
IEEE SIGNAL PROCESSING LETTERS, VOL. 12, NO. 10, OCTOBER 2005 669

On Performance of Sphere Decoding and Markov
Chain Monte Carlo Detection Methods
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Abstract—In a recent work, it has been found that the subop-
timum detectors that are based on Markov chain Monte Carlo
(MCMC) simulation techniques perform significantly better than
their sphere decoding (SD) counterparts. In this letter, we explore
the sources of this difference and show that a modification to ex-
isting sphere decoders can result in some improvement in their per-
formance, even though they still fall short when compared with
the MCMC detector. We also present a novel SD detector that is
an exact realization of max-log-MAP detector. We call this exact
max-log SD detector. Comparison of the results of this detector
with those of the max-log version of the MCMC detector reveals
that the latter is near optimal.

Index Terms—Detection, Markov chain Monte Carlo (MCMC),
multiple-input multiple-output (MIMO), sphere decoding (SD).

I. INTRODUCTION

TWO major research activities have dominated the design
of power and bandwidth-efficient wireless communication

systems in recent years: 1) communication through multiple
antennas, known as multiple-input multiple-output (MIMO)
communication, and 2) iterative decoding/detection techniques.
MIMO communication allows simultaneous transmission of
multiple symbols from multiple transmit antennas. This results
in a linear increase in the channel capacity proportional to
the number of transmit antennas, when there are sufficient
numbers of receive antennas. Iterative decoding/detection, on
the other hand, is a feasible method that greatly improves the
bit-error-rate (BER) performance of communication systems,
bringing them very close to the Shannon channel capacity.

The combination of MIMO and iterative decoding/detection
techniques has naturally been studied as a means of approaching
the capacity of MIMO channels. Fig. 1 presents a block dia-
gram of an MIMO receiver that combines works based on this
principle [1], [2]. Here, the MIMO channel plays the role of
an inner code. The outer code is a channel code that may be
a convolutional code or a more advanced turbo or low-density
parity-check (LDPC) code. We assume an MIMO channel with

transmit antennas and receive antennas and a flat fading
model

(1)

where is a vector of transmitted symbols,
is the channel gain matrix (of size ), is a vector of
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channel additive noise, is the received signal vector, and the
superscript denotes transpose.

Hochwald and ten Brink [3] have followed the receiver struc-
ture of Fig. 1 and used sphere decoding (SD) as a soft-in soft-out
MIMO detector and reported some results that approach the ca-
pacity of MIMO channels. Vikalo et al. [4] have also studied the
use of SD and demonstrated similar results. The difference be-
tween the two approaches is that [3] uses a candidate list (a list
of likely choices of that matches the channel output ) that
is chosen independently of the a priori information from the
channel decoder, while [4] includes this information in finding
the list.

SD may be thought of as a method of searching the -di-
mensional space spanned by and choosing a list of candidates
that match . In SD, this is done in a deterministic manner by
finding samples of that result in a small distance between
and . Gibbs sampling (GS), a statistical method based on
Markov chain Monte Carlo (MCMC) simulation techniques [5],
[6], is an alternative method that may be used for choosing a list
of with the same goal. In a recent work [8] (also see [7] for
our initial results), we have proposed an MIMO receiver that
follows the structure of Fig. 1 and applies GS to obtain samples
of . The results presented in [8] are superior to those in [3] and
[4]. In this letter, we explore the source of this performance gain
and show that there are two contributers: 1) the search method
for obtaining the samples of and 2) the way the samples are
handled to produce the LLR values.

II. REVIEW OF THE RESULTS FROM SD

Similar to the previous works [3] and [4], we assume that
each vector of the transmitted symbols is obtained, through a
mapping, from a vector of information bits .
We also recall from [4] that a candidate list of may be
generated by picking samples that satisfy the inequality

(2)

where denotes Hermitian, is the (extrinsic) probability
of according to the feedback from the channel decoder,

is the variance of each element of , is the
center of the sphere, and is its radius.

Given a candidate list , the following equation is used to
obtain an estimate of the extrinsic LLR value of [3], [4]:

(3)
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Fig. 1. Receiver structure. MIMO detector and channel decoder are soft-in
soft-out blocks that exchange information ��� and ��� in a turbo loop.

where and denote the subsets of for which is 1
and 1, respectively, is obtained from by removing ,
and is the vector of the extrinsic LLR values of from
the channel decoder.

SD adopts a tree search approach to obtain samples of .
Fig. 2 presents an example of the tree search adopted in [3] and
[4]. The search starts from a root node and begins with exam-
ining possible choices of that may satisfy (2). For each choice
of , the possible choices of are examined. The procedure
continues for the rest of the elements of similarly. Each choice
of an element of is indicated by a branch in the tree. Also, for
convenience of demonstration, it is assumed that the elements
of are binary. The search collects samples of by running
through the branches of the tree from top to bottom and left to
right. It is worth noting that many searches in the tree encounter
nodes where no branches beyond them can lead to a point within
the sphere, i.e., satisfy (2). In Fig. 2, these are indicated by bold
nodes. We refer to these as terminal nodes.

III. REVIEW OF THE RESULTS FROM MCMC DETECTION

In the MCMC detection method, a list of samples of is
generated by running one or more Markov chains that converge
toward the conditional distribution

(4)

This procedure clearly leads to generation of samples of that
result in small values for . Hence,
the candidate list generated by this procedure is similar to those
generated through SD [see (2)].

GS is the common procedure of generating samples of in
MCMC detectors. It visits successive elements of , sequen-
tially, by the following procedure:

• .
•

...

In this procedure, is initialized randomly, taking into ac-
count the a priori information . The first iterations of the
“for” loop, called burn-in period, is to let the Markov chain con-
verge to near its stationary distribution. Hence, the samples of

used for LLR computations are ,

Fig. 2. Example of the tree search in SD.

for . The samples generated by a single Markov
chain are usually highly correlated [5]. In [8], it is noted that the
performance of the MCMC detection method significantly im-
proves if a parallel set of Markov chains is used. We adopt this
strategy while generating the simulation results in Section VI.

Fromtheabove,wenotethatSDandGSarefundamentallysim-
ilar in thesense that theybothattempt tofindsetsof samples that
result in small values of . However,
[8] has adopted a different approach of handling the list . More
particularly, the lists and , in(3),are, respectively, replaced
by the expanded lists and , which are obtained from as
follows.Wenote that inmapping to , ismapped tooneof the
elements of . The expansion begins with identifying the element
of to which the desired bit is mapped. The set is then ex-
panded by giving this element of sample vectors all possible
values that it can take, from the symbol alphabet. This results in a
set that we call . and are then generated as the subsets
of in which is 1 and 1, respectively.

IV. MODIFIED SD

Clearly, one can also propose an implementation of SD using
the expanded lists and instead of and . The simu-
lation results presented in Section VI show that this modification
to SD improves its performance. We call this implementation of
SD modified SD.

The improved behavior of the modified SD may be explained
as follows. We recall from [3] that when a particular bit, say,

, is more likely to be 1 (or 1), the subset (or ) may
be empty. In such cases, [3] suggests that be replaced
by some extreme values, which, of course, may be inaccurate.
Expansion of the lists, i.e., using in place of , avoids such
undesirable cases.

V. EXACT MAX-LOG SD DETECTOR

The exact max-log-MAP estimate of is given by

(5)
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where is a complete list of all choices of , and and
are the subsets of in which is 1 and 1, respectively.

Clearly, the exponential growth of the size of may prohibit
direct realization of (5). This problem may be resolved by ap-
plying SD to each of the terms on the right-hand side of (5) sep-
arately. The true maximizer of the two terms on the right-hand
side of (5) are within these subsets. This requires in-
dependent sphere decoders that may still be too complex to re-
alize. Nonetheless, a study of such a detector is useful and can be
considered as a benchmark for evaluation of other suboptimum
detectors.

VI. COMPUTER SIMULATION

We present the BER results for two MIMO systems: one with
four transmit and four receive antennas and the other with eight
transmit and eight receive antennas. Data symbols are chosen
from a 16-point QAM constellation. The channel code is a rate
1/2 parallel concatenated (turbo) code with feedforward polyno-
mial and feedback polynomial . Each block of
information bits has the length of 9216. The channel matrix
is independent over time and has complex i.i.d. entries. These
parameters are similar to those of [3]. We also recall that the
SD of [3] uses lists of length 512 and 1024 in the cases of four
and eight antennas, respectively. For MCMC, parallel Gibbs
samplers each of length and with no burning periods (i.e.,

) are used. Because of the stochastic nature of MCMC,
repeated samples of (that should be discarded) occur, and
this reduces the list length below the maximum length . For
modified SD, we start with a small and increase it gradually
until we find a sufficient number of samples, say, samples.
Since there is no clear relationship between and the number
of choices of that satisfy (2), one occasionally encounters a
situation where the number of choices of that satisfy (2) is
excessively large. In such cases, we stop choosing samples of

when a certain number of samples, say, , is collected.
We choose the parameters and of the MCMC detector
and and of the modified SD detector such that the
average list lengths in these cases are comparable with the list
lengths used in the SD of [3].

The BER results of the case 4 4 are presented in Fig. 3.
For the MCMC, and . For the modified SD,

and is set equal to 25, 20, 15,10, and 5 for the
first, second, third, forth, and fifth iterations of the turbo loop,
respectively. For the sixth iteration onwards, is set equal
to one. These choices of are made on the following basis.
In the first iterations, when no prior information is available, any
reasonable choice of may lead to many choices of that satisfy
(2), and we need many samples of for obtaining reasonable
estimates of LLRs. In later iterations, the tree search is more
controlled by the prior information. As a result, for given , there
exist only a small set of choices of that satisfy (2) and a lower
number of samples is sufficient for estimation of LLR values.

From the results of Fig. 3, we observe that the performance of
the MCMC detector is very close to that of the exact max-log SD
detector. The modified SD performs better than the original SD
of [3]; however, it is not as good as the MCMC and the exact
max-log SD detectors. This loss can be explained as follows.

Fig. 3. BER results of the SD, modified SD, MCMC, and exact max-log SD
detectors for an MIMO system with four transmit and four receive antennas.

SD adopts a tree search approach to obtain samples of . From
the example given in Fig. 2, the following observation is made.
The samples of are chosen sequentially starting from the left
side of the tree and moving to the right. When for a given , the
number of samples that satisfy (2) is larger than , some of
these samples will be excluded from the list . This truncation
of the samples results in a list that has a noneven distribution
around the center of the sphere . In GS, on the other hand, such
a noneven distribution is naturally avoided since elements of
are visited on a regular basis. The accuracy of this argument can
be confirmed by removing the upper limit in our simula-
tions. The results (not shown here) are very similar to those of
the MCMC detector.

The above experiment was repeated for an 8 8 MIMO
system. The results are presented in Fig. 4. For the MCMC,

and . For the modified SD, two choices of
and 800 are considered, and is set equal

to 50, 40, 30,20, and 10 for the first, second, third, forth, and
fifth iterations, respectively. For the sixth iteration onwards,

is set equal to one. We are unable to present the results
of the exact max-log SD detector because of its prohibitive
complexity. Here, the MCMC detector outperforms the SD of
[3] by about 1 dB. The modified SD also outperforms the SD of
[3]. However, similar to the case of Fig. 3, it does not perform
as well as the MCMC detector.

VII. COMPUTATIONAL COMPLEXITY

Hassibi and Vikalo [11] have studied the computational com-
plexity of SD and have shown that the widely cited polyno-
mial complexity of SD is only valid when signal-to-noise ratio
(SNR) is high. When SNR is low, the complexity of SD is pre-
dicted as exponential. Similar results have been reported in [12],
where the authors have discussed a number of branch and bound
(BBD) algorithms, including SD. The exponential complexity
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Fig. 4. BER results of the SD, modified SD, MCMC, and exact max-log SD
detectors for a MIMO system with eight transmit and eight receive antennas.

TABLE I
COMPLEXITY STUDY OF SD AND MCMC DETECTORS

of SD is a direct consequence of the fact that the SD tree search
algorithm often encounters many terminal nodes before finding
a sample of , and it grows exponentially with the size of . The
number of terminal nodes increases further in the particular case
of iterative detectors, where many samples of have to be col-
lected.

Table I presents the number of multiplication and addition
operations per data block, counted while running our simula-
tion programs, at the indicated SNR values. Measuring the com-
plexity by these numbers, SD and MCMC detectors exhibit sim-
ilar complexity in the case of a 4 4 MIMO channel. However,
because of the exponential growth of the complexity of SD with
the size of , in the case of an 8 8 channel, the complexity
difference between MCMC and SD grows to over an order of
magnitude.

VIII. CONCLUSION

In this letter, we explored the similarities and the differences
of SD and the statistical methods that work based on MCMC

simulation in soft MIMO detectors. It was noted that both
methods start with construction of a candidate list of more
likely samples of the transmitted symbols. While SD takes a
deterministic approach (a tree search), MCMC detector obtains
the samples through a statistical procedure. The candidate list is
then used for computation of the LLR values of the information
bits. We found that the way the candidate list is handled by the
reported SD algorithms [3], [4] is different from what has been
suggested in a recently proposed MCMC detector [7], [8]. By
applying the method of [7] and [8] to SD, we proposed a new
detector and called it modified SD. Moreover, we proposed an
exact max-log SD detector that may be used as a benchmark
for evaluation of the MCMC and SD detectors. Computer sim-
ulations revealed that while an MCMC detector with moderate
complexity can approach the performance of the exact max-log
SD detector, SD, even after the modification proposed in this
letter, falls short in performance. We also briefly discussed
the complexity of SD and MCMC detection and found that
in low SNR regime, the latter may offer a significantly lower
computational complexity.

REFERENCES

[1] X. Wang and H. V. Poor, “Iterative (Turbo) soft interference cancellation
and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47, no. 7,
pp. 1046–1061, Jul. 1999.

[2] H. E. Gamal and A. R. Hammons, Jr., “A new approach to layered space-
time coding and signal processing,” IEEE Trans. Inf. Theory, vol. 47, no.
6, pp. 2321–2334, Sep. 2001.

[3] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a
multiple-antenna channel,” IEEE Trans. Commun., vol. 51, no. 3, pp.
389–399, Mar. 2003.

[4] H. Vikalo and B. Hassibi, “Modified Fincke–Pohst algorithm for low-
complexity iterative decoding over multiple antenna channels,” in Proc.
IEEE Int. Symp. Inf. Theory, 2002, p. 390.

[5] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. New
York: Springer-Verlag, 1999.

[6] O. Häggström, Finite Markov Chains and Algorithmic Applica-
tions. Cambridge, U.K.: Cambridge Univ. Press, 2002.

[7] Z. Shi, H. Zhu, and B. Farhang-Boroujeny, “Markov chain Monte Carlo
techniques in iterative detectors: a novel approach based on Monte Carlo
integration,” in Proc. Globecom, Dallas, TX, Nov. 29 to Dec. 2, 2004,
pp. 325–329.

[8] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, “Markov Chain Monte
Carlo Algorithms for CDMA and MIMO Communication Systems,”
IEEE Trans. Signal Process., to be published.

[9] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in
Proc. IEEE Int. Conf. Commun., vol. 2, Seattle, WA, Jun. 18–22, 1995,
pp. 1009–1013.

[10] D. Pham, K. R. Pattipati, P. K. Willett, and J. Luo, “An improved com-
plex sphere decoder for V-BLAST systems,” IEEE Signal Process. Lett.,
vol. 11, no. 3, pp. 748–751, Sep. 2004.

[11] B. Hassibi and H. Vikalo, “On the sphere decoding algorithm I. Ex-
pected complexity,” IEEE Trans. Signal Process., pt. 1, vol. 53, no. 8,
pp. 2806–2818, Aug. 2005.

[12] J. Luo, K. R. Pattipati, P. Willett, and G. G. Levchuk, “Fast optimal and
suboptimal any-time algorithms for CDMA multiuser detection based on
branch and bound,” IEEE Trans. Commun., vol. 52, no. 4, pp. 632–642,
Apr. 2004.


	toc
	On Performance of Sphere Decoding and Markov Chain Monte Carlo D
	Haidong (David) Zhu, Behrouz Farhang-Boroujeny, Senior Member, I
	I. I NTRODUCTION
	II. R EVIEW OF THE R ESULTS F ROM SD

	Fig.€1. Receiver structure. MIMO detector and channel decoder ar
	III. R EVIEW OF THE R ESULTS F ROM MCMC D ETECTION

	Fig.€2. Example of the tree search in SD.
	IV. M ODIFIED SD
	V. E XACT M AX -L OG SD D ETECTOR
	VI. C OMPUTER S IMULATION

	Fig.€3. BER results of the SD, modified SD, MCMC, and exact max-
	VII. C OMPUTATIONAL C OMPLEXITY

	Fig.€4. BER results of the SD, modified SD, MCMC, and exact max-
	TABLE€I C OMPLEXITY S TUDY OF SD AND MCMC D ETECTORS
	VIII. C ONCLUSION
	X. Wang and H. V. Poor, Iterative (Turbo) soft interference canc
	H. E. Gamal and A. R. Hammons, Jr., A new approach to layered sp
	B. M. Hochwald and S. ten Brink, Achieving near-capacity on a mu
	H. Vikalo and B. Hassibi, Modified Fincke Pohst algorithm for lo
	C. P. Robert and G. Casella, Monte Carlo Statistical Methods . N
	O. Häggström, Finite Markov Chains and Algorithmic Applications 
	Z. Shi, H. Zhu, and B. Farhang-Boroujeny, Markov chain Monte Car
	B. Farhang-Boroujeny, H. Zhu, and Z. Shi, Markov Chain Monte Car
	P. Robertson, E. Villebrun, and P. Hoeher, A comparison of optim
	D. Pham, K. R. Pattipati, P. K. Willett, and J. Luo, An improved
	B. Hassibi and H. Vikalo, On the sphere decoding algorithm I. Ex
	J. Luo, K. R. Pattipati, P. Willett, and G. G. Levchuk, Fast opt



