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ABSTRACT. This paper considers in parallel the scheduling problem for multi-
class queueing networks, and optimization of Markov decision processes. It is
shown that the value iteration algorithm may perform poorly when the algo-
rithm is not initialized properly. The most typical case where the initial value
function is taken to be zero may be a particularly bad choice. In contrast, if
the value iteration algorithm is initialized with a stochastic Lyapunov function,
then the following hold

(i): A stochastic Lyapunov function exists for each intermediate policy,
and hence each policy is regular (a strong stability condition).

(ii): Intermediate costs converge to the optimal cost.

(iii): Any limiting policy is average cost optimal.

It is argued that a natural choice for the initial value function is the value
function for the associated deterministic control problem based upon a fluid
model, or the approximate solution to Poisson’s equation obtained from the
LP of Kumar and Meyn. Numerical studies show that either choice may lead
to fast convergence to an optimal policy.
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1. Introduction

This paper presents a convergence proof for the value iteration algorithm for
general Markov decision processes, and also develops methods for the application of
this algorithm to the synthesis of optimal scheduling policies for multiclass queueing
networks. The latter results are based upon the close connection between optimiza-
tion of a network, and optimal control of an associated fluid network model.

Over the past ten years there have been several successful attempts to approxi-
mate a network model with a more tractable process to reduce the complexity of the
control synthesis problem. The recent paper [MSS96] treats the optimal control of
a multiclass queueing network by relating this problem to the optimal control of an
associated diffusion process in heavy traffic, following the work of [HW89]. Meth-
ods for translating an optimal policy for the Brownian system model back to an
implementable policy for the discrete-stochastic model are introduced in [Har96].
In [Mey95, Mey96] it is shown that the value function for the network scheduling
problem can be approximated by the value function for an associated fluid limit
model. Some heuristics based upon this result are developed in [Mey97] to trans-
late a policy for the fluid model back to the original discrete network. The results
reported here provide a more exact approach to translating an optimal policy for
the fluid model back to the original problem of interest.

We begin with the analysis of a general Markov Decision Process model with
one step cost ¢ and state process ® = {®(¢) : ¢ > 0} evolving on a countable
state space X. Our goal is to solve the average cost optimal control problem by
constructing a stationary policy w with minimal average cost

(1.1) J(w, x) :zlinmﬁs;ip%i: Ex[c(®(t), w(P(2))].

Value iteration is perhaps the most common approach in practice to constructing an
optimal policy. The idea is to consider the finite time problem with value function

n—1

(1.2) Vo (2) = minE, {Z c(®(t), a(t)) + Vo(@(n))|,

t=0

where {a(t) : t > 0} is a sequence of actions determined by some policy, and the
minimum in (1.2) is with respect to all policies. The function V5: X — Ry is a
penalty term - the standard value iteration procedure uses 1 = 0. Letting »”
denote a policy which attains this minimum, it may be assumed without loss of
generality that there is a sequence of state feedback functions w*: X — A, k > 0,
such that for any n, the policy ™ is a Markov policy whose first n actions may be

expressed
”ﬁ),n—l] = (w""H®(0)),...,w"(®(n — 1))).

The value iteration algorithm is then the standard dynamic programming approach
to recursively computing an optimal sequence (V,,,w" :n > 1).

Various convergence proofs and counterexamples have appeared since the early
sixties, with most of the general positive results holding in the case of finite state
space models only. A thorough survey is found on pages 429-433 of [Put94]. In
early papers the analyses typically focus on the differential cost function g, (z) =

Vot1(2) — Vi, (x) and the normalized value function h,(z) = Vi, (2) =V, (), where 8
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is some distinguished state. Under various conditions one may show that as n — oo,
possibly through a subsequence,

In = e, hp—h, W' = w*

where 7, is the average minimum cost, and the triple (7., w*, k) is a solution of the
average cost optimality equation (see (2.1,2.2) below).

Recently there has been a resurgence of interest in understanding the algorithm
when the state space is unbounded. The paper [Cav96] treats countable state space
models where the state space is a single communication class under any stationary
policy. Convergence holds under two natural assumptions: the stabilizability con-
dition that the steady state cost is finite for some stationary policy; and the almost
monotone condition on the cost function of [Bor91]. The irreducibility assumption
was relaxed in [CF95] by imposing a global Lyapunov function condition similar
to that of [Hor77]. The global Lyapunov function condition is expressed as,

(1L3)  EP[V(®(+1) | 8(1) = 2] < V(2) — c(w, w(a) + bls(x), L€ Ly,

where V' is a positive function on the state space, b < oo, and S is a finite set, or
more generally a compact set. It is assumed in [CF95] that there exists a single
function V such that (1.3) holds for every Markov policy w, where S = {0} is a
singleton. Under this assumption it may be shown that E¥[r] is uniformly bounded
over all policies, for each initial condition x, where 7y is the first return time to the
state 8 € X.

In the paper [Sen96], conditions are determined under which the optimal cost
7. is computable through the limit n. = limy o Vo(2)/n, # € X. The analysis
is based upon the discounted control problem, and the use of a truncated value
function to avoid the difficulties associated with unbounded costs. The paper be-
gins with some implicit bounds on the relative discounted value function for the
truncated control problem. These assumptions are related to more readily verifi-
able conditions such as the near monotone condition of [Bor91], and the Lyapunov
condition of [Hor77]. Hence this paper captures some aspects of the results of
[CF95, Cav96].

None of these contributions are applicable in general for multiclass network
models since both the Lyapunov condition and the irreducibility condition fails
for many models. A contribution of the present paper is to establish conditions
for convergence which are valid in the networks context. Both the assumptions
imposed and the methods of analysis are based on the recent treatment of the
policy iteration algorithm of [Mey95].

The major contribution of this paper is to resolve a significant drawback to the
value iteration approach - it can be extremely slow. On page 385 of [Put94] the
author writes “In average reward models, value iteration may converge very slowly,
and policy iteration may be inefficient in models with many states ...” Indeed, we
have applied value iteration to network models with approximately 50,000 states
where policy iteration is not directly applicable, and we have found that conver-
gence is slow even for very simple models. The explanation in the network case
is easily seen. One is attempting to approximate the relative value function A(x)
by the difference hy,(x) = V,(2) = V,(0). When 1} is taken to be zero, then each
approximation h, is bounded by a linear function of #, and can grow by at most
one in each iteration. The actual relative value function h is equivalent to a qua-
dratic on the state space [Mey95, Mey97], so there is a large mismatch between
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the two functions whenever the state i1s large. For this reason, each of the state
feedback laws {w™} generated by the value iteration algorithm can actually induce
a transient state process ® (see Section 4).

We show in this paper that if the value iteration algorithm is initialized with V4
equal to a stochastic Lyapunov function satisfying (1.3) for just one policy w, then
the value iteration algorithm constructs recursively solutions to a version of the
drift inequality (1.3) for each n. Hence we reach the same conclusion established
for the policy iteration algorithm in the companion paper [Mey95]: the strong
stability condition (1.3) is superfluous when working with the value iteration algo-
rithm because the algorithm automatically generates stabilizing policies. It is only
necessary to find an initial stabilizing policy to initialize the algorithm. Based upon
this observation we prove that the intermediate average costs J(w", ) are finite
for each n, and independent of x; that the average costs J(w”,z) converge to the
optimal cost 7. as n — oo; and that any limiting policy is average cost optimal.

In the network optimization problem the relative value function for the op-
timal policy may be approximated by the value function for the associated fluid
control problem. It is thus natural to use the latter value function to initialize
the value iteration algorithm. A second approach we consider i1s based on com-
puting an approximate solution to Poisson’s equation through the stability LP of
[KM95]. Results from numerical experiments show that either choice may lead to
fast convergence to an optimal policy. We thus arrive at a new way of using the
information gained from solving a deterministic optimization problem to solve the
original discrete scheduling problem of interest.

The paper is organized as follows. In Section 2 we present the main results
concerning the convergence of the value iteration algorithm. The assumptions are
satisfied for general multiclass queueing networks of the form described in Section 3.
Methods for constructing suitable initializations for the value iteration algorithm
for the network scheduling problem are described in Sections 4-6. The appendices
contain proofs of the main results and some background theory.

2. Value iteration

Consider a general Markov Decision Process whose state space X and action
space A are countable. Detailed treatments of Markov Decision Processes can be
found in, for instance [Put94, HL95]. We present here a bare-bones description
of the general model.

Associated with each # € X is a non-empty subset A(z) C A whose elements are
the admissible actions when the state ®; takes the value z at time ¢. The transitions
of the state process ® are governed by the conditional probability distributions
{P,(xz,y)} which describe the probability that the next state is y € X given that
the current state is # € X, and the current action chosen is @ € A. A policy w
is a sequence of actions {a(t) : t € Z;} which is adapted, that is, a(¢) can only
depend on the history {®(0), ..., ®(¢)}. We will consider primarily Markov policies
of the form w = {w®(®(0)), w(®(1)), w?(®(2)), ...}, where for each i the function
w! maps X to A, with w'(x) € A(z) for each z. For a Markov policy w we denote
the resulting Markov chain ®" :={®W(t) : ¢ > 0} - we simply write ® if it is clear
from the context which policy has been applied.

A stationary policy is a Markov policy for which w® = w for all 4, for some
fixed state feedback law w. The action w(x) is applied whenever the state takes
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the value z, independent of the past and independent of the time-period. We shall
write Py (%, B) = Py()(x, B) for the transition law corresponding to a stationary
policy w. The n-step transition probabilities are denoted

Py(z,y) =P(@“(n) =y |2¥(0) =), xyeX
We also use the operator-theoretic notation,
Pyh(z) :=E[h(®"(n)) | 2%(0) = «],

where h is any real-valued function on X.
The resolvent kernel 1s defined for a feedback law w as

Ky = ZQ—UHW
t=0

We will occasionally extend this definition to a Markov policy v = (v%,vt,...) via
(o]
Ayl‘y _E”[ZQ (t+1)1 :y)}’ x,y € X.
t=0

We assume that a cost function ¢: X x A — [1,00) is given. The average cost
of a particular policy w is, for a given initial condition z, defined as

n—1

J(w, ) : _hmsuplew [c(®Y (1), a(t))].

A policy w* is then called optimal if J(w*, z) < J(w, z) for all policies w, and any
initial state .

A state feedback law w is called regular if the controlled chain is a ¢y-regular
Markov chain, where ¢y, (y) = e(y, w(y)). We say that a policy w is regular if w
is a stationary Markov policy defined by a regular state feedback law. That is, for
some distinguished state 8 € X,

Tg—l

EW {Z cw(q)(t))} < 00, z € X,

t=0

where 7y is the first return time to the state 8. This a highly desirable stability
property for the controlled process. If the feedback law w is regular, then necessarily
an invariant probability measure m, exists such that m,(cy) < co. Moreover, for
a regular w, the resulting cost is J(w,z) = > 7y (y)cw (y), independent of . The
following result is a consequence of the f-norm ergodic theorem of [MT93, Chapter

14].

THEOREM 2.1. For any reqular feedback law w, there exists a unique invariant
probability my,, and the controlled state process ® satisfies ny:=> ¢y (2) Ty (2) < 00.
For each initial condition the average cost is equal to 1y, independent of x, and the
following limits hold:

n

J(w, ) = 1, _nli}n;ogZE Cw(®(1))] :nli_{r;o%z:cw(d)(t)), a.s. [P].
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In view of Theorem 2.1, we denote the average cost J(w) = J(w, x) when the
policy w is regular.

The construction of an optimal policy typically involves the solution to the
following equations

(2.1) bt he(e) = min [e(ea) + Pab ()
(2.2) w*(x) = argminfe(x, a) + Pyhs (2], z e X
a€A(z)

The equality (2.1), a version of Poisson’s equation, is known as the average cost
optimality equation (ACOE). The second equation (2.2) defines a stationary policy
w* (see e.g. [Put94, HL95, ABF*93, Bor91] for further discussion).

The value iteration algorithm, or VIA, is defined inductively as follows. If the
value function Vj, is given, the action w™(x) is defined as

w" (x) = arg min[P,V}, () + ¢(=, a)], z € X

acA(z

For each n the following dynamic programming equation is satisfied,

Vo (0) = cun (1) + PunVia(w) = min (Pubiy (v) + calo))

which then makes it possible to compute the next function w?*?!.
To simplify notation we denote throughout the remainder of this paper

Cn = Cyrn; Ppn=Pyn; K, = Kygn,
and we let E™ denote the expectation operator induced by the stationary policy
w" = (" (B(0)), w” (B(1)), 0" (B(2)), ...
Suppose that 8 € X is some distinguished state, and define
(2.3) hn(x) = Vi(z) — Vi(8); gn(x) = Vg1 (x) — Vi (), reEXnEly.

Then for each n we have the identity Pp,h, = h,, —¢,+9gn, which at least superficially
resembles the ACOE. We show below that the pair {h,, g,} does indeed converge
to a solution {h.,n.} to (2.1), (2.2) under reasonable conditions on the model and
on the initial value function V4.

We assume that at least one regular policy w™
a function Vp: X = R4 and an %7 < oo such that

(24) Po-1Vo < Vg —ep-1 +7.

I exists, so that there also exists

This stabilizability assumption is a generalization of that used in [Cav96] and many
other papers. If the value iteration algorithm is initialized with this function Vj,
then the resulting penalty term in V,,, n > 1, “regularizes” the intermediate policies
to ensure that each is stabilizing, and in the examples considered 1t also appears to
speed convergence.

We assume throughout the paper that there exists a regular, optimal policy
w*, a Py«-invariant probability m,+, and a relative value function h. satisfying
the ACOE with 7. = my»(cy+). The quantities (w”, my+, hs) may not be unique,
but we fix one such triple throughout the paper in our assumptions and in the
analysis to follow. These conditions will be met under the stabilizability part of
Assumption (A1), and Assumptions (A2), (A3) below (the conditions of [Sen86]

may be verified, following the approach of [Mey95]).
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Assumptions (A2) and (A3) are related to the near-monotone assumption of
[Bor91]. We call a function ¢ norm-like if the sublevel set {x : ¢(x) < b} is a
finite subset of X for any finite 6. It is assumed in Assumption (A2) below that
for any “reasonable” policy w, the cost ¢, (#) dominates a norm-like function ¢
on X. Assumption (A3) then imposes an accessibility condition on the sublevel set

So C X defined as
(2.5) Sy ={x :c(x) < 27}

Although this assumption imposes an accessibility condition on all Markov policies,
Assumption (A3) is only used for the optimal policies »”, and the stationary policies
w™, n € Zy. Assumption (A3) is weaker than the Lyapunov condition of [CF95].
It is satisfied for the network scheduling problem described in Section 3, and other
storage and routing models found in the operations research area.

Formally, our assumptions are summarized as follows:

(A1): There exists a policy w™?, a function V5 : X — Ry, and j < oo satisfying
(2.4) and for the optimal policy w*,

lim ~ (Pg*vo) (r)=0, zeX.

n—o00 1N

(A2): For each fixed z, the function e(z, -) is is norm-like on A, and there
exists a norm-like function ¢: X — Ry such that for any regular polcy w
satisfying J(w) <7,

cw () > c(x), r € X.

(A3): There is a fixed state 8 € X and a ¢ > 0 such that for any Markov
policy v,

(2.6) Ky(z,0) >4 for all # € Sy,
where Sy is defined in (2.5), and for any action a € A(8),
P,(6,8) > 4.

We will occasionally also assume

(A4): For any regular optimal policy w the controlled chain is irreducible in
the usual sense that

Ky(z,y) >0, z,y € X.
The main results of this section are summarized in the following two theorems.

THEOREM 2.2. For the value iteration algorithm initialized with the function
Vo, suppose that Assumptions (A1)-(A3) are satisfied. Then

(i): For each x the sequences {gn(x)} and {hy(z)} are bounded, and

.1 .
@ = g 00 =
1
lim sup =V, () < lim sup gn(2) < 1., xr € X.
n—oo N n—00

(i1): Each intermediate state feedback law w™ is regular, and each V,, serves as
a Lyapunov function for the nth policy:

PV, <V, —cp+7, n > 0.
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(iii): The average cost J(w™) converges to the optimal cost:
J(w™) = n. as n — 0o.

1v): Any point-wise limit point of the feedback laws {w" :n € Z 15 reqular
(iv): Any p p + g
and optimal.
O

THEOREM 2.3. Under Assumptions (A1)-(A4) the conclusions of Theorem 2.2
hold, and wn addition, as n — oo,

ho(z) —  ho(z) — ha(8)
gn(z) — s,
1
—Valz) = z e X
n
O

PrOOF OF THEOREM 2.2. The two limits in (i) follow from Lemma B.9 (ii).
The bounds on the two limit supremums follow from Lemma B.9 (i) and the formula

LS 0w = L) - v

The bound in (ii), and hence also regularity, is established in Proposition B.3.
Result (iii) requires the lower bound ¢,, > ¢. From Proposition B.3 and this
lower bound we have m,(c) < 7 for all n, which shows that the probabilities {m, :
n € Zy} are tight. From Proposition B.3 and the Comparison Theorem A.1 we
have 7y (¢ ) < mp(gn) where g, < 7. Since the probabilities {m,} are tight, for any
preassigned € > 0 there exists a finite set C' C X with 7,(C) > 1 —« for all n. Thus,

7—limsup J(w™) > liminf(7 — mn(gn))

> liminf ) () (7~ gn())
> (I=e)m—n).

Since ¢ is arbitrary, this shows that lim sup,,_, ., J(w") < 1, as desired.
Finally, result (iv) is immediate from (i) and Fatou’s lemma applied to the
identity Pph, = hy — ¢n + gn obtained in Proposition B.3. a
Proor oF THEOREM 2.3. The convergence of h,, follows from Lemma B.10.
We may then use the identity ¢, (%) = ¢n(0) + hn41(2) — hn(2) and Theorem 2.2 (i)
to prove that g, (x) converges to n*. The convergence of V,,(x)/n to n* then follows
as in the proof of Theorem 2.2 (i). O

3. Discrete and fluid models for multiclass networks

Consider a network of the form illustrated in Figure 1, composed of d single
server stations, indexed by ¢ = 1,...,d. The network is populated by K classes
of customers, and an exogenous stream of customers of class 1 arrive to machine
s(1). A customer of class k requires service at station s(k). If the service times
and interarrival times are assumed to be exponentially distributed, then after a
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suitable time scaling and sampling of the process, the dynamics of the network can
be described by the random linear system,

K
(3.1) Ot+1)=@(t) + > Li(t+ 1)t = eTwi(R(1)),

=0
where the state process ® evolves on X = Zf. The random variable ®;(t) denotes
the number of class ¢ customers in the system at time ¢ which await service in buffer ¢
at station s(i). The function w: X — {0,1}¥+! is the policy to be designed. If
w;(®(t))1;(t + 1) = 1, this means that at the discrete time ¢, a customer of class
¢ 1s just completing a service, and is moving on to buffer ¢ + 1 or, if i = K, the
customer then leaves the system. The set of admissible control actions A(x) when
the state is z € X is defined as follows for @ = (aq, ...,ax)" € A(z) C {0, 1} 5+

(i): ap =1, and for any 1 <i < K, a; =0 or 1;

(i1): Forany 1 <i< K, 2; = 0= a; = 0;

(iii): For any station o, 0 < Zi:s(i):a a; < 1.

(iv): For any station o, 37, ;= ai =1 whenever 37, y_ #; > 0.
Condition (iv) is the non-idling property that a server will always work if there
is work to be done. With the one step cost ¢, (z) = |2 := )", #;, the non-idling
condition may be assumed without any loss of generality [Mey97].

A 0) @,(0)
¥ ooe | M, —— 000 UL,

Machine 2

Machine 1
(1)

— Uslleoee

FIGURE 1. A multiclass network with d = 2 and K = 3.

The random variables {I(¢) : ¢ > 0} are i.i.d. on {0, 1}5+L with P{3>", L;(t) =
1} = 1, and E[J;(¥)] = p;. For 1 < i < K, p; denotes the service rate for class
¢ customers, and for i = 0 we let po := A denote the arrival rate of customers of
class 1. For 1 < i < K we let e’ denote the ith basis vector in R¥ | and we set
e? = B+ := 0. It is evident that these specifications define a Markov Decision
Process whose state transition function has the simple form,

Pz, +ett —¢) = a, 0<i<K.

K
Po(z,z) = 1-— Zﬂiai.
0

We assume throughout the paper that the usual load conditions are satisfied

A
3.2 - 21, 1<o<d
(3.2) Po = Z Hi -
i:s(i)=0o
For concreteness we consider exclusively the one step cost ey (z) = |z]|. Tt

is now known that for a network model with this cost criterion, regularity of a
stationary policy w 1s closely connected with the stability of an associated fluid
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limit model [Dai95, DM95]. For each initial condition ®¥(0) = = # 6 of the
controlled chain " we construct a continuous time process ¢7(t) as follows. If |z ¢
is an integer, set

0°(8) = 78" (ol0)

For all other ¢ > 0, define ¢”(¢) by linear interpolation, so that it is continuous and

piecewise linear in . Note that |¢”(0)| = 1, and that ¢” is Lipschitz continuous.
The collection of all “fluid limits” is defined by

E::ﬂ{¢x:|x|>n}

n=1
where the overbar denotes weak closure. The process ¢ evolves on the state space
Rf. We shall also call £ the fluid limit model, in contrast to the flusd model which
is defined as the set of all continuous solutions to the differential equation

K
(3.3) %(b(t) = Zpi[ei'l'l — e'ui(t), a.e. t € Ry,
=0

where the function u(t) is analogous to the discrete control, and satisfies similar
constraints [CM91].
The fluid limit model £ is called L,-stable if

lim sup E[|¢(t)|F] = 0.
tim sup ElJo(0)]
It is shown in [KM96, Mey97] that Lo-stability of the fluid limit model is equiv-
alent to a form of c-regularity for the network:

THEOREM 3.1. The following stability criteria are equivalent for the network
under any nonidling, stationary Markov policy w.

(1): The drift condition holds
(3.4) PV (2) < V() — || +7,  zeX,

where 7 € Ry, and the function V: X — Ry 1s equivalent to a quadratic in
the sense that, for some v > 0,

T4yl < V() <1+ z € X

(i1): For some quadratic function V,
o6
EC[S el < V), rex
n=0
(iii): For some quadratic function V and some v < oo,
1 S o 1
¥ Z E. [|®(n)]] < NV(l‘) +~, forallx and N > 1.
n=1

(iv): The fluid limit model L is Lo-stable.
(v): The total cost for the fluid limit L is uniformly bounded in the sense that

sup E{/OOo lo(T)] dT} < 00.

PEL
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Using Theorem 3.1 it is shown in [Mey95] that the optimal control of a net-
work and the optimal control of the fluid model are also related. As an illustration,
consider the three buffer example illustrated in Figure 1. We have taken the pa-
rameters

(3.5) A=0.1429; gy =0.3492; ps=0.1587; pz = 0.3492

so that py = A/p1 + A/ps = 9/10, and pa = A/p2 = 9/11. The optimal policy for
the fluid model is illustrated in Figure 2. It can be defined succinctly as
Serve buffer one if and only if x5 = 0, or #7 > 23— 1+ (l(z2 = 0))7L.

The form of the policy is logical: If the second buffer is non-empty, then the last
buffer receives exclusive service. When the second buffer x5 1s empty and 7 > z3
then, because service at buffer two is slow, the first buffer releases fluid to avoid
starvation at the second machine.

The optimal policy was computed for the stochastic model with the perfor-
mance index

Jole) =+ S E@ ()]

To compute the policy numerically we used value iteration, terminated at n =
7,000. The buffer levels were truncated so that x; < 45 for all «. This gives rise to
a finite state space Markov Decision Process with 45% = 91,125 states. In Figure 3
we see the result of this computation. Again there i1s a roughly linear or affine
switching curve - buffer one is served provided that buffer two is small, and the
population at buffer one is reasonably large compared with that at buffer three.
The policy illustrated in Figure 3 is closely approximated by the formula
Serve buffer one if and only if x5 = 0, or 21 > 3 —29+ 10exp(22/2).

The fluid limit of this approximation is precisely the optimal fluid policy illustrated
in Figure 2.

4. Initialization of the VIA

For the optimal scheduling policy the relative value function h, is equivalent
to a quadratic on X = Zf in the sense that for some v > 0,

ylel? <(h(x) — ha(8) <y Hel?, 2 EX,

where 6 is the vector of zeros in X [Mey95]. However, in the standard VIA, for
each n

Va(@) = minEY [nz__:l ()]

n—1

< minE |y (12(0)]+1)]
t=0

< nfel+ 0,

where we are using the skip-free property of the network that [®(t+1)| < |®(¢)|+1,
t € Z4. Tt follows that, for each n, the function h,(2) = V,(2) — V,,(0) is bounded
from above by a linear function of #. Hence the approximation hy(z) & h.(z) is
grossly inaccurate for any finite n when the state x is large.
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X1

X,> 0
X,= 0 X3

F1cURE 2. Optimal policy for the fluid model with ps = 9/10 and
p1 = 9/11. In this illustration, the grey regions indicate those
states for which buffer three is given exclusive service.

X1

= Serve buffer 3

My = M3

X,=0 X3

FicUrE 3. Optimal policy for the discrete network. There is an
approximately affine switching curve which is similar to the linear
switching curve found for the fluid model policy illustrated in Fig-
ure 2.

As one might then expect, for any n the actions w"(z), # € X, defined by
the feedback law w” may be far from optimal when the state z is large. We
illustrate how the feedback laws {w”} generated by the standard VIA can give
poor performance with the following two examples.

Example 1: a simple queue with controlled service. Here we describe a
model which satisfies all of the conditions of [Cav96]. Hence with V5 = 0, the VIA
does converge to give an optimal policy. However, for each iteration n the state
feedback law w™ induces a transient Markov chain @, so that J(w") = oc.
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The state space is taken as X = Zy, and the action space is A(z) = {0,1},
z # 0, with A(0) = {0}. There is an arrival rate A and a variable service rate p
which takes on the small value p1, or the larger value py + g9, depending upon the
control. We assume that A 4+ g1 + g2 = 1, and define the transition law as follows

Pyz,z+1) = A
Pa(e,o=1) = p1+pea
Py(e,2) = (1 —p1 — poa—A).

That is, if w(x) = 1 then a customer receives maximal service during the current
time slot when there are @ customers in the queue. Assuming that p = A/(p1+p2) <
1, the feedback law defined as w®(z) = 1, # > «, is regular for any « > 1, and the
optimal policy is of this form for some a. We assume that A/uy > 1, so that the
lasy server defined by w(z) = 0 gives rise to a transient chain @.

Suppose that ¢, () = (1 + w(x))z, so that the one-step cost of serving a
customer is proportional to the total number of customers in the system. Then for
the standard VIA it may be shown inductively that there exists {«, : n € Z;}
such that w"(x) = 0 for all # > a,,. Since no services are initiated when x > a,, it
follows that the chain ®¥" obtained with the stationary policy w" is transient for
any n, although the policies {w™ : n > 0} do converge pointwise to give an optimal
policy.

To obtain a version of the VIA which generates regular policies, initialize the
algorithm with the function Vp(z) = «?/(u1 + p2 — A). With the feedback law
w(z) = Nz > 0) we do have P,-1Vp < Vo — cy-1 + 7 for some 7] < co. It
follows from Theorem 2.2 that each successive feedback law w” is regular, and that
the policies converge to an optimal policy as n — oco. In fact, it may be shown
directly by induction that w”(z) = 1 for all n and all # sufficiently large, which
immediately implies that w” is regular. We also note that in this case the function
hn(2) = Vi (2) — V,(0) is equivalent to a quadratic for all n > 0. Hence, when
properly initialized, the VIA returns the correct form of both the optimal policy
and the relative value function for large x, and only modifies the intermediate
policies for z in a finite subset of X. a

Example 2: The Rybko-Stolyar Model. The next example treats a model
introduced concurrently in the papers [RS92, KS90]. Consider the network illus-
trated in Figure 4 consisting of four buffers and two machines fed by separate arrival
streams. It is shown in [RS92] that the last buffer-first served policy where buffers
2 and 4 receive priority at their respective machines will make the controlled process
® transient, even when the load conditions (3.2) are satisfied, if the cross-machine
condition A/p2 + A/pa < 1 is violated.

If the VIA is applied to this model with V45 = 0, then one obtains Vi (z) = |z|,
and

Va(@) = || + min(le| + 2X — pows () — parwa(2)).

2

The minimizing feedback law w” is evidently given by

wi(x) = N(zg > 0); wi(x) = N(zq > 0).

We conclude that J(w?) = oo when A/us + A/pa > 1 since this is precisely the
destabilizing policy introduced in [RS92, KS90]. O
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A @,(t) @ (1)
¥ oo0|| My B — ooe|| M, _

Machine 1 Machine 2

DU A D R Hs|[ooe
_\k

FIGURE 4. A multiclass network with d = 2 and K = 4.

These examples show that the standard VIA may return policies which are not
stabilizing, and we have evidence to suspect that convergence may be slow, given
the mismatch between the functions h, and the limiting relative value function h,.
We have conducted numerical experiments to test the rate of convergence of the
VIA for the three-buffer example illustrated in Figure 1 with the parameters defined
in (3.5). Figure 5 shows the results from two implementations of the VIA. In the
first we consider the standard algorithm with Vi = 0. For comparison purposes
we also consider the case Vp(z) = |z|?. This might appear to be a natural choice
since 1t will result in lower values for the terminal cost. The vertical axis is the
approximate value of the steady state cost J(w™), where w” is the stationary policy
obtained at the nth iteration of the VIA. Because the problem is large we cannot
compute this cost exactly, but instead use

1 6,600
J(w™) ~ —— EW™ 1| ()]].
(w™) 6’600; o (2]

In either case we found that it takes several thousand iterations to reach convergence
for this model. The figure shows results from the first 300 steps of the algorithm.
Data was saved for n equal to multiples of ten: n = 10,...,300.

In summary, the standard VIA suffers from two potential drawbacks: interme-
diate policies may perform poorly, and may even give rise to a transient Markov
chain, and the convergence of the algorithm can be slow. In the following two sec-
tions we propose methods to improve this situation by establishing general methods
for constructing a more appropriate initial value function V4. Although in practice
we will never optimize the full infinite dimensional model, the approach described
here may be used even in the finite state space truncated model to speed conver-
gence. We see in the next section that for a network with buffer levels truncated
to 33, the standard VIA requires thousands of iterations for convergence, while the
VIA implemented with an appropriate initial value function converges to the same
level of performance in less than twenty steps, even though the chain possesses

333 = 35, 937 states.

5. Initialization through the fluid model

From Theorem 3.1 (i) and Theorem 2.2 we conclude that the VIA will converge
if the algorithm is initialized with a stationary policy w~! whose fluid model is Lo-
stable, since the network model will then satisfy Assumptions (A1)—(A3) when
initialized with a solution to (3.4). Assumption (A1) will hold since the relative
value function is equivalent to a quadratic for any such policy, and the accessibility
Assumption (A3) holds with 6 equal to the empty state [Mey97]. There are many
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12.6¢

Standard VIA

N V, () =112

12.4p

1221

12

L L L L L J n
50 100 150 200 250 300

FIGURE 5. Convergence of the VIA with V; taken to be zero, and
with Vo(z) = |z|>. The vertical axis is an approximation to the
steady state cost J(w™), and the horizontal axis is n, the number
of iterations of the algorithm.

stabilizing policies which may serve as the initial policy w™! (see [CZ96]). This
leads to several algorithmic approaches to constructing the initial value function
Vo based on the value function for the fluid model. We begin with the following
suggestive proposition. The result (ii) is proven in [Mey95]. For the sake of brevity
we omit the proof of (i).

ProprosiTION 5.1. If the feedback law w gives rise to a network whose fluid
limit model £ is La-stable, then

(i): the function V below is a solution to (3.4) for any b > 1 and all T suffi-
ciently large.

(5.1) V() = blaEY | / el dr|.

(i1): There exists a solution h to the Poisson equation Pyh = h — |&| + n_1,
and the function h approximates the value function V as follows,

(1 —e(jz], T)V(z) < he) < (1 +(|], TV (2),

where £ > 0 and satisfies lim supp_, ., lim sup,_, . e(r,7") = 0.
O

While the function V' given in (5.1) is not easily computable in general, if the
fluid limit model £ is purely deterministic then we may use the limiting function

(5.2) V() = blaf? / Tlemdr, 60) = &

x|
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We can also obtain an approximation to (5.1) based upon a finite dimensional
linear program [DEM96]. If a sufficiently tight approximation to (5.1) is found
then one can expect that (3.4) will hold for this approximation. We illustrate this
approach with the three buffer example illustrated in Figure 1. We have computed
explicitly the function V' in (5.2) for two policies: LBFS, and the optimal policy
illustrated in Figure 2.

w"
12.6¢ Jw)
124 Standard VIA
______ Initialized with optimal fluid value function
22\ Initialized with LBFS fluid value function

12

11.4

11

FIGURE 6. Convergence of the VIA with V, taken as the value
function for the associated fluid control problem. Two value func-
tions are found: one with the optimal fluid policy, and the other
taken with the LBFS fluid policy. Both choices lead to remark-
ably fast convergence. Surprisingly, the “suboptimal” choice using
LBFS leads to the fastest convergence of J(w"”) to the optimal cost
N« &~ 10.9.

Two experiments were performed to compare the performance of the VIA ini-
tialized with these two value functions. The results from two experiments are shown
in Figure 6. For comparison, data from the standard VIA shown earlier is also given.
We have again taken 300 steps of value iteration, saving data for n = 10, ..., 300.
The parameter values (A, p1, o, pu3) are again defined in (3.5). The convergence is
exceptionally fast in both experiments. Surprisingly, the “suboptimal” choice using
LBFS leads to the fastest convergence.

6. Initialization through a linear program

The computation of (5.2) is currently possible only for very simple models. We
present here an alternative initialization of the VIA based upon the stability LP
of [KM95] which is computationally feasible even for networks with hundreds of
buffers.

Since the relative value function for an optimal policy is known to be equivalent
to a quadratic, it 1s natural to attempt to find a quadratic form which gives the
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required negative drift. Let Z denote the set of ordered pairs 7 = {(4,7) : 1 <4,j <
K}. For I €Z and « a vector of dimension |Z| = K? we define

hi(x) = 2z, ha(x):ZthI(x).

IeZ

Given a state feedback law w, let z = z(x) denote the vector in Rl whose Ith

component is given by zy = w;(x)x;, I € Z. For any non-idling policy w, the cost

can be expressed in terms of the vector z as |z| = ¢” 2z, where ¢ € RI?l is the vector

whose Ith component is defined as ¢y = W(s(7) = s(j)).
For any I there exist vectors ¢/ € RIZl, 47 € RX and a constant B such that
Pyhr(x) = hr(z) — AT + 'yITw(J:) + BL.

The vector ¢! is defined as follows. Let e’ be the vector that is zero except for a
one in the I = (7, j)th position, so that I, = zr. Then for i = j, i = j+ 1 and
i > j 4 1, the vector ¢/ = ¢¥ is given by
2/”_162'—1,2' _ 2/”62'2"

pi_pet LIl et g Ni+162+1’2, and

ﬂi_lez—l,] _ ﬂielj +/ij—16‘7_1’l _/ije‘“
respectively. In addition, the non-idling constraint may be expressed as a linear
inequality constraint on the variables z through the expression

Z Zik > Z Zi ks 1<o<d, 1<k<K.
i:5(1)=s(k) i:s(i)=0o

Letting d”* denote the vector whose (i, j)th entry is defined as
—1 if (i) = s(j) and j = k;
d;f =<+41 ifs(i)=cand j=k

0 otherwise,

this constraint may be expressed dokT <0,1<0<d, 1<k<K. Fora e Rf2
and § € Rff_ X Rf define the two vectors

d K
c® = E arel d? = E E ﬁgykdg’k.
IeT o=1k=1

The stability LP of [KM95] can be interpreted as follows: Find o € RfQ, 8 €
Rff_ X Rf such that

(6.1) 4+ d° >,

where inequalities between vectors are interpreted component-wise. If this lower
bound holds, then we obtain the desired Lyapunov drift inequality

Puho (2) < ho(z) = (¢ +d°) e +~v*Tw(x) + B*
< ho(z) = |z| + v T w(z) + B2,
where v* = S ayy!; B* =Y ayBY.
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There can be many values of «, 3 satisfying the lower bound (6.1). To find a
value which is best in an average sense, first note that by the Comparison Theo-
rem A.1 we have the steady state bound

(6.2) Er [lof) < Ex,[c*7 2] < Er, [T ] + B,

The right hand side is computed in the construction of the performance LP of
[KK94, DBT92] giving the following formula.

- —2), ifi=j
Ex.,[yijw] + BY = A, ifj=i41,
0, ifj>i+1.

A natural choice of («, ) is a minimizer of the right hand side of (6.2), subject
to the constraint that ¢* + d” > ¢, which gives the best upper bound E, [|z|] <
~*TE, [w]4 B over all such (a, 3). This strong connection between the existence
of a Lyapunov function, and the existence of a bound on steady state performance
is precisely the principle of duality established in [KM96].

If vectors (e, 8) exist which satisfy these constraints, then the simultaneous
Lyapunov condition of Hordijk is also satisfied [Hor77]. Unfortunately, in many
examples of interest it is not possible to find a single quadratic Lyapunov function
suitable for all policies. One such example is the three buffer example given in
Figure 1. For this example, the stability LP of [KM95] is not feasible for certain
service rates, even though the load condition (3.2) is satisfied.

12.6 ‘J(Wn)

12.41 __ Standard VIA
______ Vo (X¥) = xTle

12.2 Vo (X) = xTsz

12

11.8

11.6

11.4

11.2

11

50 100 150 200 250 300

FIGURE 7. Convergence of the VIA with V, taken as a quadratic.
The quadratic i, was found using the stability LP, and the second
quadratic h,, was found through direct calculation. In both cases
we see relatively fast convergence of J(w") to the optimal cost
N« &~ 10.9.
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If the feedback law w 1s specified, then 1t 1s often possible to relax some of the
constraints on «. For example, for the three-buffer model under the LBFS policy
we have z13 = wy(x)xs = 0, so that the constraint on ¢® is relaxed to

cf+df >, (1) #(1,3).

The stability LP was run for this specific example, maintaining the earlier system
parameters (3.5), giving the following Lyapunov function for the model:

15.9231  9.0000 9.0000
(6.3) hoy(2) = 27 Qrz; Q1= 9.0000 9.0000 0
9.0000 0  7.5000

Another quadratic which solves (3.4) is

55.9895 31.6456 24.3439
(6.4) hoy(z) = 27 Qoz;  Qy= [ 31.6456 31.6456 0
243439 0 20.8858

The two matrices are almost multiples of one another; 2 ~ 3.5()1, and in fact
the latter choice gives a correspondingly worse upper bound on E[|«|] through the
inequality (6.2).

Two experiments were performed to compare the performance of the VIA ini-
tialized with these two quadratic Lyapunov functions. The results are shown in
Figure 7. The speed of convergence is not as fast as what was found using the fluid
model to construct Vy, but we see in Figure 7 that it is significantly faster than the
standard algorithm.

7. Conclusions

We have seen that one can obtain excellent steady state performance, even
when the time horizon is very short compared with the size of the state space,
by adding an appropriate penalty term to the finite horizon cost criterion used in
the VIA. For the network scheduling problem two approaches have been described
for constructing a useful penalty term. That based upon a fluid model gives the
best results in the examples considered, but the simpler approach based upon a
quadratic approximation also performs well. Either approach can potentially be
used in the online optimization of a large manufacturing system.

For other control problems it will be necessary to have some understanding
of the right form for the optimal relative value function in order to initialize the
algorithm. One general approach is to apply one step of policy iteration, since the
resulting relative value function is a Lyapunov function satisfying (A1) under mild
conditions on the process (see [Mey95]).

It is likely that the modified policy iteration algorithm of [Put94] can be an-
alyzed using a modification of the proof given in the appendix. We are also con-
sidering at sample-path based on-line optimization methods using the approaches
introduced here.
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Appendices

Appendix A. Some stability theory for Markov chains

Here we collect together some general results on Poisson’s equation and regu-
larity for a countable state space Markov chain with transition law P and resolvent

K= Z 9~ (i+1) pi.
=0

Suppose that ¢ is a function on X with ¢ > 1. The Markov chain is called c-regular
if for some 8 € X and every x € X,

To—1

Eo| Y c(@(@)] < oo,

=0
where the first entrance time and first return time to the point 8 are defined re-
spectively as o9 = min(t > 0: ®(t) € 8); 75 = min(t > 1 : () € 6).

A c-regular chain always possesses a unique invariant probability 7 such that

m(c) ::/c(x) m(dz) < oo.
A set S C X is called petite if there is a > 0 and @ € X such that
(A.1) K(xz,0) >4, r €S

If the chain is irreducible in the usual sense then every finite set is petite.

The connections between Poisson’s equation, the Lyapunov drift (1.3), and
regularity are largely based upon the following general result, which is a minor
generalization of the Comparison Theorem of [MT93].

THEOREM A.l (Comparison Theorem). Let ® be a Markov chain on X satis-
Sfying the drift inequality PV <V —c+s. The functions s and ¢ take values in Ry,
and the function V takes values in [0, 00] with V(xg) < oo for at least one xg € X.
Then for any stopping time T

EV@()] +E [Se@m)| < Vi) +E |3 s@)

a

The following result is a consequence of the f-Norm Ergodic Theorem of
[MT93].

THEOREM A.2. Suppose that the conditions of the Comparison Theorem A.1
hold, ¢ > 1, s is a constant, and the set S = {w : ¢(x) < 2s} is petite. Then ®
15 a c-reqular Markov chain with a unique invariant probability w. The function V
satisfies V(x) < oo whenever m(x) > 0.

The proof of the following result is identical to that of Theorem 11.3.11 of
[MT93]. For any probability distribution @ on Zy define the generalization of the
resolvent kernel

Ko(z,y) = Za(n)P"(r,y), z,y € X

We denote the mean of a by m(a) = > na(n).
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LEMMA A.3. For the Markov chain ® or X, suppose that there is a set S C X,
a point 8 € X, and a constant § > 0 such that K,(x,08) > § for x € S. Then for
all x,

E. [Z_: Ts(@(2))| < mfa)/é.

a

Suppose that ® is a c-regular Markov chain with invariant probability 7, and
denote 1 = m(c). The Poisson equation is defined as

(A.2) Ph=h—c+n,

where h: X — R. The computation of h in the finite state space case involves a
simple matrix inversion which can be generalized to the present setting provided
that the chain is e-regular.

Given a function s: X — [0, 1], and a probability v on X, the kernel s @ v: X x
X — [0,1] is defined as the product s ® v (z,y) = s(z)v(y), =,y € X. Letting v
denote the point-mass at 8, and s = d1lg, the minorization condition (A.1) may be
expressed K > s ® v. Letting G denote the kernel

G= Z(K —sov),
t=0

a solution to Poisson’s equation may be explicitly written as
(A.3) h(x) = GKe(x) =Y (K —s@v)Ke(w),
i=0

where ¢(x) = e(x) — n(c), provided the sum is absolutely convergent [GM96,
Mey95].

The paper [GM96] uses these ideas to establish the following sufficient condi-
tion for the existence of suitably bounded solutions to Poisson’s equation. Define
the set S by

(A.4) S={z:Ke(x) <m(c)}.
If the chain is positive recurrent we have 7(S) > 0.

THEOREM A.4. Suppose that the Markov chain ® is positive recurrent. As-
sume further that n = [ e(x) n(dz) < oo, and that the set S defined in (A.4) is
petite. Then there exists a solution h to Poisson’s equation (A.2) which is finite for
every x© € X satisfying w(x) > 0, and is bounded from below everywhere:

inf h(z) > —oc0.
zEX

If ® is also c-regular then h can be taken as (A.3), which satisfies the bound

he) SdiE:| Y e@(n)],  weX,

where di is a finite constant. a

Uniqueness of the solution to Poisson’s equation is established in [Mey95] using
the previous lower bound.
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THEOREM A.5. Suppose that the Markov chain ® is positive recurrent, that
n=m(c) < oo, and assume that S defined in (A.4) is petite. Let g be finite-valued,
bounded from below, and satisfy

Pg<g—c+n.
Then ® s c-reqular and for some constant b,

(i): g(x) = GKc(x) + b for almost every x € X [r].
(i1): g(z) > GKc(x) 4+ b for every x € X.

Closely related is the following

LEMMA A.6. Suppose that ® s c-reqular with invariant probability m, and sup-
pose that z: X = R is bounded from below, and is superharmonic: Pz < z. Then

(i): z(x) = w(2) for almost every x € X [r].

(i1): z(x) > 7(z) for every x € X.

Appendix B. Convergence of the value iteration algorithm

We present here proofs of our main results. Throughout this section we assume
that (A1)-(A3) are satisfied, even when this is not mentioned explicitly.

Central to our analysis is the incremental cost g, and function h,, defined in
(2.3). In the standard version of the VIA where V = 0, the functions {g, : n € Z;}
are positive-valued for each n, but may be unbounded. In the present case we
find that the opposite situation arises. When V4 is a Lyapunov function for some
policy, the functions {g,} are strictly bounded from above, but may be unbounded
from below. This is a desirable situation since an upper bound on the sequence
{9n : n € Zy} permits us to conclude that the each of the stationary policies
{w™ : n € Zy} is regular. These results are summarized in Proposition B.3. We
first require the following two lemmas.

LEMMA B.1. Suppose that for the state feedback law w there exists a solution
V: X = Ry to the inequality

(B.1) P,V (x) <V(z)—|z|+7, z e X
Then the controlled chain has the following properties:

(1): The feedback law is regular, and hence the controlled chain has a unique
wmvartant probability ., .
(i1): There exists a constant By depending only on 7 and § such that

EW [Z c(@(t))} <B(V(z)+1) zeX

(iii): Ny = my(cw) < 7.

(iv): 7y (0) > dmy(So) > 0.

(V): V(e) V() > a5, zeX.

ProoF. From (B.1) and the definition of Sy we obtain the inequality

PV (z) < V(x) — Le(x) +7,



22 RONG-RONG CHEN AND SEAN MEYN

where ¢(z) = |#|. Applying the Comparison Theorem A.1 then gives

(B.2) %E;U [mic(@(t))] < V(z) - V(6) +E¥ [i s, (9())].

From (A3) the minorization condition (2.6) holds for K:
(B.3) Ky (2,0) > 8lg,(x) xr € X.
Applying Lemma A.3 then gives

Toe—1
EW [Z c(@(t))] < 2V (x) + 277/0.
t=0
This proves (ii) with By = 24 27/J. Result (i) and (iii) follow immediately from
(i) and the Comparison Theorem.

To prove (iv) observe that m,(¢) < 1, < 7. Hence the sublevel set Sy must
have positive my,-measure. From the inequality (B.3) we can invoke invariance to
show that m,(8) > dmy, (So) > 0.

Finally, (v) also follows from (B.2) and Lemma A.3:

Toe—1

0< V(e) = V(O) +EX [ D N, (@(t)] < V() = V(6) +7/6.

Let 7, = supyex gn(2) and n = infoex gn ().

LEMMA B.2. For each n € 74,

(1): Pat19n(2) < gnt1(2)

(ii):n, <n, .,

(iii): gn41(z) < Pogn(x)

(iv): M1 <7, <77

ProoOF. Result (i) follows from the bound V41 = PV, +¢n < Prg1 Vi +cnt1,
as shown here:

v

Vn+2 - (Pn+lvn + Cn+1)
= Pn+lvn+1 + Cn4+1 — Pn+lvn — Cn+41
= Pn+1gn~

In+1 = Vn+2 - Vn+1

To prove (ii), we apply (i) and the definition of n.:
Nyr = I0f gngr(2) 2 10f Pogagn(e) > yig(gn(y) =7,
We now prove (iii). First observe that
PVasi = Pa(Vo+9n) = PV 4 Pogn = Vg1 — o + Pagn.
From the definition of {1],} we then have
Vate = PagiVag1 + o1 < PaVaga + ¢ = Vi + Pagn,

from which the result follows. Result (iv) then follows immediately, as in (ii). O

We may now establish the desired stability properties of the VIA under (Al)-
(A3).

ProrosiTION B.3. The policy w” satisfies, for each n,
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(i): The following identity holds for all «:
(B.4) PoVi(z) = Vi (2) — en(®) + gn ().
(i1): The sequence {g,, : n € Z1} is uniformly bounded from above:

(B.5) supgn(z) <7,  x€X neZy.
z€X

(iii): The chain ®" is ¢,-regular, and there exists a constant depending only
on § and 7 such that for each n,

Tg—l

En [Z cn(@(t))} <Bi(Va(z)+1), zeX

t=0

(iv): The stationary policy w" is regular with unique invariant probability 7, ,
and the invariant probability satisfies

J(W") = n(en) <7y
PRrROOF. Result (i) is essentially the definition of V;,, g,: For each n,
PV, = n+l1 — Cn = Vi _Cn+(vn+1 _Vn) =V, —Cp+ Gn-

Result (ii) follows from Lemma B.2, and (iii) directly from Lemma B.1. Result (iv)
follows from (ii), (iii), and the Comparison Theorem applied to (B.4). a
An application of this proposition and Lemma B.1 gives a lower bound on the

sequences {gn}, {hn}:
LEmMMA B.4. Foralln € 7.,
gn(0) > —=(0/3)  ha(z) > —(0/9), € X.

ProoF. The lower bound on h, follows immediately from Lemma B.1 and
Proposition B.3. We then have,

O
These bounds can now be used to establish a uniform upper bound on {h,}.

LEMMA B.5. There is a finite constant By, independent of n, k or ¢, such that
ho(z) < Ba(Vi(z)+1), 0<k<nzeX

Proo¥F. It is enough to prove the result for & = 0 since we may treat the kth
step of the algorithm as a new starting point. We have from minimality of V,,, for
any n € Zy,

Va(z) < B [(i co(®(1)) + Vo(q)(n))) {7y > n)]

t=0

bl

+ E? [(TGZ_: co( (1)) + Vn_Te(H)) I(m < n)

t=0
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where EY is the expectation operator obtained with the policy w”.

Vi (8) from both sides then gives

Subtracting

1

ha(z) < B [(i co(®(1)) + Vo(q)(n))) {7y > n)]

(B.6) PR [Z_ co(®(1))

+ B [(Vaer, (8) = V0 (8)) U(rs < )]

We now proceed to bound each of these terms. First, letting L, () denote the first
term on the right hand side of (B.6), we have

Ln(z) = E (Z_: co(®(t)) + Vo(<1>(n))) Iy > n)]
= E° (Z_: co(®(t)) + E°[Vo(@(n)) | ©(0),..., ®(n — 1)]) I(ry > n)]
< E ( " ol @(1)) + (Vo(b(n = 1)) = eo(b(n = 1) +ﬁ)) I(ry > n)]

< Lnoa(z) 40P {1 > n | B = x).
Hence by iteration we have for all n and =,
Ln(x) < Lo(x) +7E; (7]
= Vo(x) +7E[m).
Proposition B.3 (iii) combined with this inequality then gives L,(z) < Vo(z) +

The second term in (B.6) is also bounded using Proposition B.3 (iii):

E? [Z_ co(®(1)

t=0

To bound the final term, note that by Lemma B.4, for any n > 7,
n—1

Viera (0) = Va(8) == D gx(6) < (/).

k=n—7g
The third term on the right hand side of (B.6) is thus again bounded by Proposi-
tion B.3 (iii):
B [(Va—r, (8) = Va(8)) U(re < n)] < (71/0)Ex[re] < (7/8) Bu(Vo(x) + 1).
Thus each of the expectations on the right hand side of (B.6) is bounded as desired,
From the optimality equations we have for all n € Z; and z € X|
Pabn (2) = b1 (2) = ea(z) + g (6).

This identity together with the bounds already obtained on the sequence {h,}
are precisely what is needed to deduce a strong form of stability for the time-
inhomogeneous chain &% .
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LEMMA B.6. There is a constant Bs dependent only on 7 and § such that for
all x and n,

EV"" [n A 1] < Bs(Vo(x) + 1).

Proor. For n fixed denote
M(t) = b1 (1)) — 7+ Y _e(®(i), 0<t<n+l,

We show here that (M (t), F;) is a supermartingale, with 7y = o(®g, ..., ), t > 0.
For each 0 <t < n,

EVC T M+ 1) | F] = BV (s (®t+ 1) | F] = (t+ 1)7F Z

Pn—thn—t(q)( ) t+1 Zt:

= hpt41(P(1) — en—t(®) + gn-e(6) — (L + )7 + Z

< M),

where we have used the bounds g; <7, ¢, > ¢. This establishes the supermartingale
property. Now let 7 = 79 A n, and apply the optional stopping theorem to obtain
the bound

o+ (®(7) + 3 (e(0(0)) 7)) = €Y

Since we also have hy(2) > —7/§ for all # and k, it follows that

0" M ()] < M(0) < b (@) < Bo(Vo(x) +1).

E7 [ (e(0() = )] < BalVolw) + 1) +7/6,

=0
Using the definition of Sy we then obtain
1 + T—1 + T—1
1 prtl . _ _pntt .
JE- {;Q@(”)} < By(Vo(w) + 1) +77/6 + TEL [Z s, (9()].

Exactly as in the proof of Lemma A.3 given in Theorem 11.3.11 of [MT93] we may

deduce via Assumption (A3) that E”n+l[zzz_01 1s, (®(¢))] < 1/5. The lemma then
follows with Bz = 2(By + 277/4). a
For € X let g(#) = lim sup,,_, o gn (), and g(z) = lim inf,, o gn ().

LEMMA B.7.
g(x) <g(6), reX
PrROOF. Let m(t) = gn_t+1(<1>”n+1(t)). The adapted process (m(t), F) is a
submartingale since by Lemma B.1,

V" [t 4 1) | F = Paceg—e(®() 2 gnrs (2(1)) = mit).
From the optional stopping theorem we have vt [m(7)] > m(0), or

B [gn—r 41 (D(7)] > g1 ().
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For any k define gj (#) = sup;~, ¢:(#), so that gx(z) = g(x) as k — co. Letting s,
denote the integer part of n/2 we then have from the previous bound

gon(@) < BT G (@) <o)+ TET (1 2 50)]
= 3o, (OPY T (ry < 50) +TPYT (1 > s0).

Since P;’Hl(rg > sn) < (2/n)E;’n+1[T] < (2/n)Bs(Vo(x) + 1), we may take limit
supremums of both sides with respect to n to obtain g(z) < g(0). O

LEMMA B.8. If 9,,,(0) = 4(8), i = o, then for any integert,

n.—t(8) = §(8), i — oo.

Proo¥r. The proof is slightly different from that given in [Cav96] since we do
not know if the sequence of functions {g,} is bounded from below.

It is enough to prove the result for ¢ = 1. By taking a further subsequence
if necessary we may assume that there is a kernel P and a function g such that
Pp.—1(z,y) = P(x,y) and gn,—1(2) = g(x) as i = oo. The kernel P is substochas-

tic: P(x,X) < 1, z € X. Using the inequality P,,_19n,—1 (0) > g¢n,(0) and Fatou’s
Lemma then gives

g(@) < lim supZPn,—1 0, 4)9n-1(y)

=00

yeX
< th sup Pn,—1(0, ¥)gn;—1(y)
yeX =00

< Py(6)< P(6,X)5(6),

where in the last inequality we are using the fact that € is maximal. Fatou’s
lemma is applicable because {g,} is uniformly bounded from above. Tt follows
that P(8,X) = 1 and that g(y) = g(8) for every y € X for which P(6,y) > 0.
Since P(6,0) > ¢ by assumption, we conclude that g(8) = g(8). Since g(8) is an
arbitrary limit point of the sequence {g,,-1(8) : ¢ > 0} the conclusion of the lemma
follows. a

LEMMA B.9. (i): g(x) < n* for every x € X.

(i1): limp e gn(0) = 1*.

ProoF. We first prove (i). From the previous lemmait is enough to show that
g(0) < n*. We show that there exists a sequence of functions {W; : ¢ > 0} from X
to R4 such that for some By < oo,

(B.7) Wi(x) < Ba(Vo(z) +1), z €XtE Ly
(B.8) PueWe(2) > Wioi(x) — ey (2) + 4(8), reXteZy.

Given these bounds, we then have by iteration,
By + By PRV, (x) > W= Z Pl ey () +ng(6).

Dividing by n and letting n — co then shows that

g(0) < lim (1/n) ZP cepe (2) =77,

n— 00
t=0

as claimed.
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To prove that such a sequence exists, first consider the inequality Py»hn,—¢ (2) >
hipy—t41 — Cuw () + gn,—:(0). Letting Wt(l)(x) =T+ hpn,—t(x), x € X, we obtain for
each i,

Py W (&) > W () = e (2) + gn—e(8),  weEXtEZy.

Assume that {n;} is chosen so that g,,(6) — g(6) as i — oo. Then by choosing

a subsequence if necessary we may find functions {W;} with Wt(l) — W, pointwise
as t — oo. Since the functions {h;} are bounded as desired, the inequalities (B.7),
(B.8) then follow from Lemma B.8 and the Dominated Convergence Theorem.

To prove (ii), consider any limit point g(8) of the sequence {g,(0}. We can
assume without loss of generality that there are functions ¢,k on X, a feedback law
w, and that there is a subsequence {m;} of Z; with gm,(2) = ¢(x), hm,(z) —
h(z), wm,(z) = w(z), i = oo, for all # € X. From Fatou’s Lemma we then
have P,h < h — ¢y + g, and from the Comparison Theorem A.1 we then have
mw(cw) < m(g) < n*, where the last inequality follows from (i). Since my(cw) > 7*
by optimality, it then follows that g(z) = n* for a.e. © € X [m,]. Lemma B.1 (iv)
completes the proof. a

LemMma B.10. Under (Al)-(A4),
hn(2) = he(z) — ha(8), as n — oo.

ProoOF. Let h be any pointwise limit of the {h,}. The function h is finite
valued by Lemma B.5. Then using Fatou’s lemma we may find a limiting feedback
law w such that Pyh < h — ¢y + 1.. By Theorem A.5 and (A4) it follows that this
is an equality

(B.9) Pyh =h—cy + 1.

For any a € Ry define hy(z) = ho(2) — hi(0) — a, let hpin = min(h, h,), and define
the state feedback function

wmin(x) _ { w£x) if h(z) < hqe()

w*(x)  otherwise .
For any « € X we have, whenever h(z) < hq(z),
Pyminhmin () < Pyminh(z) < h(z) — ey (2) + 14,
and if A(z) > he(x)
Pyminhpin(2) < Pyminhg(2) = ho(x) — cyr (2) + 1.

Thus, for all #, Pyminimin(2) < hAmin(#) — ¢ymin(2) + 7., and by Theorem A.5 and
(A4) again this must be an equality:

(B.10) Pyminhmin () = hmin () — cpmin(2) + 7.

Let s = h — hpin. We have s(z) > 0 for all , with s(8) = 0V a. Moreover, from
(B.10) and the ACOE for hy, Pys < s. Thus by Theorem A.6, the function s is
identically equal to —a. By considering large a > 0 we conclude that i = h,. a
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