
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 10, OCTOBER 2009 2841

Transactions Letters

Performance of Channel Coded Noncoherent Systems: Modulation
Choice, Information Rate, and Markov Chain Monte Carlo Detection

Rong-Rong Chen, Member, IEEE, and Ronghui Peng, Student Member, IEEE

Abstract—This paper investigates performance of channel
coded noncoherent systems over block fading channels. We
consider an iterative system where an outer channel code is
serially concatenated with an inner modulation code amenable
to noncoherent detection. We emphasize that, in order to obtain
near-capacity performance, the information rates of modulation
codes should be close to the channel capacity. For certain
modulation codes, a single-input single-output (SISO) system
with only one transmit antenna may outperform a dual-input and
single-output (DISO) system with two transmit antennas. This
is due to the intrinsic information rate loss of these modulation
codes compared to the DISO channel capacity. We also propose a
novel noncoherent detector based on Markov Chain Monte Carlo
(MCMC). Compared to existing detectors, the MCMC detector
achieves comparable or superior performance at reduced com-
plexity. The MCMC detector does not require explicit amplitude
or phase estimation of the channel fading coefficient, which
makes it an attractive candidate for high rate communication
employing quadrature amplitude modulation (QAM) and for
multiple antenna channels. At transmission rates of 1 ∼ 1.667
bits/sec/Hz, the proposed SISO systems employing 16QAM and
MCMC detection perform within 1.6-2.3 dB of the noncoherent
channel capacity achieved by optimal input.

Index Terms—Noncoherent detection, Markov Chain Monte
Carlo, fading channel, multiple antenna, transmit diversity,
iterative decoding, channel capacity.

I. INTRODUCTION

IN this paper, we study channel coded noncoherent systems
where neither the transmitter nor the receiver has explicit

channel information a priori. There has been much work on
the design of modulation codes and noncoherent detection
algorithms for both single-input single-output (SISO) systems
[1], [2] and multiple antenna systems including the dual-
input and single-output (DISO) systems [3], [4]. However,
only limited research has addressed the effect of information
rates of modulation codes and transmit diversity on the perfor-
mance of noncoherent channel coded systems. For instance,
an interesting question is that, is it safe to assume that a
system with two transmit antennas, as in a DISO system,
automatically performs better than a SISO system with only
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one transmit antenna? Our results show that adding a second
transmit antenna does not always enhance performance.

In this work, we point out an important design criterion for
channel coded system. That is, in order to obtain near capacity
performance, one should choose modulation codes whose mu-
tual information rates are close to the optimal channel capacity.
We provide an explicit comparison of the mutual information
rates between a simple 16QAM modulation code for the SISO
channel, and the unitary space-time modulation (USTM) code
[3] and pilot-symbol assisted modulation (PSAM) code [4]
for the DISO channel. It is shown that the mutual information
rates of USTM and PSAM codes are much lower than that of
the 16QAM code for SISO channel, which implies that they
fall well below the DISO channel capacity. This contributes to
the fact that such DISO systems perform even worse than the
SISO system. To the best of our knowledge, this is the first
work to investigate the effect of transmit diversity for channel
coded noncoherent systems through an explicit comparison of
SISO and DISO systems.

Furthermore, we propose a novel noncoherent detector
based on the Markov Chain Monte Carlo (MCMC) method. It
differs from existing detectors [1][4] in that it does not require
amplitude estimation or phase quantization of the channel
fading coefficient. It also differs from the detector of [2]
that employs linear prediction and per-survivor processing.
We provide detailed performance and complexity comparisons
between the proposed detector and the detector of [4]. The
latter is shown to obtain near-optimal soft information [5].

Noncoherent MCMC detectors are first studied by X. Wang
et. al. [6]–[9] for OFDM systems and multicarrier CDMA sys-
tems. The noncoherent MCMC detector proposed in this paper
originates from coherent MCMC detectors of [10]–[13]. Such
MCMC detectors require neither the burning period nor bit-
counting for computing a posteriori probabilities [11]. They
significantly outperform traditional MIMO detectors such as
the sphere decoding detector. Detailed differences between
the proposed detector and those of [6]–[9] are highlighted in
Section IV.

II. SYSTEM MODEL

We consider a SISO block fading channel where the channel
remains constant for each block of 𝑇𝑐 symbols (where 𝑇𝑐

is called the coherence length), and is independent between
blocks. We model the channel by :

y =
√
𝜌 ℎ s+w, (1)
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Fig. 1. A schematic block diagram of the channel coded noncoherent system.

where ℎ ∼ 𝒞𝒩 (0, 1) is the Rayleigh fading coefficient of a
given block and is a circularly symmetric complex Gaussian
random variable with zero mean and unit variance; the vectors
y, s,w are 𝑇𝑐-dimensional complex vectors representing the
received signal, the transmitted signal, and the noise, respec-
tively; the entries of w are independent and identically dis-
tributed with distribution 𝒞𝒩 (0, 1). The constant 𝜌 represents
the signal-to-noise ratio (SNR), assuming that the average
power of the transmitted signal s is normalized such that
𝐸[s†s] = 𝑇𝑐, where † denotes the Hermitian operator. Given s,
the noncoherent conditional probability density function (pdf)
of y is given by [14]:

𝑝(y∣s) = 1

𝜋𝑇𝑐(1 + 𝜌∥s∥2) exp
{
− ∥y∥2 + 𝜌∥y†s∥2

1 + 𝜌∥s∥2
}

(2)

Fig. 1 shows a block diagram of the channel coded nonco-
herent system. At the transmitter, a simple modulation code is
used to map an input block of (𝑇𝑐−1) complex symbols to an
output block of 𝑇𝑐 symbols by inserting a reference symbol
𝑐0 in the front of each input block: (𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑇𝑐−1) → s =
(𝑠0 = 𝑐0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑇𝑐−1), where each 𝑠𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑇𝑐 − 1
represents 𝑀𝑐 bits. The overall transmission rate of this system
is 𝑅 = 𝑇𝑐−1

𝑇𝑐
𝑅𝑐𝑀𝑐, where 𝑅𝑐 is the rate of the channel code.

Joint iterative channel decoding and noncoherent detection is
performed at the receiver. Detailed description of the block
diagram can be found in [15].

III. INFORMATION RATE OF MODULATION CODE AND ITS

IMPACT ON CODED PERFORMANCE

From a system perspective, the selection of modulation
codes is important because their mutual information rates
determine the maximum information rate that a coded system
can achieve for a given SNR, denoted by 𝐸𝑠/𝑁0. In other
words, for a desired transmission rate 𝑅, the information
rate of the modulation code determines the minimum 𝐸𝑠/𝑁0,
denoted by 𝐸𝑠

𝑁0
∣min, required to achieve 𝑅. Note that this is

an information-theoretical limit that can be achieved only
with optimal detection and a powerful channel code with an
arbitrarily long code length and maximum-likelihood decod-
ing. Hence, it is also the performance limit of any practical
channel coded system with suboptimal detectors and iterative
decoding.

In this section, we examine the information rate of the
modulation code defined in Section II for SISO channel and
compare with those of certain modulation codes used for DISO
channels. This will explain the performance gap between the
proposed SISO system and that of the DISO systems in [4],
shown in Section V.
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Fig. 2. Comparisons of the optimal capacity with the mutual informa-
tion rate of a practical modulation code with various constellations. A
SISO noncoherent block fading channel with 𝑇𝑐 = 6 is considered.

A. Information rates of practical modulation codes for SISO
channel

We first consider a SISO noncoherent block fading channel
with 𝑇𝑐 = 6. Fig. 2 plots the channel capacity achieved by
the optimal input and the mutual information rates [1] of
the modulation code described in Section II using practical
constellations 16QAM, 8QAM, 8PSK, and QPSK (a similar
figure for 𝑇𝑐 = 5 was presented in [1]).

From Fig. 2, we make two observations. First, the mutual
information rates of modulation codes provide performance
benchmarks for channel coded systems. For instance, Fig.
2 shows that, to achieve 𝑅 = 1.667 using the 16QAM
modulation code, we have 𝐸𝑠

𝑁0
∣min = 8 dB. This is independent

of the choices of detection algorithms and channel codes.
Second, among the practical constellations considered here,
16QAM can best approximate the channel capacity because
it achieves the highest information rate. For instance, when
𝑅 = 1.667, we have 𝐸𝑠

𝑁0
∣min = 7.5, 8, 8.7 dB, respectively,

for the optimal input, 16QAM, and 8QAM. Hence, 16QAM
is better than 8QAM, because the 𝐸𝑠

𝑁0
∣min required is only 0.5

dB away from that of the optimal input.

B. Comparisons of information rates for SISO system and
DISO system

To facilitate low-complexity noncoherent detection, modu-
lation codes such as USTM are often employed in practical
DISO systems [3], [4]. Unfortunately, these codes suffer from
intrinsic information rate loss compared to the optimal channel
capacity. In [16], it is shown that the information rates of
USTM achieve only a fraction of channel capacity. In [4], the
512-ary USTM and the 256-ary QPSK/Alamouti modulation
codes are considered for a DISO channel. To achieve 𝑅 = 1,
these two codes require 𝐸𝑠

𝑁0
∣min = 8.15 dB and 8.45 dB,

respectively, which are about 4 dB more than the 𝐸𝑠

𝑁0
∣min = 4.2

dB required for a SISO channel with 16QAM (see Fig. 2).
For 𝑅 = 1.5, the DISO channel with 8PSK/Alamouti code
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requires 𝐸𝑠

𝑁0
∣min = 11.76 dB [4], while a SISO channel with

16QAM needs only 𝐸𝑠

𝑁0
∣min = 7.1 dB. Simulation results

in Section V will verify that, the proposed SISO system
with 16QAM indeed outperforms the DISO systems with the
modulation codes above by about 4 dB. These comparisons
clearly show that the information rates of these modulation
codes used for DISO systems are much lower than those of
the modulation codes used for SISO systems. Therefore, for
such scenarios a SISO system should be chosen over a DISO
system, and one should not waste the resource of a second
transmit antenna.

We emphasize that, to obtain capacity-approaching perfor-
mance, it is important to choose modulation codes whose
information rates are close to the optimal channel capacity.
For the special scenarios discussed above, a SISO system
outperforms a DISO system largely due to the limited infor-
mation rate of the specific modulation codes used for DISO
systems. This by no means suggest that a DISO channel is
intrinsically worse than a SISO channel. In fact, the capacity
of a DISO channel should be no less than that of a SISO
channel, because with dual transmit antennas, one can always
choose to allocate full power to one of the transmit antennas to
realize the single antenna performance. However, the capacity
of the DISO channel is achieved only with the optimal input,
whose distribution is still unknown.

IV. NONCOHERENT DETECTION BASED ON MARKOV

CHAIN MONTE CARLO (MCMC)

In this section, we propose a noncoherent MCMC detector
based on the coherent MCMC detectors of [10]–[13]
where coherent detection is employed assuming perfectly
known channel fading coefficient. Here, we extend the
basic idea of MCMC detection to the noncoherent scenario
where the channel fading coefficient is unknown. The
proposed noncoherent MCMC detector computes extrinsic
log-likelihood ratios (LLR) of the coded bits based on
received signal vector y and prior LLRs {𝜆𝑖} provided
by the channel decoder. Given a modulation codeword
s = (𝑐0, 𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑇𝑐−1), we denote the bit sequence
corresponding to {𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑇𝑐−1} by b = {𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝐾},
where 𝐾 = (𝑇𝑐−1)𝑀𝑐. In particular, the 𝑀𝑐 bits constituting
symbol 𝑠𝑖 are {𝑏(𝑖−1)𝑀𝑐+1, ⋅ ⋅ ⋅ , 𝑏𝑖𝑀𝑐}. Each bit 𝑏𝑖 equals
either 0 or 1. The MCMC detector operates in two steps
described below.

Step 1: Use Gibbs sampler to identify a small set of 𝐼
“likely bit vectors”, denoted by 𝒜.

Initialization 𝑛 = 0; generate the initial vector
b(0) = {𝑏(0)1 , ⋅ ⋅ ⋅ , 𝑏(0)𝐾 } according to (3).

for 𝑛 = 1 to 𝐼
for 𝑖 = 1 to 𝐾
Sample 𝑏

(𝑛)
𝑖 , the 𝑖-th bit of b(𝑛), according to the a

posteriori probability distribution 𝜋:
𝑏
(𝑛)
𝑖 ∼ 𝜋(⋅∣∣ y, 𝑐0, 𝑏(𝑛)1 , ⋅ ⋅ ⋅ , 𝑏(𝑛)𝑖−1, 𝑏

(𝑛−1)
𝑖+1 , ⋅ ⋅ ⋅ , 𝑏(𝑛−1)

𝐾 , 𝜆𝑖).
end 𝑖 loop

end 𝑛 loop

First, the initialization step to find b(0) is done as follows.
For each 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑇𝑐 − 1, we compute the most likely

transmitted symbol 𝑠𝑖 based on the received signals 𝑦0 and
𝑦𝑖 by letting

𝑠𝑖 = argmax𝑠𝑖 [ln 𝑝(𝑦0, 𝑦𝑖∣𝑐0, 𝑠𝑖) + ln𝑃 (𝑠𝑖)], (3)

where ln𝑃 (𝑠𝑖) =
𝑖𝑀𝑐∑

𝑗=(𝑖−1)𝑀𝑐+1

(𝜆𝑗/2)(−1)𝑏𝑗 is the logarithm

of the prior probability of symbol 𝑠𝑖, and 𝜆𝑗 is the prior LLR
of the 𝑗-th bit. The pdf 𝑝(𝑦0, 𝑦𝑖∣𝑐0, 𝑠𝑖) in (3) is the noncoherent
pdf corresponding to 𝑇𝑐 = 2 because only two signals 𝑦0 and
𝑦𝑖 are considered. The symbol 𝑠𝑖 is then used to define the
initial bit vector b(0) by letting (b

(0)
(𝑖−1)𝑀𝑐+1, ⋅ ⋅ ⋅ ,b(0)

𝑖𝑀𝑐
) equal

to the bits constituting symbol 𝑠𝑖.
In the step of sampling 𝑏

(𝑛)
𝑖 , we let

𝑥 = ln
𝑝(y∣𝑐0, 𝑏(𝑛)

1 , ⋅ ⋅ ⋅ , 𝑏(𝑛)
𝑖−1, 0, 𝑏

(𝑛−1)
𝑖+1 , ⋅ ⋅ ⋅ , 𝑏(𝑛−1)

𝐾 )

𝑝(y∣𝑐0, 𝑏(𝑛)
1 , ⋅ ⋅ ⋅ , 𝑏(𝑛)

𝑖−1, 1, 𝑏
(𝑛−1)
𝑖+1 , ⋅ ⋅ ⋅ , 𝑏(𝑛−1)

𝐾 )
+ 𝜆𝑖

and 𝑡 = 𝑒𝑥/(1 + 𝑒𝑥), (4)

where the pdf in (4) is computed using (2). We then generate
a random number 𝑢 ∈ [0, 1] according to the uniform
distribution. If 𝑢 < 𝑡, we let 𝑏

(𝑛)
𝑖 = 0, otherwise we let

𝑏
(𝑛)
𝑖 = 1.

Step 2: Compute the output extrinsic LLR {𝛾𝑖} based on
vectors in 𝒜.

For each bit vector b ∈ 𝒜, by replacing its 𝑖-th bit by 0 and
1, respectively, and leaving other bits unchanged, we obtain
two new bit vectors b𝑖,0 and b𝑖,1. These vectors are used to
compute the output extrinsic LLR 𝛾𝑖 for bit 𝑖:

𝛾𝑖 = maxb∈𝒜 [ln 𝑝(y∣𝑐0,b𝑖,0) + ln𝑃 (b𝑖,0)]

− maxb∈𝒜 [ln 𝑝(y∣𝑐0,b𝑖,1) + ln𝑃 (b𝑖,1)]− 𝜆𝑖,
(5)

where ln𝑃 [b𝑖,0] =
∑𝐾

𝑗=1(𝜆𝑗/2)(−1)b
𝑖,0
𝑗 and b𝑖,0

𝑗 denotes
the 𝑗-th bit of b𝑖,0. The term ln𝑃 [b𝑖,1] is computed similarly.

The proposed MCMC detector differs from the MCMC
detectors of [6]–[9] in both initialization (3) and computation
of output LLRs (5). In [6]–[9], bit-counting (use statistical
averaging to estimate the frequency that a particular bit value
occurs) is applied to compute the LLRs. In comparison, we
use (5) to compute the LLRs based on the a posteriori prob-
abilities of the samples generated by the Gibbs sampler. The
proposed detector does not require a burning period and only
a small number of samples are needed to achieve satisfactory
performance. Detailed analysis of the proposed noncoherent
MCMC detector resembles those of [11] for coherent MIMO
channels. Since the main complexity of the MCMC detector
comes from the computation of the noncoherent pdf (CNP) in
(4) and (5), the total number of CNP represents the complexity
of the MCMC detector fairly accurately. The proposed MCMC
detector requires approximately 2𝐼𝐾 CNPs [15].

V. SIMULATION RESULTS

As described in Section IV, the MCMC detector has the
unique feature that it does not require any phase or amplitude
quantization of channel fading coefficient. In this section, we
compare the MCMC detector with (1) the bit-flipping (BF)
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Fig. 3. Performance comparisons of the same SISO system with the
MCMC detector, the BF detector in [4], and the G-BF detector that
assumes perfect amplitude. The curves corresponding to 𝑇𝑐 = 6,
from the rightmost to the leftmost are: BF Q=6, MCMC I=3, BF
Q=10, G-BF Q=6, G-BF Q=10. The curves corresponding to 𝑇𝑐 =
30, from the rightmost to the leftmost are: BF Q=6, G-BF Q=6, BF
Q=10, G-BF Q=10, MCMC I=3.

detector of [4] that uses phase quantization, and (2) a genie-
aided bit-flipping detector (G-BF) which differs from the BF
detector only in that it assumes perfect knowledge of the
channel fading amplitude. The BF detector is shown to be near
optimal for channels with small or moderate coherence lengths
[5]. In terms of CNPs, its complexity equals 𝑄𝐾 , where 𝑄
is the number of phase quantization, and 𝐾 = (𝑇𝑐 − 1)𝑀𝑐

is the total number of bits transmitted in each fading block.
Section IV shows that the MCMC detector has a complexity
of 2𝐼𝐾 CNPs. To facilitate fair comparisons, we consider
channel coded systems using the same channel code, which
is a commonly used regular (3,6) low-density parity-check
(LDPC) code with rate 𝑅𝑐 = 1/2 and code length 104, and
the same 16QAM modulation code described in Section III.
The overall rate of the system, hence, equals 𝑅 = 𝑇𝑐−1

𝑇𝑐
4𝑅𝑐,

corresponding to 𝑅 = 1.667 for 𝑇𝑐 = 6 and 𝑅 = 1.933
for 𝑇𝑐 = 30, respectively. Fig. 3 shows the bit-error-rate
(BER) of the coded system versus the average energy per
information bit to noise ratio 𝐸𝑏/𝑁0. It relates to 𝐸𝑠/𝑁0 by
𝐸𝑏

𝑁0

∣∣
dB

= 𝐸𝑠

𝑁0

∣∣
dB

− 10 log10 𝑅. Detailed simulation parameters
can be found in [15].

Fig. 3 shows that for a fast fading scenario 𝑇𝑐 = 6
(𝑅 = 1.667), MCMC detector with 𝐼 = 3 performs about
0.05 dB better than BF detector with 𝑄 = 6 at BER=10−4.
The complexity of these two detectors are roughly the same
in terms of CNPs. When 𝑄 = 10, at the cost of higher
complexity, performance of BF detector improves slightly and
is virtually the same as MCMC detector. At BER=10−4, G-
BF detectors with 𝑄 = 10 and 𝑄 = 6, assuming perfect
fading amplitude, achieve about 0.08 dB and 0.05 dB gain over
the MCMC detector that assumes unknown fading amplitude.
Note that if BF detector is modified to perform amplitude
quantization in addition to phase quantization, its performance
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Fig. 4. Performance of the SISO system with optimized LDPC codes
and MCMC detection for 𝑇𝑐 = 6.

will be inferior than that of the G-BF detector despite higher
receiver complexity. For a slow fading scenario 𝑇𝑐 = 30
(𝑅 = 1.933), with roughly the same complexity, MCMC
detector outperforms BF detector with 𝑄 = 6 by about 0.44
dB at BER=10−4. Even with an increased complexity, the BF
detector with 𝑄 = 10 still performs about 0.19 dB worse
than the MCMC detector. The G-BF detector with 𝑄 = 6
and 𝑄 = 10, assuming perfect amplitude, still perform worse
than the MCMC detector that assumes unknown amplitude by
about 0.28 dB and 0.08 dB, respectively.

To further approach channel capacity, we optimize the
LDPC code following the extrinsic information transfer
(EXIT) chart approach [17]. The optimized code parameters
are given in [15]. Performance of the optimized system using
MCMC detection is shown in Fig. 4. For 𝑅 = 1.667, with
16QAM and an optimized LDPC code of rate 𝑅𝑐 = 1/2, the
channel coded system achieves within 1.8 dB of the capacity
limit of 16QAM (𝐸𝑏

𝑁0
∣min = 5.78 dB) at BER = 10−4, and is

2.3 dB away from the capacity limit of the optimal input. For
𝑅 = 1, with 16QAM and an optimized code of rate 𝑅𝑐 = 0.3,
we achieve within 1.2 dB of the capacity limit of 16QAM
(𝐸𝑏

𝑁0
∣min = 4.2 dB), and is 1.6 dB away from the capacity of

the optimal input. Compared to DISO systems [4] at 𝑅 = 1
and 𝑅 = 1.5, the proposed SISO system achieves about 4
dB performance gain. This is consistent with our observation
in Section III that, at these transmission rates, the 𝐸𝑏

𝑁0
∣min

required by the 16QAM code is about 4 dB less than that
of the modulation codes used in [4]. While Fig. 2 shows that
𝐸𝑠

𝑁0
∣min for 16QAM and 8QAM differ by only 0.2 dB at 𝑅 = 1,

we see from Fig. 4 that the 8QAM system performs about 0.6
dB worse than the 16QAM system due to the use of a higher
rate channel code with 𝑅𝑐 = 0.4.

VI. CONCLUSION

This paper studies performance of noncoherent channel
coded systems. We show that transmit diversity does not
necessarily enhance performance when there is a large gap
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between the mutual information rates of modulation codes
and the optimal channel capacity. This explains the interesting
but somewhat surprising fact that the proposed SISO systems
significantly outperform certain DISO systems by as much
as 4 dB. While in this work we focus on systems with
single receive antenna, the basic principles presented are
applicable to general scenarios with multiple receive antennas.
For instance, our preliminary results show that even with
dual receive antennas, systems with one transmit antenna
can still outperform dual transmit antenna systems employing
similar modulation codes discussed here for the DISO channel.
An interesting direction for future work is to design better
modulation codes for multiple transmit antenna channels that
can fully exploit the channel capacity and also allow for low-
complexity detection. Excellent performance of the proposed
MCMC detector for the SISO channel demonstrates that it
will be instrumental in the design of capacity-approaching
noncoherent systems for multiple antenna channels.
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