hence the approximation hn�x � h��x is
grossly inaccurate for any �nite n when the state x is large�
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x  > 02
x 3

x 1

x  = 02

Figure �� Optimal policy for the �uid model with �� 
 ���� and
�� 
 ����� In this illustration� the grey regions indicate those
states for which bu�er three is given exclusive service�

x  = 12

x  = 22

x  = 32

x 1

x  = 02
x 3

μ  = μ1 3

Serve buffer 3

Figure �� Optimal policy for the discrete network� There is an
approximately a	ne switching curve which is similar to the linear
switching curve found for the �uid model policy illustrated in Fig�
ure ��

As one might then expect� for any n the actions wn�x� x � X� de�ned by
the feedback law wn may be far from optimal when the state x is large� We
illustrate how the feedback laws fwng generated by the standard VIA can give
poor performance with the following two examples�

Example �� a simple queue with controlled service� Here we describe a
model which satis�es all of the conditions of �Cav���� Hence with V� � �� the VIA
does converge to give an optimal policy� However� for each iteration n the state
feedback law wn induces a transient Markov chain �� so that J�wn 
��
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The state space is taken as X 
 Z�� and the action space is A�x 
 f�� �g�
x �
 �� with A�� 
 f�g� There is an arrival rate � and a variable service rate 
which takes on the small value �� or the larger value ���� depending upon the
control� We assume that �� � � � 
 �� and de�ne the transition law as follows

Pa�x� x� � 
 �

Pa�x� x� � 
 � � �a

Pa�x� x 
 ��� � � �a� ��

That is� if w�x 
 � then a customer receives maximal service during the current
time slot when there are x customers in the queue� Assuming that � 
 ������ �
�� the feedback law de�ned as w��x 
 �� x � �� is regular for any � � �� and the
optimal policy is of this form for some �� We assume that ��� 
 �� so that the
lasy server de�ned by w�x � � gives rise to a transient chain ��

Suppose that cw�x 
 �� � w�xx� so that the one�step cost of serving a
customer is proportional to the total number of customers in the system� Then for
the standard VIA it may be shown inductively that there exists f�n � n � Z�g
such that wn�x 
 � for all x � �n� Since no services are initiated when x � �n� it

follows that the chain �w
n

obtained with the stationary policy wn is transient for
any n� although the policies fwn � n � �g do converge pointwise to give an optimal
policy�

To obtain a version of the VIA which generates regular policies� initialize the
algorithm with the function V��x 
 x���� � � � �� With the feedback law
w���x 
 �l�x 
 � we do have Pw��V� � V� � cw�� � � for some � � �� It
follows from Theorem ��� that each successive feedback law wn is regular� and that
the policies converge to an optimal policy as n � �� In fact� it may be shown
directly by induction that wn�x 
 � for all n and all x su	ciently large� which
immediately implies that wn is regular� We also note that in this case the function
hn�x 
 Vn�x � Vn�� is equivalent to a quadratic for all n � �� Hence� when
properly initialized� the VIA returns the correct form of both the optimal policy
and the relative value function for large x� and only modi�es the intermediate
policies for x in a �nite subset of X� ut

Example �� The Rybko�Stolyar Model� The next example treats a model
introduced independently in the papers �RS��� KS���� Consider the network
illustrated in Figure � consisting of four bu�ers and two machines fed by separate
arrival streams� It is shown in �RS��� that the last bu�er��rst served policy where
bu�ers � and � receive priority at their respective machines will make the controlled
process � transient� even when the load conditions ���� are satis�ed� if the cross�
machine condition ��� � ��� � � is violated�

If the VIA is applied to this model with V� � �� then one obtains V��x 
 jxj�
and

V��x 
 jxj�min
w

�jxj� ��� �w��x� �w��x�

The minimizing feedback law w� is evidently given by

w���x 
 �l�x� 
 �� w���x 
 �l�x� 
 ��

We conclude that J�w� � � when ��� � ��� 
 � since this is precisely the
destabilizing policy introduced in �RS��� KS���� ut
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λ

λ

Machine 1

μ
1

μ4

Φ (t)1 Φ (t)1

Φ (t)3 Φ (t)3

Machine 2

μ
2

μ3

Figure �� A multiclass network with d 
 � and K 
 ��

These examples show that the standard VIA may return policies which are not
stabilizing� and we have evidence to suspect that convergence may be slow� given
the mismatch between the functions hn and the limiting relative value function h��
We have conducted numerical experiments to test the rate of convergence of the
VIA for the three�bu�er example illustrated in Figure � with the parameters de�ned
in ����� Figure � shows the results from two implementations of the VIA� In the
�rst we consider the standard algorithm with V� � �� For comparison purposes we
also consider the case V��x 
 jxj�� This might appear to be a natural choice since
it will result in lower values for the terminal cost� However� assumption �A� is
violated in both of these choices for V� since the drift inequality ���� is violated
for any policy�

The vertical axis is the approximate value of the steady state cost J�wn� where
w
n is the stationary policy obtained at the nth iteration of the VIA� Because the

problem is large we cannot compute this cost exactly� but instead use

J�wn �
�

�� ���

�����X
t��

E
wn

� �j��tj��

In either case we found that it takes several thousand iterations to reach convergence
for this model� The �gure shows results from the �rst ��� steps of the algorithm�
Data was saved for n equal to multiples of ten� n 
 ��� � � � � ����

In summary� the standard VIA su�ers from two potential drawbacks� interme�
diate policies may perform poorly� and may even give rise to a transient Markov
chain� and the convergence of the algorithm can be slow� In the following two sec�
tions we propose methods to improve this situation by establishing general methods
for constructing a more appropriate initial value function V�� Although in practice
we will never optimize the full in�nite dimensional model� the approach described
here may be used even in the �nite state space truncated model to speed conver�
gence� We see in the next section that for a network with bu�er levels truncated
to ��� the standard VIA requires thousands of iterations for convergence� while the
VIA implemented with an appropriate initial value function converges to the same
level of performance in less than twenty steps� even though the chain possesses
��
 
 ��� �� states�


� Initialization through the �uid model

From Theorem ��� �i and Theorem ��� we conclude that the VIA will converge
if the algorithm is initialized with a stationary policy w�� whose �uid model is L��
stable� since the network model will then satisfy Assumptions �A���A� when
initialized with a solution to ����� Assumption �A� will hold since the relative
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50 100 150 200 250 300

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

Standard VIA

V (x) = x0
2

nJ(w )

n

Figure �� Convergence of the VIA with V� taken to be zero� and
with V��x 
 jxj�� The vertical axis is an approximation to the
steady state cost J�wn� and the horizontal axis is n� the number
of iterations of the algorithm�

value function is equivalent to a quadratic for any such policy� and the accessibility
Assumption �A� holds with � equal to the empty state �Mey���� There are many
stabilizing policies which may serve as the initial policy w�� �see �CZ���� This
leads to several algorithmic approaches to constructing the initial value function
V� based on the value function for the �uid model� We begin with the following
suggestive proposition� The result �ii is proven in �Mey��b�� For the sake of
brevity we omit the proof of �i�

Proposition ���� If the feedback law w gives rise to a network whose �uid
limit model L is L��stable� then

i�� the function V below is a solution to ���� for any b 
 � and all T su	�
ciently large�

V �x 
 bjxj�Ewx

hZ T

�

j�x��j d�
i
�����

ii�� There exists a solution h to the Poisson equation Pwh 
 h � jxj � ����
and the function h approximates the value function V as follows�

��� ��jxj� T V �x � h�x � �� � ��jxj� T V �x�

where � 
 � and satis�es lim supT�� lim supr�� ��r� T  
 ��
ut
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While the function V given in ���� is not easily computable in general� if the
�uid limit model L is purely deterministic then we may use the limiting function

V �x 
 bjxj�
Z �

�

j���j d�� ��� 

x

jxj
�����

We can also obtain an approximation to ���� based upon a �nite dimensional
linear program �DEM���� If a su	ciently tight approximation to ���� is found
then one can expect that ���� will hold for this approximation� We illustrate this
approach with the three bu�er example illustrated in Figure �� We have computed
explicitly the function V in ���� for two policies� LBFS� and the optimal policy
illustrated in Figure ��

50 100 150 200 250 300

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

Standard VIA

Initialized with optimal fluid value function

Initialized with LBFS fluid value function

nJ(w )

n

Figure �� Convergence of the VIA with V� taken as the value
function for the associated �uid control problem� Two value func�
tions are found� one with the optimal �uid policy� and the other
taken with the LBFS �uid policy� Both choices lead to remark�
ably fast convergence� Surprisingly� the �suboptimal� choice using
LBFS leads to the fastest convergence of J�wn to the optimal cost
�� � �����

Two experiments were performed to compare the performance of the VIA ini�
tialized with these two value functions� The results from two experiments are shown
in Figure �� For comparison� data from the standard VIA shown earlier is also given�
We have again taken ��� steps of value iteration� saving data for n 
 ��� � � � � ����
The parameter values ��� �� �� 
 are again de�ned in ����� The convergence is
exceptionally fast in both experiments� Surprisingly� the �suboptimal� choice using
LBFS leads to the fastest convergence�
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�� Initialization through a linear program

The computation of ���� is currently possible only for very simple models� We
present here an alternative initialization of the VIA based upon the stability LP
of �KM�
� which is computationally feasible even for networks with hundreds of
bu�ers�

Since the relative value function for an optimal policy is known to be equivalent
to a quadratic� it is natural to attempt to �nd a quadratic form which gives the
required negative drift� Let I denote the set of ordered pairs I 
 f�i� j � � � i� j �
Kg� For I � I and � a vector of dimension jIj 
 K� we de�ne

hI�x 
 xixj � h��x 

X
I�I

�IhI�x�

Given a state feedback law w� let z 
 z�x denote the vector in RjIj whose Ith
component is given by zI 
 wi�xxj � I � I� For any non�idling policy w� the cost

can be expressed in terms of the vector z as jxj 
 cT z� where c � RjIj is the vector
whose Ith component is de�ned as cI 
 �l�s�i 
 s�j�

For any I there exist vectors cI � RjIj � �I � RK and a constant BI such that

PwhI �x 
 hI�x � cI
T
z � �I

T
w�x �BI �

The vector cI is de�ned as follows� Let eI be the vector that is zero except for a

one in the I 
 �i� jth position� so that eI
T
z 
 zI � Then for i 
 j� i 
 j � � and

i 
 j � �� the vector cI 
 cij is given by

�i��e
i���i � �ie

ii�
i��e

i���i�� � ie
i�i�� � izii � i��e

i���i� and
i��e

i���j � ie
ij � j��e

j���i � je
ji

respectively� In addition� the non�idling constraint may be expressed as a linear
inequality constraint on the variables z through the expressionX

i�s�i�s�k

zi�k �
X

i�s�i��

zi�k� � � � � d� � � k � K�

Letting d��k denote the vector whose �i� jth entry is de�ned as

d��ki�j 


��	
�

�� if s�i 
 s�j and j 
 k�

�� if s�i 
 � and j 
 k�

� otherwise�

this constraint may be expressed d��k
T
z � �� � � � � d� � � k � K� For � � RK

�

�

and � � Rd� 
 R
K
� de�ne the two vectors

c� �

X
I�I

�Ic
I � d� �


dX
���

KX
k��

���kd
��k�

The stability LP of �KM�
� can be interpreted as follows� Find � � R
K�

� � � �

R
d
� 
 R

K
� such that

c� � d� � c�����
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where inequalities between vectors are interpreted component�wise� If this lower
bound holds� then we obtain the desired Lyapunov drift inequality

Pwh� �x � h��x � �c� � d�Tx� ��Tw�x �B�

� h��x � jxj� ��Tw�x �B��

where �� 

P

�I�
I � B� 


P
�IB

I �
There can be many values of �� � satisfying the lower bound ����� To �nd a

value which is best in an average sense� �rst note that by the Comparison Theo�
rem A�� we have the steady state bound

E	w �jxj� � E	w �c
�T z� � E	w ��

�Tw� �B������

The right hand side is computed in the construction of the performance LP of
�KK�	� DBT��� giving the following formula�

E	w ��
T
ijw� �Bij 


�	


���� if i 
 j�

�� if j 
 i� ��
�� if j 
 i� ��

A natural choice of ��� � is a minimizer of the right hand side of ����� subject
to the constraint that c� � d� � c� which gives the best upper bound E	w �jxj� �

��TE	w �w��B� over all such ��� �� This strong connection between the existence
of a Lyapunov function� and the existence of a bound on steady state performance
is precisely the principle of duality established in �KM����

If vectors ��� � exist which satisfy these constraints� then the simultaneous
Lyapunov condition of Hordijk is also satis�ed �Hor���� Unfortunately� in many
examples of interest it is not possible to �nd a single quadratic Lyapunov function
suitable for all policies� One such example is the three bu�er example given in
Figure �� For this example� the stability LP of �KM�
� is not feasible for certain
service rates� even though the load condition ���� is satis�ed�

If the feedback law w is speci�ed� then it is often possible to relax some of the
constraints on �� For example� for the three�bu�er model under the LBFS policy
we have z�
 
 w��xx
 
 �� so that the constraint on c� is relaxed to

c�I � d�I � cI � �I �
 ��� ��

The stability LP was run for this speci�c example� maintaining the earlier system
parameters ����� giving the following Lyapunov function for the model�

h���x 
 xTQ�x� Q� 


�
�������� ������ ������

������ ������ �
������ �  �����


A����

Another quadratic which solves ���� is

h���x 
 xTQ�x� Q� 


�
�������� ������� �������
������� ������� �
������� � �������


A����

The two matrices are almost multiples of one another� Q� � ���Q�� and in fact
the latter choice gives a correspondingly worse upper bound on E�jxj� through the
inequality �����

Two experiments were performed to compare the performance of the VIA ini�
tialized with these two quadratic Lyapunov functions� The results are shown in
Figure  � The speed of convergence is not as fast as what was found using the �uid
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Figure 	� Convergence of the VIA with V� taken as a quadratic�
The quadratic h�� was found using the stability LP� and the second
quadratic h�� was found through direct calculation� In both cases
we see relatively fast convergence of J�wn to the optimal cost
�� � �����

model to construct V�� but we see in Figure  that it is signi�cantly faster than the
standard algorithm�

�� Conclusions

We have seen that one can obtain excellent steady state performance� even
when the time horizon is very short compared with the size of the state space�
by adding an appropriate penalty term to the �nite horizon cost criterion used in
the VIA� For the network scheduling problem two approaches have been described
for constructing a useful penalty term� That based upon a �uid model gives the
best results in the examples considered� but the simpler approach based upon a
quadratic approximation also performs well� Either approach can potentially be
used in the online optimization of a large manufacturing system�

For other control problems it will be necessary to have some understanding
of the right form for the optimal relative value function in order to initialize the
algorithm� One general approach is to apply one step of policy iteration� since the
resulting relative value function is a Lyapunov function satisfying �A� under mild
conditions on the process �see �Mey��b��

It is likely that the modi�ed policy iteration algorithm of �Put�	� can be
analyzed using a modi�cation of the proof given in the appendix� We are also
considering sample�path based on�line optimization methods using the approaches
introduced here�
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Appendices

Appendix A� Some stability theory for Markov chains

Here we collect together some general results on Poisson�s equation and regu�
larity for a countable state space Markov chain with transition law P and resolvent

K 

�X
i��

���i��P i�

Suppose that c is a function on X with c � �� The Markov chain is called c�regular
if for some � � X and every x � X�

Ex

h����X
i��

c���i
i
���

where the �rst entrance time and �rst return time to the point � are de�ned re�
spectively as �� 
 min�t � � � ��t � �� �� 
 min�t � � � ��t � ��

A c�regular chain always possesses a unique invariant probability � such that

��c �


Z
c�x��dx ���

A set S � X is called petite if there is a 	 
 � and � � X such that

K�x�� � 	� x � S��A��

If the chain is irreducible in the usual sense then every �nite set is petite�
The connections between Poisson�s equation� the Lyapunov drift ����� and

regularity are largely based upon the following general result� which is a minor
generalization of the Comparison Theorem of �MT����

Theorem A�� �Comparison Theorem� Let � be a Markov chain on X satis�
fying the drift inequality PV � V � c� s� The functions s and c take values in R� �
and the function V takes values in ����� with V �x� �� for at least one x� � X�
Then for any stopping time �

Ex�V ����� � Ex

�
���X
t��

c���t

�
� V �x � Ex

�
���X
t��

s���t

�
�

ut

The following result is a consequence of the f �Norm Ergodic Theorem of
�MT����

Theorem A��� Suppose that the conditions of the Comparison Theorem A��
hold� c � �� s is a constant� and the set S 
 fx � c�x � �sg is petite� Then �
is a c�regular Markov chain with a unique invariant probability �� The function V
satis�es V �x �� whenever ��x 
 ��

The proof of the following result is identical to that of Theorem ������� of
�MT���� For any probability distribution a on Z� de�ne the generalization of the
resolvent kernel

Ka�x� y 


�X
n��

a�nPn�x� y� x� y � X�

We denote the mean of a by m�a 

P

na�n�
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Lemma A��� For the Markov chain � or X� suppose that there is a set S 	 X�
a point � � X� and a constant 	 
 � such that Ka�x�� � 	 for x � S� Then for
all x�

Ex

�
����X
t��

�lS���t

�
� m�a�	�

ut

Suppose that � is a c�regular Markov chain with invariant probability �� and
denote � 
 ��c� The Poisson equation is de�ned as

Ph 
 h� c� ���A��

where h � X � R� The computation of h in the �nite state space case involves a
simple matrix inversion which can be generalized to the present setting provided
that the chain is c�regular�

Given a function s � X� ��� ��� and a probability � on X� the kernel s� � � X

X � ��� �� is de�ned as the product s � � �x� y 
 s�x��y� x� y � X� Letting �
denote the point�mass at �� and s 
 	�lS � the minorization condition �A�� may be
expressed K � s� �� Letting G denote the kernel

G 


�X
t��

�K � s� �t�

a solution to Poisson�s equation may be explicitly written as

h�x 
 GK!c �x 

�X
i��

�K � s� �iK!c �x��A��

where !c�x 
 c�x � ��c� provided the sum is absolutely convergent �GM���
Mey��b��

The paper �GM��� uses these ideas to establish the following su	cient condi�
tion for the existence of suitably bounded solutions to Poisson�s equation� De�ne
the set S by

S 
 fx � Kc �x � ��cg��A��

If the chain is positive recurrent we have ��S 
 ��

Theorem A��� Suppose that the Markov chain � is positive recurrent� As�
sume further that � 


R
c�x��dx � �� and that the set S de�ned in �A��	 is

petite� Then there exists a solution h to Poisson�s equation �A�	 which is �nite for
every x � X satisfying ��x 
 �� and is bounded from below everywhere�

inf
x�X

h�x 
 ���

If � is also c�regular then h can be taken as �A��	� which satis�es the bound

h�x � d�Ex

h����X
t��

c���t
i
� x � X�

where d� is a �nite constant� ut

Uniqueness of the solution to Poisson�s equation is established in �Mey��b�
using the previous lower bound�
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Theorem A��� Suppose that the Markov chain � is positive recurrent� that
� 
 ��c ��� and assume that S de�ned in �A��	 is petite� Let g be �nite�valued�
bounded from below� and satisfy

Pg � g � c� ��

Then � is c�regular and for some constant b�

i�� g�x 
 GK!c �x � b for almost every x � X ����
ii�� g�x � GK!c �x � b for every x � X�

ut

Closely related is the following

Lemma A��� Suppose that � is c�regular with invariant probability �� and sup�
pose that z � X� R is bounded from below� and is superharmonic� Pz � z� Then

i�� z�x 
 ��z for almost every x � X ����
ii�� z�x � ��z for every x � X�

ut

Appendix B� Convergence of the value iteration algorithm

We present here proofs of our main results� Throughout this section we assume
that �A���A� are satis�ed� even when this is not mentioned explicitly�

Central to the analysis is the incremental cost gn and function hn de�ned in
����� In the standard version of the VIA where V� 
 �� the functions fgn � n � Z�g
are positive�valued for each n� but may be unbounded� In the present case we
�nd that the opposite situation arises� When V� is a Lyapunov function for some
policy� the functions fgng are strictly bounded from above� but may be unbounded
from below� This is a desirable situation since an upper bound on the sequence
fgn � n � Z�g permits us to conclude that the each of the stationary policies
fwn � n � Z�g is regular� These results are summarized in Proposition B��� We
�rst require the following two lemmas�

Lemma B��� Suppose that for the state feedback law w there exists a solution
V � X� R� to the inequality

PwV �x � V �x � cw�x � �� x � X��B��

Then the controlled chain has the following properties�

i�� The feedback law is regular� and hence the controlled chain has a unique
invariant probability �w�

ii�� There exists a constant B� depending only on � and 	 such that

E
w
x

h����X
t��

cw���t
i
� B��V �x � � x � X�

iii�� �w 
 �w�cw � ��
iv�� �w�� � 	�w�S� 
 ��
v�� V �x � V �� � ���	� x � X�

Proof� From �B�� and the de�nition of S� we obtain the inequality

PwV �x � V �x� �
� cw�x � ��lS��x�
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Applying the Comparison Theorem A�� then gives

�

�
E
w
x

h����X
t��

cw���t
i
� V �x � V �� � �Ewx

h����X
t��

�lS����t
i
��B��

From �A� the minorization condition ���� holds for Kw�

Kw�x�� � 	�lS��x x � X��B��

Applying Lemma A�� then gives

E
w
x

h����X
t��

cw���t
i
� �V �x � ���	�

This proves �ii with B� 
 � � ���	� Result �i and �iii follow immediately from
�ii and the Comparison Theorem�

To prove �iv observe that �w�!c � �w � �� Hence the sublevel set S� must
have positive �w�measure� From the inequality �B�� we can invoke invariance to
deduce �iv�

Finally� �v also follows from �B�� and Lemma A���

� � V �x � V �� � E
w
x

h����X
t��

�lS����t
i
� V �x� V �� � ��	�

ut
Let �n 
 supx�X gn�x and �

n

 infx�X gn�x�

Lemma B��� For each n � Z��

i�� Pn��gn�x � gn���x
ii�� �

n
� �

n��

iii�� gn���x � Pngn�x
iv�� �n�� � �n � �

Proof� Result �i follows from the bound Vn�� 
 PnVn�cn � Pn��Vn�cn���
as shown here�

gn�� 
 Vn�� � Vn�� � Vn�� � �Pn��Vn � cn��


 Pn��Vn�� � cn�� � Pn��Vn � cn��


 Pn��gn�

To prove �ii� we apply �i and the de�nition of �
n
�

�
n��


 inf
x�X

gn���x � inf
x�X

Pn��gn�x � inf
y�X

gn�y 
 �
n
�

We now prove �iii� First observe that

PnVn�� 
 Pn�Vn � gn 
 PnVn � Pngn 
 Vn�� � cn � Pngn�

From the de�nition of fVng we then have

Vn�� 
 Pn��Vn�� � cn�� � PnVn�� � cn 
 Vn�� � Pngn�

from which the result follows� Result �iv then follows immediately� as in �ii� ut
We may now establish the desired stability properties of the VIA under �A��

�A��

Proposition B��� The policy wn satis�es� for each n�
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i�� The following identity holds for all x�

PnVn�x 
 Vn�x � cn�x � gn�x��B��

ii�� The sequence fgn � n � Z�g is uniformly bounded from above�

gn�x � �� x � X� n � Z���B��

iii�� The chain �n is cn�regular� and there exists a constant depending only
on 	 and � such that for each n�

E
n
x

h����X
t��

cn���t
i
� B��Vn�x � �� x � X�

iv�� The stationary policywn is regular with unique invariant probability �n�
and the invariant probability satis�es

J�wn 
 �n�cn � �n�

Proof� Result �i is essentially the de�nition of Vn� gn� For each n�

PnVn 
 Vn�� � cn 
 Vn � cn � �Vn�� � Vn 
 Vn � cn � gn�

Result �ii follows from Lemma B��� and �iii directly from Lemma B��� Result �iv
follows from �ii� �iii� and the Comparison Theorem applied to �B��� ut

An application of this proposition and Lemma B�� gives a lower bound on the
sequences fgng� fhng�

Lemma B��� For all n � Z��

gn�� � ����	 hn�x � ����	� x � X�

Proof� The lower bound on hn follows immediately from Lemma B�� and
Proposition B��� We then have�

����	 � Pnhn �� 
 hn��� cn�� � gn�� � gn���

ut
These bounds can now be used to establish a uniform upper bound on fhng�

Lemma B��� There is a �nite constant B�� independent of n� k or x� such that

hn�x � B��Vk�x � �� � � k � n� x � X�

Proof� It is enough to prove the result for k 
 � since we may treat the kth
step of the algorithm as a new starting point� We have from minimality of Vn� for
any n � Z��

Vn�x � E
�
x

��
n��X
t��

c����t � V����n

�
�l��� 
 n

�

� E
�
x

��
����X
t��

c����t � Vn��� ��

�
�l��� � n

�
�
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where E� is the expectation operator obtained with the policy w�� Subtracting
Vn�� from both sides then gives

hn�x � E
�
x

��
n��X
t��

c����t � V����n

�
�l��� 
 n

�

� E
�
x

�
����X
t��

c����t

�
�B��

� E
�
x ��Vn��� ��� Vn�� �l��� � n� �

We now proceed to bound each of these terms� First� letting Ln�x denote the �rst
term on the right hand side of �B��� we have

Ln�x �
 E
�
x

��
n��X
t��

c����t � V����n

�
�l��� 
 n

�


 E
�
x

��
n��X
t��

c����t � E
��V����n j ���� � � � ���n� ��

�
�l��� 
 n

�

� E
�
x

��
n��X
t��

c����t � �V����n� �� c����n� � � �

�
�l��� 
 n

�

� Ln���x � �Pw
�

f�� 
 n j �� 
 xg�

Hence by iteration we have for all n and x�

Ln�x � L��x � �E�x����


 V��x � �E�x�����

Proposition B�� �iii combined with this inequality then gives Ln�x � V��x �
B��V��x � ��

The second term in �B�� is also bounded using Proposition B�� �iii�

E
�
x

�
����X
t��

c����t

�
� B��V��x � ��

To bound the �nal term� note that by Lemma B��� for any n 
 ���

Vn������ Vn�� 
 �
n��X

k�n���

gk�� � ���	���

The third term on the right hand side of �B�� is thus again bounded by Proposi�
tion B�� �iii�

E
�
x ��Vn��� ��� Vn�� �l��� � n� � ���	E�x���� � ���	B��V��x � ��

Thus each of the expectations on the right hand side of �B�� is bounded as desired�
with B� 
 � � �� � ���	B�� ut

From the optimality equations we have for all n � Z� and x � X�

Pnhn �x 
 hn���x� cn�x � gn���

This identity together with the bounds already obtained on the sequence fhng
are precisely what is needed to deduce a strong form of stability for the time�

inhomogeneous chain �v
n

�
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Lemma B��� There is a constant B
 dependent only on � and 	 such that for
all x and n�

E
vn��

x �n � ��� � B
�V��x � ��

Proof� For n �xed denote

M�t 
 hn���t���t� t� �

t��X
i��

c���i� � � t � n� ��

We show here that �M�t�Ft is a supermartingale� with Ft 
 ����� � � � ��t� t � ��
For each � � t � n�

E
vn�� �M�t� � j Ft� 
 E

vn�� �hn�t���t� � j Ft�� �t� �� �

tX
i��

c���i


 Pn�thn�t���t � �t� �� �

tX
i��

c���i


 hn�t�����t � cn�t���t � gn�t��� �t� �� �
tX

i��

c���i

� M�t�

where we have used the bounds gt � �� cw � c� This establishes the supermartingale
property� Now let � 
 �� � n� and apply the optional stopping theorem to obtain
the bound

E
vn��

x

h
hn���� ���� �

���X
i��

�c���i � �
i

 E

vn��

x �M��� �M�� � hn���x � B��V��x � ��

Since we also have hk�x � ���	 for all x and k� it follows that

E
vn��

x

h���X
i��

�c���i� �
i
� B��V��x � � � ��	�

Using the de�nition of S� we then obtain

�

�
E
vn��

x

h���X
i��

c���i
i
� B��V��x � � � ��	 � �Ev

n��

x

h���X
i��

�lS����i
i
�

Exactly as in the proof of Lemma A�� given in Theorem ������� of �MT��� we may

deduce via Assumption �A� that Ev
n��

x �
P���

i�� �lS����i� � ��	� The lemma then
follows with B
 
 ��B� � ���	� ut

For x � X let !g�x 
 lim supn�� gn�x� and g�x 
 lim infn�� gn�x�

Lemma B�	�

!g�x � !g��� x � X�

Proof� Let m�t 
 gn�t����
vn���t� The adapted process �m�t�Ft is a

submartingale since by Lemma B���

E
vn�� �m�t� � j Ft� 
 Pn�tgn�t���t � gn�t�����t 
 m�t�
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From the optional stopping theorem with � 
 �� � n we have Ev
n��

�m��� � m���
or

E
vn�� �gn��������� � gn���x�

For any k de�ne !gk�x 
 supi�k gi�x� so that !gk�x� !g�x as k ��� Letting sn
denote the integer part of n�� we then have from the previous bound

gn���x � E
vn�� �!gsn�����l��� � sn� � �Ev

n��

��l��� � sn�


 !gsn��P
vn��

x ��� � sn � �Pv
n��

x ��� � sn�

Since Pv
n��

x ��� � sn � ���nEv
n��

x �� � � ���nB
�V��x � �� we may take limit
supremums of both sides with respect to n to obtain !g�x � !g��� ut

Lemma B�
� If gni��� !g��� i��� then for any integer t�

gni�t��� !g��� i���

Proof� The proof is similar to an argument given in �Cav���� However in the
present setting we do not know if the sequence of functions fgng is bounded from
below�

It is enough to prove the result for t 
 �� By taking a further subsequence
if necessary we may assume that there is a kernel P and a function g such that
Pni���x� y � P �x� y and gni���x � g�x as i � � pointwise� The kernel P is
substochastic� P �x�X � �� x � X� Using the inequality Pni��gni�� �� � gni��
and Fatou�s Lemma then gives

!g�� � lim sup
i��

X
y�X

Pni����� ygni���y

�
X
y�X

lim sup
i��

Pni����� ygni���y

� Pg �� � P ���X!g���

where in the last inequality we are using the fact that � is maximal� Fatou�s
lemma is applicable because fgng is uniformly bounded from above� It follows
that P ���X 
 � and that g�y 
 !g�� for every y � X for which P ��� y 
 ��
Since P ���� 
 	 by assumption� we conclude that g�� 
 !g��� Since g�� is an
arbitrary limit point of the sequence fgni���� � i � �g the conclusion of the lemma
follows� ut

Lemma B��� i�� !g�x � �� for every x � X�
ii�� limn�� gn�� 
 ���

Proof� We �rst prove �i� From the previous lemma it is enough to show that
!g�� � ��� We show that there exists a sequence of functions fWt � t � �g from X

to R� such that for some B� ���

Wt�x � B��V��x � �� x � X� t � Z���B� 

Pw�Wt �x � Wt���x� cw��x � !g��� x � X� t � Z���B��

Given these bounds� we then have by iteration�

B� �B�P
n
w�V� �x �W��x�

n��X
t��

P t
w�cw� �x � n!g���
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Dividing by n and letting n�� then shows that

!g�� � lim
n��

���n

n��X
t��

P t
w�cw� �x 
 ���

as claimed�
To prove that such a sequence exists� �rst consider the inequalityPw�hni�t �x �

hni�t�� � cw��x � gni�t��� Letting W
�i
t �x 
 � � hni�t�x� x � X� we obtain for

each i�

Pw�W
�i
t �x �W

�i
t���x� cw��x � gni�t��� x � X� t � Z��

Assume that fnig is chosen so that gni�� � !g�� as i � �� Then by choosing

a subsequence if necessary we may �nd functions fWtg with W
�i
t �Wt pointwise

as t��� Since the functions fhtg are bounded as desired� the inequalities �B� �
�B�� then follow from Lemma B�� and the Dominated Convergence Theorem�

To prove �ii� consider any limit point g�� of the sequence fgn��g� We can
assume without loss of generality that there are functions g� h on X� a feedback law
w� and that there is a subsequence fmig of Z� with gmi

�x � g�x� hmi
�x �

h�x� wmi
�x � w�x� i � �� for all x � X� From Fatou�s Lemma we then

have Pwh � h � cw � g� and from the Comparison Theorem A�� we then have
�w�cw � ��g � ��� where the last inequality follows from �i� Since �w�cw � ��

by optimality� it then follows that g�x 
 �� for a�e� x � X ��w�� Lemma B�� �iv
completes the proof� ut

Lemma B���� Under �A�	��A�	 the solution h� to the ACOE is unique up to
an additive constant over all solutions which are bounded from below�

Proof� To begin we note that under �A���A� there is a minimal relative
value function given by

hmin�x �
 min
w

E
w
x

h����X
k��

�c��k� wk��k � ���
i

where the minimum is over all Markov policies� As in �BM��� we may show that
hmin solves the optimality equation

min
a�A�x

�Pahmin �x � c�x� a� � hmin � ���

It may be shown that hmin is bounded from below as in Lemma B��� By Lemma A��
it then follows that this must be an equality� Let wmin be any optimizing policy in
the minimization above so that

Pwminhmin 
 hmin � cwmin � ���

Note that the feedback law wmin must be regular�
If h is any solution to the ACOE for which infx�X h�x 
 �� then by LemmaA��

we have for some regular policy w�

h�x� h�� 
 E
w
x

h����X
k��

�cw��k� ���
i

By minimality of hmin it then follows that the function s de�ned by s�x 
 h�x�
h�� � hmin�x� x � X� is positive�valued� Moreover we have Pws � s� so by
Lemma A�� the function s must be constant� ut
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Lemma B���� Under �A�	��A�	�

hn�x � h��x� h���� as n���

Proof� Let h be any pointwise limit of the fhng� The function h is �nite
valued by Lemma B��� Then using Fatou�s lemma we may �nd a limiting feedback
law w such that Pwh � h� cw � ��� By Theorem A�� and �A� it follows that this
is an equality

Pwh 
 h� cw � ����B��

Thus by the previous lemma we have h�x 
 h��x � h���� ut
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