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Random Access Protocols for Collaborative
Spectrum Sensing in Multi-band Cognitive Radio
Networks

Rong-Rong Chen Koon Hoo Teo, and Behrouz Farhang-Boroujeny

Abstract—In this paper collaborative sensing and distributed phase, the information obtained by all the nodes is excldinge
detection are addressed in the context of multi-band cogrite  among them to improve the PU detection reliability of the SU
radios. In a cognitive radio network, all the nodes may sense nanyork. We refer to this phase signaling. Data transmission

the spectrum simultaneously. They should then exchange the then foll th inina ti f th iti |
sensing results in order to improve the reliability of the deection. €N TOIOWS over the remaining ime or the cognitive cycle.

This exchange of information has to be done effectively to One may note that the duration of each cognitive cycle
improve the bandwidth efficiency of the network. We propose should be kept small to avoid significant interference with

a generalized medium access control (MAC) signaling prota#  pPUs. This is because, after each sensing phase, any new PU
based on random access and study its performance through 5ctjyities will be invisible to the SU network. Hence, to @Vo

a thorough theoretical analysis. We begin with a non-adaptie . .
protocol with fixed parameters. The numerical results obtaned a prolonged interference with PUs, the SU network should fre

from analysis reveals that the fixed parameter protocol is no duently update the available bands. Consequently, for @ fixe
robust to the variation of the network conditions which, in length of cognitive cycle, to allow maximum transmission of

general, are unknown a priori. We thus extend the proposed data, the durations of sensing and signaling phases should
protocol to an adaptive one. Analysis of this adaptive protool be minimized. Efficient sensing methods have been proposed

reveals its much superior performance. Our analysis coversa . L . )
wide range of network conditions, including the case where@ne and widely studied in the literature; e.g., [1], [3]. The goa

spectral activities may be hidden from a few of cognitive nods Of this paper is to develop an effective protocol/strategy f
and the case when a cognitive node senses only a subset of siaéc  minimizing the duration of the signaling phase.

bands. All theoretical results are corroborated through canputer To assure reliable collaborative sensing, in this paper, we
simulations. assume signaling is established throughaarow-band ded-
icated control channel (DCC). The DCC is a leased non-
cognitive narrowband channel that is used for exchange of
sensing information among SUs. We argue that this is a small
A typical cognitive radio (CR) network [1] consists of a seprice which one would like to pay for achieving reliable

of secondary users (SUs) that should coexist with primadata communication in an environment with highly dynamic
users (PUs) of a sharelbroadband spectrum. PUs have aspectral activities.
priority access to the spectrum over SUs. To utilize the From the above discussion, it is obvious that signaling
spectrum holes (the portions of spectrum that are unused dwerhead plays a major role in CR networks and thus should be
PUs at a given time), SU network should be designed tiven a due attention in any design. Nevertheless, so far ver
aggregate more of the available bandwidth subject to mimmuimited studies have been performed in this area. To oveecom
interference with the PUs. The hidden terminal problem [2fhe hidden node problem, Wiest al. [4] have proposed a
also, should be addressed to minimize the interference. Foosting protocol where all the nodes in the network broadcast
this purpose, the SU nodes should collaboratively sense 8ieong signals (i.e., shout) over the bands where they have
spectrum and decide which part of the spectrum is availaldbserved PU activities thus reducing the need for a DCC.
to them. Accordingly, in a cognitive network, communicatio They argue, if boosting is done over a short period of time
may be established in a three phasgnitive cycle. In the first and only for newly allocated subbands, it incurs insignifica
cycle, all the cognitive nodes remain silent and listen t® thnterference to PUs and thus may be acceptable. However, in
spectral activities. This phase is callsshsing. In the second many situations this violates noninterference requiremeh

PU network. Transform domain communication system and
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anism, however, requires strong synchronization on mati-s of sensing information and to minimize the signaling petdd
time scale. Although the time-slotted random access potdoca cognitive radio network. Furthermore, we develop thecaét
considered in this paper also require user synchronizdtiesm analysis to analyze the performance of such protocols. &o th
possible to extend such protocols to unslotted ones, asnis dbest of our knowledge, this is the first work that thoroughly
for unslotted Aloha [8], to further reduce the synchrorimat analyzes the random access protocols for collaborative- spe
requirement. The analysis for the un-slotted protocolsy-hotrum sensing in cognitive radio networks.
ever, will be more involved due to the asynchronous natureln order to minimize the interference to the PUs, we assume
of the protocol. Hence, in this work we focus on theoreticahat if one SU detects some PU activities over a PU band,
study of the more tractable time-slotted protocols. In [Pis then this information will be broadcast to all the SUs in
proposed that to minimize the interference with PUs, a DCBie network and the SUs will refrain from accessing this
should be used for signaling. The signaling overhead is thBU band. It is possible that one SU could falsely detect the
studied through computer simulations. The use of a DCC hagweesence of a PU when it is actually absent, i.e., a false
also been brought up in [10]-[13]. An interesting outcomalarm occurs, and the false alarm will also be broadcast to
of the presence of unreliable SUs in cooperative sensingother SUs, causing a degradation of the spectrum utilizatio
discussed in [11]. Further related works can be found in{14bf the SU network. This assumption, even though consemativ
[20]. ensures high detection probabilities of the PUs and hence
This paper extends our earlier work [21] where we prgrovide strong protection to the PU network. We also note
posed a random access protocol for collaborative exchahgghst the random access protocols presented in this paper can
sensing information using a DCC. In [21], we assumed thke further generalized beyond the presentations in thigmpap
only a single-band channel was available for communicatioRor instance, the adaptive protocol introduced in Sectie® |
among SUs. The simplistic assumption that the probability gonsiders only decreasing the parametervhen the signaling
detection is the same for all SUs was also made. This wdiffic load is identified to be high. Clearly, one can modifg t
generalizes the contributions of [21] in a number of ways: protocol to also increase when the signaling traffic load is
identified to be low. We have chosen to limit the presentation

» The single-band network is extended to a multi-bar} is paper to simpler protocols, because of the difficultyhef
communication network. We assume that a broadband pap pierp '

channel is divided into a number of narrow PU band%nalyss. Even analysis of these simplified protocols has be

and the proposed MAC protocol determines which Pa grgat challenge, as one may fln_d out after rea_\dlng_ _the rest
. of this paper. Nevertheless, we believe that the simpliticat
bands are available to SUs.

. are justifiable, as they allow us to develop a more in-depth
o We develop ageneral mathematical framework that al- . .
. understanding of random access protocols when applied to
lows analysis of the proposed protocols under very broad . . . ) . .
. . . .,_Cooperative sensing. It is also worth noting that this asialy
conditions. In particular, our analysis allows consider- L
. ; involves the definition and use of a number of events. To make
ation of hidden nodes and the cases where each node | . .. .
€ definitions more accessible to a reader that may need to
senses only a subset of PU bands. .
refer to them as he reads the paper, all the event definitions

o The protocol proposed in [21], for a single-band case, was, presented in text boxes throughout the paper.

non-adaptive, i.e., the protocol parameters were optithize The rest of the paper is organized as follows. Section I

and set fixed a priori. In this paper, we show that althou . :
. . ; escribes the basic system setup and the proposed protocols
this protocol behaves robustly in a single band networ *

in the sense that it is relatively insensitive to variatidn o Section Il we describe the general sensing scenarids tha

. . . _our analysis of the random access protocols are applicable,
the network parameters, it behaves poorly in a multi-ban . o . .
X . including specific sensing examples. Analysis of the non-
network, when the MAC/signaling protocol parameters . . . .
. . . . . adaptive and adaptive protocols for general sensing sosnar
are slightly varied around their optimal settings. We . . : .
P . . are presented in Sections IV and V, respectively. Numerical
thus propose a modification to the proposed signalin : . : . .
. . . results are given in Section VI. Finally, we conclude in 8gtt
protocol to make it adaptive. Theoretical results show th
this adaptive protocol is far superior to the non-adaptive
protocol and can be trusted for running networks with

multiple PU bands. [I. COGNITIVE CYCLE AND SIGNALING PROTOCOLS

Random access protocols have been widely used in comFig. 1 depicts a diagram that shows the three phases of
munication networks where multiple users contend for chatihe proposed cognitive cycle and the underlying signaling
nel access to maximize system throughput. In this papgnotocol. As discussed before, the three phases of the agni
we propose to utilize random access protocols for a totaltycle are (i)sensing, during which all cognitive nodes remain
different objective — the broadcast and exchange of spactrgilent and listen to the PUs’ spectral activities (this migr to
sensing information in a cognitive radio network. A distine the silence period in IEEE802.22 [22]); (ii)signaling, during
feature of this design is that each SU in the network usedich the SU nodes exchange their sensing information;
random access to broadcast his sensing information, andatwl (jii) data transmission, during which information are
update his own sensing information upon receiving a bragtdcéransmitted over the cognitive network.
message from other SUs. In this sense, the random acced3uring the signaling period, those SUs who have detected
protocols studied here are designed to allow efficient exgba the PU activities will send broadcast messages (BMs) torothe
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BM, containing his LBB, through the control channel with a
fixed probability of 7. With probability of 1 — 7, an active
SU remains silent and listens to the control channel for a
possible BM from other SUs. When multiple SUs attempt to
transmit BM in the same time slot, a collision occurs. When
only one SU attempts to transmit a BM, then we assume that
the BM is received by every SU in the network and we refer
to this BM as a successful BM (SBM). Upon receiving an
SBM, each SU updates his LBB by including the new busy
PU bands reported by the SBM. An SU will becommective
and stops transmitting, once he receives an SBM that cantain
all the busy PU bands in his own LBB. Since every SU in
the network becomes aware of the LBB in the SBM, only
those SUs whose LBBs contain additional busy PU bands will
continue transmitting. An inactive user differs from aniaet
user only in that he does not transmit any BM, and he still
listens to the BM and updates his LBB according to the SBM.
We note that immediately after an SU transmits an SBM,

SUs, to improve the detection results for the whole networ 'eu!ssvr\:i(ljltcacl)vx?irneu;h?; i?:nsmitwfles tr;nrﬁggtggtiiccvizsgg and
The BMs are transmitted randomly in synchronized time slor% P )

Sensing |  Signaling Data transmission

successful BM

collision

SUg

SU,

SU2

SUs

Fig. 1. Three phases of the proposed cognitive cycle and underlying
signaling protocol.

ie.. in a random access slotted ALOHA, [2]. For a BM t is user as @ummy user because further transmissions of his

be successful during a time slot, only one SU can trans M do npt provide new mfo_rrnauon abouF t.he PU activities,
and only increase the possibility of BM collisions. The duynm

during that time slot. For simplicity, we consider a singtgph X . .
' o jser will become inactive, and thus no longer called a dummy
network, where all the SUs are in close proximity to eac

other, (i.e., are in a single cell). Therefore, we assume tLéser, when he receives an SBM from other SUs that includes
a suc’ce'ss”ful BM can be heard' by all SUé in the netwoth's LBB. At which point, the user who transmitted the SBM

provided that suitable coding and modulation schemes ﬁ/gl become the nevl\( dL:mmy ulser.. CI(:&;;Iy, theteX|s|tenC((aon;he
used to ensure the reliability of the BM. In general, sinc ummy user compicates analysis ot the protocols and, thus,

the PUs are located in a wider geographical region Whiaﬁas to be given a due attention (see Sections IV and V).

might be hidden from a particular SU, collaborative speutru
sensing between the SUs is necessary to improve the detecBo Adaptive Protocol

probability of the PU activities. As opposed to the non-adaptive protocol, we allow the SUs
In Fig. 1, we provide a simple example to illustrate thgy adjust the transmission probabilityin time. Specifically,

basic system setup, where §&ind SU have successful BMs e implement the “multiplicative decrease” policy to leeth

in the second and last time slots, respectively. If an S falsyus scale down their transmission probability when a dotis

to detect a PU locally, but receives a BM from other SUgccurs or after a transmission. The details are summariged a
saying that a PU has been detected, it will become awarefgfiows.

the existence of that PU in the respective PU band. Clearly,
the detection probability of an SU will be improved after
the signaling period. After signaling, data transmissiegibs .
over the available PU bands and continues for the rest of the
cognitive cycle. The remaining parts of this paper coneaatr

« After the sensing period, all the active SUs set their ihitia
transmission probability te = 7.

If the transmission probability of an SU isduring a time
slot and he attempts a transmission during this time slot,
then his transmission probability during the next time slot

on the signaling phase and develop analytical results which
enable us to explore the random access behavior of both non;
adaptive and adaptive protocols that are introduced next.

A. Non-adaptive Protocol

We first propose a non-adaptive protocol which realizes
collaborative sensing through 7apersistent slotted ALOHA
protocol. We first introduce some terminologies. We say that
a PU band isbusy if the PU band is being used by some e
PU. By the end of the sensing period, we say that an SU is
active, if the SU detects at least one busy PU band. Each SU
maintains a list ofbousy PU bands (LBB). After the sensing

will be scaled down tor - .

If a collision occurs during a time slot, then we assume
that the collision will be detected by all the SUs who
were not transmitting during this time slot. Each of these
SUs will scale down his transmission probability for the
next time slot tor - a.

If an SU finds the DCC to be silent during one time slot,
then he will not decrease his transmission probability.
After each SBM, all the SUs (except for the SU who
sent the SBM) will reset their transmission probability to
T =1T0-

It is clear that the non-adaptive protocol is a special case

period, each SU’s LBB contains only the busy PU bands thaft the adaptive protocol with a fixed transmission probapili
this SU has detected. Starting with the first time slot afteg and a constant scaling facter = 1. For the remainder
the sensing period, eachctive SU attempts to transmit a of the paper, we usg, as the initial transmission probability
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for both protocols with the understanding that= 1 for the users after receiving SBM1. To facilitate the computatién o
non-adaptive protocol. these probabilities, we introduce the following two segsin
We note that for both the non-adaptive and adaptive prdependent events:

tocols, the length of the signaling period is a parametetr tha

is fixed a priori. An SU will remain active until he receiveg
an SBM whose LBB contains his own LBB, or by the end gf X., . = {An SU detects{t1,t2, - ,tc, }
the signaling period. Next, we discuss how the length of the
signaling period is determined.

as busy PU bands
Y., = {An SU does not detect any of the busy
PU bands in{tq,t2, - ,te, }}

C. Optimization of Length of the Sgnaling Period
To maximize the bandwidth efficiency of the network, we let

the length of the signaling period equals the minimum numberp e to the symmetry assumption, we see Tﬂﬁ‘é}P(Xcl 0)
. : )iz ,
of time slots after which all SUs are aware of all busy Pletermines the probability that SBM1 contains exactijpusy
bands with a high probability). To this end, let us define py pands. Here, the terfif ) takes care of the ordering of the
Pp(n, 70, a) as the probability of all SUs being aware of alby pands, Also, given that SBM1 containsbusy PU bands,
busy PU bands aften time slots, given protocol parameters, sy will remain active after receiving SBML if he detects at
7o and . Then, the length of the signaling period can be sgl5st one of the — ¢, busy PU bands that are not included in
as SBML1. Again we apply the symmetry assumption to see that
Ns(70, ) = min{n : Pp(n, 70, ) > n}. (1) the probability of this event is determined by— P(Y,_., ).
Clearly, N, (7o, a) can be large, for either large valuesqf NOte that whether an SU detects any of the PU bands
which leads to a significant number of BM collisions, or foflréady included in the SBM1 is irrelevant to whether he will
small values ofry, which leads to insufficient transmissiond®main active. This, combined with the symmetry assumption
of BMs. In the analysis developed in this paper, we deri/gad to the termP(Y._,). Detailed usage oP(X,, ) and
analytical expressions for computingy (n, 7o, «) and from P(Y.,) can be found in Proposition 4.2. _ o
which we can find the optimat,,; anda,,: to minimize the ~ Next, we consider two examples of sensing scenarios in

length of the signaling period as subsections IlI-A and 11I-B, followed by a discussion of a
general sensing scenario in subsection IlI-C. For all cases
Nopt = min N(7o, @) = Ns(Topt, Gopt)- (2) analytical expressions d?(X., .) and P(Y,,) are developed.

Note that (1), and hence, the optimization step (2), requiAe
perfect knowledge of the systems parameters such as the o
number of PU bands, the number of SUs, the PU band usage>"c€ the SUs are randomly located, it is reasonable to
and the sensing capability at each SU. In a realistic saenafeSUme that they have different detection probabilities. W
some of these parameters may be unknown, or can only'@EOduce a probability distribution{ry, 2, - ,ra} where
coarsely estimated. We demonstrate through numericdtsest{: r; = 1 and a set of detection probabiliti€g;,--- ,qq},
in Section VI that the adaptive protocol is more robust thaﬁﬁ 0 < a < 1f hl < i< d W that
the non-adaptive protocol, in the sense that the length ef ynerev = ¢ = or éachl = @ = a. We assume ha

. . X . o with probability »; an SU has a detection probability of
signaling periodV; (7o, «) is less sensitive tay, «, and other ) o
system parameters. for all of the busy PU bands. A small detection probability

corresponds to a user who is at a location that PUs are hidden
to him. For this scenario, one finds that

Full-band homogeneous sensing

IIl. SENSING SCENARIOS

Performance of the proposed protocols clearly depend on P(X,,.) = Z” ¢ (1 — g;)e A3)
the outcomes of the sensing period. In this section, we tescr " !

the general sensing scenarios for which the analysis deeélo =

in Sections IV and V are applicable. Here we assume that d

there are a total of® (busy and idle) PU bands, denoted by PY.,) = Zm(l —q;)°. 4)
{t1,t2,- -+ ,tc}. Let ¢ denote the number of busy PU bands, i=1

which can vary over cognitive cycles. To facilitate anadysie . )

make thesymmetric assumption that statistically any grougB- Partial-band homogeneous sensing

of ¢; out of ¢ busy PU bands have the same probability of Assume that each user randomly selects a totaBoPU
being detected as any other groupscofbusy PU bands. In bands to sense, given a total@f(busy and silent) PU bands.
other words, we assume that the PU bands are statistically in the full-band sensing, the detection probability ofseiu
equivalent to each other. Without loss of generality, assurs ¢; with probability ;. Oncegq; is determined, each of the
that thec busy PU bands aréty,ts,--- ,t.}. We also note busy PU bands that is sensed by this user will be detected
that the analysis in Sections IV and V involves a conditigninwith probability ¢;. It can be shown that, in this case, one
step that depends on the number of busy PU bands containbthins the results in (5) and (6). These results are praved i
in the first SBM (SBM1), and the number of remaining activAppendix A.
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i=1

min(B,c)

D

1

P(Xchc) = 7N
(5)
for 1 <¢; <min(B,¢), and

d

>

i=1

P(Y.,) = (%) 3

forl<c <ec

j=max(c1,B—(C—c))

min(B,c1)

j=max(0,B—(C—c1))

C -

(o) (55w .
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C. General sensing

Next, we discuss a very general sensing scenario and s

as well.

Assume that there are a total 6f PU bands. There are a

total of ' = 2¢ sensing outcomes, denoted byu, - - - , ur.
Here, each sensing outcomg is a C-dimensional binary
vector whosej-th componentu;; equals one if thej-th
PU band is detected busy. We letTadimensional vector
d = (dy,ds,---,dr) denote asensing distribution where
d; is the probability that the sensing outcome equals
Assume that a user chooses a sensing distribudidrom a
set ofn, sensing distribution$z;, z», - - - , z,,} according to

a probability distributionP(d = z;) = v, Wherei v = 1.

=1
For a fixede, wherel < ¢ < C, it is reasonable to make
the assumption that, after averaging over this set of sgns
distributions, the joint detection probabilities of anypgp ofc

héﬁ

how P(X,, .) and P(Y.) can be computed for such scenario

A. Fixed number of busy PU bands

ow, assume that there are a totaledbusy PU bands. We
ne the events:

Acm = {All SUs are aware of alt busy PU bands
by the end of time slotn}
B, = {All SUs become aware of all busy
PU bands the first time in time slot}.

While our goal is to comput® (A, ), hoting that

P(Aem) = Z P(Ben), )
n=0
it is sufficient to computeP (B, ).

In Proposition 4.1 and 4.3 below, we develop recursive
relations for computing®(B.,,). This is achieved by condi-
fibning upon the first successful broadcast message (SBM1).
Let us assume that SBM1 occurs during time slot and it

PU bands are the same. In other words, all the PU bands Sh%ﬂtainxl busy PU bands. Then eveht ., will occur if, after

be equivalent statistically. To compuf& X, .) and P(Y¢, ),

receiving SBM1, all the SUs become aware of the remaining

we need to average over sensing distributions. To compute ., sy PU bands for the first time, after an additional
P(Xe, ), we letS,, . denote all the sensing outcomes sucl) _ , gjots. The reduction in the number of busy PU bands,

that only the firstc; PU bands are detected out of the first
PU bands. Then we have

Ns

P(XC1,C) = Z%’

=1

>

Jiuj€Seq e

()

Zijy

from ¢ to ¢ — ¢;, and in the number of time slots, from

to n — ny, is crucial to facilitate the recursive computation
of P(B.,). Furthermore, due to the use of random access
protocols, it is important to know the number of active users
who attempt to transmit BMs. In particular, we need to know
the number of active users immediately after the sensing

where z;; is the probability that the sensing outcome equaperiod, represented by, and also the number of remaining

u; given the sensing distributios;. Similarly, let V., denote
all the sensing outcomes such that none of the &ifsPU
bands is detected. Then, we have

E Zig -

Jru; €V

POL) =S (8)
1

1=

IV. ANALYSIS OF NON-ADAPTIVE PROTOCOL

Assume that the broadband channel that is shared betw
the PUs and SUs is divided int@ PU bands. We assume tha
there areK SU nodes. In general, the number of busy P
bands, denoted by, is time-varying and is unknowa priori.
For ease of disposition, we first consider the case whéen
fixed. The case of variablethen easily follows.

active users after receiving the SBM1, representedkby
These motivate us to define the following events.

Dy, = {There arek active users
Dy, = {There arek (regular) active users
and one dummy usér
F,, = {SBML1 is transmitted in time slat, }
G, ,c = {SBML1 reportsc; out of ¢ busy PU bands
odfk, = {After SBM1, k; SUs remain active
Q. . = {An active SU remains active after receiving
SBM1 that reports; out of ¢ busy PU bands
U = {At least one SU does not detect albusy
PU bands by the end of the sensing pe}iod

g
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Proposition 4.1:

K n—1 K—1
P(ch) = ZP(Dk) Z P(Fn1|Dk)P(Bc7n|Dk7Fn1)+ Z P(Dk)P(Fn|Dk)P(Gc,c)
k=1 ni=1 k=1

+P(Fa| Dic) [P(DKU) = P(Dic)(1 = P(Ge.c)

[E—

(10)
Proof: See Appendix B.

As shown in Proposition 4.1, the computation®{B. ,,) in (17) conditions upon whether a dummy user or a regular
can be simplified by conditioning upokh and n;. For the user succeeds in transmitting the next SBM. With probahilit
special case when SBM1 occurs during sigti.e., n; = n, k—il the dummy user succeeds and the SBM does not contain
we note that SBM1 must contain all busy PU bands, i.e., tlamy new information to the network. This corresponds to the
eventG. . occurs. This relates to the last two terms in (10). Fdirst term of (17). Otherwise, with probabilitgﬁ—, a regular
ny < n, corresponding to the first term in (10), it is non-triviauser succeeds and the SBM contains useful information to the
to computeP (B, ,| Dy, F,, ) directly, which will be handled network. This corresponds to the last two terms of (17).

separately in Proposition 4.3. For the non-adaptive pmfoc To complete iterations between (16) and (17), one also

one finds that needs to evaluaté’(F,,|D;) and P(Hy, |Dy, G, o). It is
P(F, |Dy) = [1 _ )\] n1—1)\’ (11) straightforward to see that
where) = k(1 —7)F 17, is the probability that only one out P(Fp, |Dy) = P(Fp,|Di+1) (18)

of k SUs transmits during an arbitrary time slot. We note that
the other events involved in Proposition 412, DU, G, . and

and @, . are all s_ensing dependent and their probabilities P(Hy,| Dy, G
can be calculated in terms &f(X,, .) and P(Y;) that were b1 . ke1ok
introduced in Section Ill. The following proposition givése ( K ) [P(Qer. o)) [1 = P(Qey )] J (19)
necessary formulas.

01,0) =

where the termP(Q., ) is computed using (15).
Proposition 4.2

P(Dy) = (]/:) - P(Yc)}k[P(Yc)]K_k (12) B. Variable number of busy PU bands
In Section IV-A we examined performance of the non-
P(DgU) = [1 - P(Yc)]K - P(XM)K (13) adaptive protocol for the case when the number of busy PU
(5)P(Xey ) bands,c, is fixed. Here we consider the case of variable
P(Ge ) = T—W (14) number of busy PU bands. We assume that the collaborative
- P(Y. © ) sensing period is much shorter than the time scale of change
PQee) = ——— (15) in the PU band occupation such that the busy PU bands can
1= P(Ye) be detected reliably. In other words, the PU activities db no
Proof: See Appendix D. change within a cognitive cycle, but can change from cycle

- to cycle. During one cognitive cycle, we assume that each PU
P_ropo§|t|on 4.3, shown at the tqp of the next page, presegis g is busy with a probability of < p, < 1. Hence, the
an iterative procedure for computin®(Be n| Dy, F, ). number of busy PU bands, varies from one cognitive cycle
In (16) of_ Proposition 4.3, a recursive r_e_lat|_0n is devetbpgq another. For brevity, we 1ePp(n) = Pp(n, 7o, a) denote
for computing P(Bc.»| D, I, ), by conditioning upon the e probability that all the SUs are aware of all the busy PU
number of busy PU bands contained in SBM1, denotediby pands by timen. Sincec varies over cognitive cycles, we let
and the number of remaining actl\{e SUs after receiving SBMF(C) be the probability that there arebusy PU bands during
denoted byk;. The termP(G., ) is the probability that the g cognitive cycle. Clearly?(c) follows a binomial distribution

SBM1 containsc, busy PU bands, an@ (Hy, | Dy, Ge,.c) 1 \ith parameters? andp,, hereC is the total number of PU
the probability that after receiving SBM%; active users will 5nds. Thus. we obtain

remain active to participate in the broadcast of the remgini

c—c1 busy PU bands. The last tetf(B._., »,_n,|D, ) is the c

probability that giverk; active users and one dummy user, the Pp(n) = Z P(Acn)P(c)

probability that all users will become aware of the remainin CZO

¢ — ¢1 busy PU bands for the first time after— n; slots. B c\ . C—ec

Note that conditioning upon SBM1 allows the reduction in the o z—:o P(Acn) ¢ )Pa (1—pa)=%  (20)

recursive relation in both the number of busy PU bands and
the number of active users. The computation”4B.,,| D) whereP(A.,) can be computed vi& (B, ,) using (9).
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Proposition 4.3: To computeP (B | Dk, F»,) for

1 K and1 < n; <n — 1, iterate between the following recursive
equations, starting with the initial valug(B. 1|Dy,)

<k<
= P(Fy|Dy)P(Ge.):

1k

—

C

P(Bc7n|DkaFn1) = Z P(G61,C)P(Hk1|DkaGC1-,C)P(Bch1,nfn1|Dk1) (16)
01:1 klzl
_ 1 ot _ _
P(Bc,n|Dk) = m Zl P(Fn1|Dk)P(Bc,n—m|Dk)
ny=
k n—1 ~ ~
+57 | O PELIDOP(Ben|Di, Foy)| + PIF,| D) P(Ge). (17)
77,1:1
Proof. See Appendix C.
V. ANALYSIS OF ADAPTIVE PROTOCOL Second, Proposition 4.3 can be generalized to Proposition

The main difference between the non-adaptive protocol aRe? Presented in the next page.
the adaptive protocol is that the latter allows the SUs to )
adaptively adjust the transmission probabilityin time. In ~ Compared to (17) for the non-adaptive protocol, we note
particular, the transmission probability of the dummy usdpat in (23), an additional summation ovey is required
may differ from that of a regular active user. These maKe track the transmission probability of SUs. Furthermore,
the analysis of the adaptive protocol more involved, evéfven k regular users and one dummy user in the system,
though it still follows similar approaches as that of thé&he probability that the dummy user transmits the SBM is no
non-adaptive protocol. In order to keep track of the sudengerl/(k+1), as is for the non-adaptive protocol. This is
transmission probabilities under the adaptive protodolsi Pecause the transmission probability of the dummy user can
necessary to generalize some of the previously defined svediffer from that of the regular user. We take this into acdoun
for the non-adaptive protocol. For instance, the evept N the termP(R|Dy ., Fy, -,), which is computed in (47).
is now generalized taF,,, .,, where z; is the number of  Since P(Hy, Dy, Ge, ) is sensing-dependent, (19) holds
collisions until SBM1. Clearlyz; determines the transmissionhere as well. Moreover, the equations stated in Proposttian
probability of dummy user immediately after SBM1 is senfi'® &lso applicable to the adaptive protocol. This is beethes
For the same reason, the evet is generalized td)y, ., ., ©€vVents involved are protocol-independent. The computatio
which specifies not only the number of active usersut also ©f the protocol dependent event$(F,, .,[Dy) and
the transmission probabilities, i.es, = oo for the regular P(Fn, = |Dk.2) in (21), (22), and (23), however, are less
user, andry = moa*e for the dummy user. These new evem§tra|ght_f(_)rward. They may be computed recursively follogyi
are defined as follows. Proposition 5.3.

We note that the iterative relation given in (24) is obtained
F,, .., = {SBM1 is transmitted in time slot, after by conditioning upon whether a collision occurs in the first
time slot. If no one transmits during this time slot, then the
R transmission probability of each SU remains the same, and
D,y 24,2, = {There arek; regular active users, SBM1 will occur after additionah; — 1 slots and:; collisions,
each with a transmission probability of | corresponding to the term®(F,, 1..,|Dy..,...) in (24). If a
7, = Toa”", plus a dummy user with a collision occurs during_thg first time. §Iot, then each SQ will
scale down the transmission probability hyand SBM1 will
. . occur after additionah; — 1 slots andz; — 1 collisions. This
Diy 2 = Dy 240 leads to the ternP(Fy,, 1., 1| Dr.yr1.2,41) In (24).
Ey = {No one transmits during time slot} 1 Finally, as in the case of the non-adaptive protocol, we first
E. = {A collision occurs during time slot}1 computeP (B, ) using Propos_|t|on 5.2 for t_he case when the
_ _ number of busy PU bands is fixed. Extension of the results to
R = {An SBM is transmitted by a dummy user the variable case is straightforward since (20) is alsoieaiple

Given these newly defined events, we can generali@gceP(B., ), and thusP(A.,,) from (9), are computed.
previous results for the non-adaptive protocol to the adapt

z1 collisions}

transmission probability of; = Toa™}

protocol. First, by replacing,, by F,, ., and adding an VI. NUMERICAL RESULTS
additional summation ovet;, we generalize Proposition 4.1 In this section, we provide numerical results to assess the
to Proposition 5.1 presented in the next page. performance of the proposed random access protocols. The

numerical results also serve to verify the accuracy of the
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Proposition 5.1:

K n—1n;—1
P(Bcn) - ZP Dk Z Z n1 z1|Dk ( c,n|DkaFn1,z1)
k=1 ni1=12z;=0
K-—1 ny— 1
+ Z P Z P( n1,21|Dk)P(Gc,C)
k=1 z1=0
—1
E: F...|Dk) P%DKU)—fKDKﬂl—I%GQJ) (21)
nlfl
Proof. This follows from (10) once we writd,,, = |J Fy, 2 -
21:0
Proposition 5.2:
c—1 k-1 ~
P( cnle7 nl,zl = P cl,c Hkllea cl,c)P(Bc—cl,n—nl|Dk1,z1+l) (22)
01:1 klzl

P(Bc,nlf)k,zaz) = Z Z P(Fn1,21|ﬁk,2d)P(R|ﬁk,ZdaFnth)P(Bc,n—m|f)k,zaz+Z1+l)

ni=1z;=0
n—1 n;—1
+ Z Z P(Fm-,Z1|Dk-,Zd)P(R|Dk.,ZaFn1,Z1)P(Bc7n|Dkan1-,Z1)
n1:1 Z1:0
n—1

+ Z P(Fn-,aujk-,zd)P(GC,C) (23)

Z1:0

Proof. See Appendix E.

Proposition 5.3: Starting with the initial valueP(F o|Dy..,...) = 1 — P(Eo|Dy..,..,) — P(E.| Dy ., .,), iterate, forz, =
1727"' 7n1_17

P(Fn1721|Dk,zd,zr) :P(EO|Dk,zd,zT)P(Fn1,z1|Dk,zd,zTaEO) +P(Ecujk.,zd,zr)P(Fnl,zl|Dk,zd,z,~7E1)

= P(EO|f)k,zaz,zr)P(Fn1—1,Z1|ﬁk,2d,zT) + P(E0|ﬁk,2d7zT)P(Fm—1,Z1—1|ﬁk,2d+l,zT+1) (24)
where
P(EOUA)k-,Zd,zr) = (1- Tr)k(l —Td) (25)
P(Ec|ﬁk,zd7zT) = 1-(1- Tr)k(l —7q)— (1 — TT)de — k(1 - Tr)k_lTr(l — Td)
= 1-(1- Tr)k71[1 — 70+ k7-(1 — 74)]. (26)
onceP(F,, .,|Dy..,...) is computed, we hav®(F,, .,|Dy..,) = P(F,,..,|Dk..,0) and
0 if k=12 >0
P(Fp, | Dy) = (1 —10)" 17 ifk=1,21=0 (27)

P(Fy, 2 |Dk71,070) if k> 2.
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analysis developed in Sections IV and V through compariso 1 = . &
. . X - * — Non-adaptive, analytical
with actual simulations. 0.9} | - © - Non-adaptive, simulation
+Adapt?ve, a_nalytic_al P o9
0.8} | —©— Adaptive, simulation - @~ ]
A. Smulation setup | @/@/31 |
We adopt similar simulation setup for both full-band ho; Adaptive &’
mogeneous sensing and partial-band homogeneous sens% 06 ®,g 1
Assume that there are a total 6f PU bands (including busy § o5} & Non-adaptive 1
and idle bands), and each band is busy with a probability & | |
pe = 0.8. We run simulation for many independent cognitiw%
cycles and assume that whether or not a PU band is bt § o3r 1
is independent from cycle to cycle. Hence, the probabilit® 02l |
that there are: busy PU bands in a typical cognitive cycle
equals P(c) = (9)ps(l — pa)©~¢, wherec = 0,---,C. 01} ]
Clearly, whilec remains the same within each cognitive cycle 0 ‘ ‘
it varies from cycle to cycle. The total number of SUs whi 0 5 10 15 20

- . . I : time slot
participate in the collaborative sensing/is Depending on the ime siotn

specific sensing scenario. each SU conducts either fullkbdmg- 2@ Comparisons of simulation results and analytical expressions
’ for full-band homogeneous sensing. The total number of PU bands is

§erjsing or partial-band sensing, and the SenSing _diénibqtc = 6, each PU band is busy with probability p, = 0.8. The total number
is independent from user to user. After the sensing periadSuU is K = 10, each senses all the PU bands. The detection probabil-

the SUs exchange their sensing information according ifgs are determined by [g1, ¢2] = [0.7,0.1], [r1, r2] = [0.65,0.35]. The

. . . . aptive protocol assumes an initial 7o = 0.3 and the scaling constant
either non-adaptive, or adaptive protocol. For each tino¢ s@ — 0.7. The non-adaptive protocol uses a fixed 7 = 0.3.
n, we check whether all the SUs become aware of all the
busy PU bands for that particular cognitive cycle. We run
many independent cognitive cycles and count the numbergbtocol is more advantageous in that its performance ismor
cognitive cycles during which all the SUs become aware of @hhbust to parameter variations.
the busy PU bands by time slet Then we divide it by the  Next, we study the performance of these two protocols
total number of cognitive cycles to obtain a simulated valugs functions of protocol parameters. While the performance
for the detection probability’ (n), defined in (20). of the adaptive protocol depends on the scaling constant
we find thata = 0.7 seems to be a good value for all
the test cases that we have examined. Hence, for simplicity,
we keepa = 0.7 fixed for the adaptive protocol and study
We first consider the full-band homogeneous sensing s¢Re protocol performance as a function of. Let N,(7)

B. Full-band homogeneous sensing

nario described in Section Ill-A. Here, we lét = 10, denote the minimum number of time slots required such that
C = 6, andp, = 0.8. We considerlq:, 2] = [0.7,0.1] and  pp,(n) > 7, wheren = 0.95. In Fig. 3, we plotN, (o) versus
[r1,72] = [0.65,0.35]. This approximates a mobile scenarig;, for the two protocols andV,(r,) is computed from the

where an SU is moving inside a cell and with probabilit$s  analytical formula (20). The system parameters are the same
it is at a location that is hidden from the PUs and therefoegs those used in Fig. 2, with the exception that we consider
has a low detection probability af.1. For each simulation gnother set of detection probabilitiég , ¢2] = [0.9,0.1]. It is

run, we randomly generate a set of busy PU bands accordifi@ar from Fig. 3 that, for the adaptive protocol, the optima
to p, = 0.8, and each SU also randomly chooses his detectigghgth of the signaling period, given BY,,,: = min Ny(79), is
probability following the distribution ofr, o] = [0.65,0.35]. roximately achieved over a wide ranger@% [0.15,0.4].
Based on the initial sensing outcom_c_a, the proposed rand? omparison, the non-adaptive protocol is sensitive,tand
access protocols are employed to facilitate exchange sfregn N. (7o) increases rapidly when, € [0.25,0.4]. Even though
information. Here we consider the non-adaptive protocdhwithse N, achieved by the optimized, a7re si'milar for both

70 = 0.3 and the adaptive protocol witth = 0.3 anda = 0.7. : : .
TOhrough extensive Eimulgtion cons@ting 66° simulation protocols, the adaptive protocol is more advantageousan th
N, is achieved approximately over a wide rangerg@fthus

runs, we obtainPp(n) as a function of the number of ime e protocol is more robust with respect to system parammeter

slotsn. This is compared with the analytical value CompUtngch as detection probabilities and the number of usersein th

fr_oml(fot)j. F'Ig‘ 2 dzrrlﬁnstratelzi_exrellfnt ;natghtgetweten tlaﬁstem. Another observation from Fig. 3 is that, when the
simuiated vajue an € analytical value 1or both prolaCoigeiaction probabilityfq:, ¢2] is larger (i.e., the sensing quality

Even though for this par-ticular prgtocol paramet@r: 0.3, ..0f each SU is better), the network requires a smaNgy; to
the adaptive protocol yields a h|gher detection proba/ol_htachieve the desired detection reliability.
Pp(n) than that of the non-adaptive protocol, the detection
performance of these two protocols can be similar, provided _ _

that each uses its own optimized protocol parameters. SifehPartial-band homogeneous sensing

optimization, however, becomes infeasible when some of theNext, we consider the partial-band homogeneous sensing

system parameters are unknown a priori. Hence, the adapseenario described in Section IlI-B withh = 10, C = 6,
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70
- % - Adaptive, [q,, q,]=[0.7 0.1] X
60F | —«—Non-adaptive, [q,, 0,][0.7 0.1]
- © - Adaptive, [ql, qz]:[0.9 0.1]
S0r —o— Non-adaptive, [q,, 6,]=[0.9 0.1]
:o
—, 40r . 1
=7 0 Non—adaptlve/
30 1
Adaptive
20+ 1
g - %
A L -O---¢
10 L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
T
0

Fig. 3: Comparisons of non-adaptive and adaptive protocol for full-
band homogeneous sensing. The total number of PU bands is C' = 6,
each PU band is busy with probability p, = 0.8. The total number
of SU is K = 10, each senses all the PU bands. We consider two
sets of parameters [q1,¢2] = [0.7,0.1],[r1,72] = [0.65,0.35] and
[q1,q2] = [0.9,0.1],[r1,72] = [0.65,0.35]. Here Ns(79) denotes the
minimum number of times slots required such that Pp(n) > n = 0.95.

po = 0.8. For each simulation run, every SU randomly sens

B = 4 PU bands. The detection probability of the SU
randomly generated according @, g2, ¢3] = [0.8,0.7,0.6]

and [ry, 72, r3) = [0.3,0.55,0.15]. As shown in Fig. 4, with
70 = 0.2, the analytical formula (20) matches with th

simulation results precisely for both protocols.

1 T
- * — Non—-adaptive, analytical
- © - Non-adaptive, simulation
—+— Adaptive, analytical
—O— Adaptive, simulation

&

0.9r

0.7r

0.51

0.41

0.31

detection probability PD(n)

0.2

(P L
0 5 10 15 20
time slot n

Fig. 4: Comparisons of simulation results and analytical expressions
for partial-band homogeneous sensing. The total number of PU bands
is C' = 6, and each is busy with a probability of p, = 0.8. Each SU
randomly chooses B = 4 PU bands to sense. The detection proba-
bilities are determined by [g1, g2, ¢3] = [0.8,0.7,0.6] and [r1,r2,73] =
[0.3,0.55,0.15]. The adaptive protocol assumes an initial 7o = 0.2 and
the scaling constant « = 0.7. The non-adaptive protocol uses a fixed
10 = 0.2.

For the same system setup, in Fig. 5 we examiiér)
as a function ofry for two systems withK' = 20 and

10

K =10, respectively. Similar to Fig. 3, the adaptive protocol
is shown to be more robust than the non-adaptive protocol
in that V,,, is achieved approximately over a wide range
of 79. In comparison, for the non-adaptive protoa¥l ()
increases rapidly for larger values @of. We note that the
adaptive protocol is also more robustig as N () remains
close for K = 10 and K = 20 over a wide range ofy. The
non-adaptive protocol, on the other hand, is clearly sieesit
to the values of. Another observation from Fig. 5 is that,
for the adaptive protocol, we havéV,,., Topt) =~ (19,0.1)

for K = 20 and (Nopt, Topt) =~ (20,0.18) for K = 10. Even
though the optimal transmission probability, for K = 20 is
roughly half of that forK” = 10, we note thatV,,, is slightly
smaller for X' = 20 than for KX = 10. This can be explained
as follows. First, when more SUs are involved in collabeeati
sensing, it is more likely that some of the SUs will obtain doo
sensing results. Hence, collectively, the sensing outcfume
K = 20 should be better than that fdt = 10. Second, for
K = 20, since there are more active users who will attempt
transmissions, it is necessary to reduce the transmissatrap
bility of each SU to prevent too many collisions. Nevertissle
since there are more SUs féf = 20, we still have sufficient
transmissions of broadcast messages despite the redirction
transmission probability per SU. For these two reasonsege s
that intuitively, it is reasonable thaf,,: is smaller fork” = 20

%an for Kk = 10, given better initial sensing outcomes and
%ppropriate choice of transmission probabilities. Consedly,

the advantage of largekl will be more pronounced for cases

eWhere the detection probability of each SU is inferior.

110 T T T
—¥— Non-adaptive, K=10
100 | —©— Non-adaptive, K=20 i
- % - Adaptive, K=10
90} | — © - Adaptive, K=20 K=20 E
801
701
=
—, 601
pd
501
401
30r
20+ .
K=10
10 . . . . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
T
0

Fig. 5: Comparisons of non-adaptive and adaptive protocol for partial-
band homogeneous sensing. The total number of PU bands is C' = 6,
and each is busy with a probability of p, = 0.8. Each SU ran-
domly chooses B = 4 PU bands to sense. The detection probabili-
ties are determined by [q1,¢2,¢3] = [0.8,0.7,0.6] and [r1,r2, 73] =
[0.3,0.55,0.15]. Here N4 (10) denotes the minimum number of times
slots required such that Pp(n) > n = 0.95.

In Fig. 6, we compare performance of full-band sensing
B = 6 with partial-band homogeneous sensiBg= 4 for
both adaptive and non-adaptive protocols. Here we include
two curves from Fig. 5 for partial-band sensing, and add two
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new curves for full-band sensing, using the same parameters VII. CONCLUSIONS

41,42, 93] = [0.8,0.7,0.6] @nd [r1, 72, 73] = [0.3,0.55,0.15]. |5 this paper, we presented random access protocols for
It is clear from Fig. 6 that full-band sensing requires semall gy change of sensing information among SUs for collabazativ
Ns(m) than that of partial-band sensing, because full-bangectrym sensing in cognitive radio networks. Both adaptiv
sensing provides superior sensing outcomes after themsensig non-adaptive protocols were considered. A general-math
period, and hence fewer SBMs are needed to achieve Hi@aiical framework that allows analysis of the proposed pro
target detection probability. In general, partial-bandsseg ,co|s under very broad conditions was developed and its per
is advantageous in that it can reduce the amount of sensigg accuracy was corroborated through computer simulstio
resources required. This, however, is achieved at the dostch analysis characterizes the detection reliabilityieset
increased signaling overhead, as shown in Fig. 6. through collaborative sensing, and is used to determine the
optimal protocol parameters and the length of the signaling

80 period for a cognitive radio network. The analysis devetbpe

- * ~Adaptive, K=10, B=6 allows consideration of hidden nodes and the cases whehe eac
o iﬁiiﬁiﬁpﬁgiogﬁ 86 1 SU node senses only a subset of PU bands. We believe that this

—e—Non—adaptive: K=10, B=4 is the first work that_ thorou.ghly.analyzes the rapdom access
60r 7 protocols when applied to signaling for collaborative spen

sensing in cognitive radio networks.

~, 50 ] We note that the random access protocols presented in
\'Z‘Jm this paper can be generalized in a number of ways. For
40~ 1 instance, besides “multiplicative decrease”, we can atkipt
“additive increase” so that the transmission probability
30- 1 can be increased when the signaling traffic is low. Also,
the proposed protocols are applicable to the more realistic
20" | scenario when the communication within the SU network is
imperfect, i.e., an SU might not be able to receive the SBM
10 ‘ ‘ ‘ ‘ ‘ ‘ correctly even when there is no collision, or an SU might not

0 005 01 015 Q2 025 03 035 04 pe gple to detect a collision when it occurs. Another issue
that warrants further study is the probability of false adar

Fig. 6: Comparisons of full-band and partial-band homogeneous sens- ; ; it
ing. The total number of PU bands is C' — 6, and each is busy with which is caused by the broadcast of PU activities that are

a probability of p, = 0.8. The detection probabilities are determined ~actually abs_ent. Thi_S_ issue can _be addressed by introducing
by (41, g2, 93] = [0.8,0.7,0.6] and [r1, 2, 73] = [0.3,0.55,0.15]. We let  some detection/decision mechanisms based on a set of SBMs
B = 4 for partial-band sensing and 5 = G for full-band sensing. Here  that an SU receives. Extensions of the theoretical anatgsis

N (10) denotes the minimum number of times slots required such that e L

Pp(n) >n=0.95. these more sophisticate protocols, however, are noratidvid

deserve further investigation.

D. Sdection of 7 APPENDIXA

Ideally, we want to choose the bes}, to minimize N4 (1), PROOF OF(5) AND (6)
which requires perfect knowledge of the system parameterd-€ts = {s1,--+,sp} C {t1,%2, -+ ,ic} denote theB PU
including K, C, p, and the sensing distribution. If allk bands that an SU chooses to sense. First, we write
SUs are active and< is known perfectly, we note that d
70 = 1/K gives a good approximation of,,: because it P(Xe ) = ZTiP(Xcl,c|Qi)
minimizes the probability of collision for the first time $lo i=1
of the signaling period. Wher is unknown, one should d
start with a rough estimate, preferably a larger valuerpf = ZTiZP(S)P(XC1,c|Qi7S)

i=1 s

to initialize the protocol. This is because when the initiais

too small, too few BMs will be transmitted which will increas 1 &

N, (7). The advantage of the adaptive protocol is that, it can = © > ri Y P(Xeyelgis).  (28)
automatically scale down the transmission probability dar BJi=1 s

initial 7 that is over-estimated. Hence, as shown in Fig. Gonsiderls = {s1, - ,sp}({t1,t2, - ,tc}. Let j = |[§]

and Fig. 5, the adaptive protocol is more robust in the regia@enote the number of elements ig Clearly, we must have
wherer, > 1/K. We note that for smalt, < 1/K, in which j <min(B, ¢), which gives the upper limit of the summation
casery is under-estimated, the non-adaptive protocol requires (5). For a givenj, we examine all choices of such that
a slightly smallerN,(7) than that of the adaptive protocol.the termP(X,, .|g;,s) in (28) is greater than zero. In order
This is because the adaptive protocol decreageafter each for P(X,, .|¢;,s) > 0, we must have{ty,to, -t} C
collision, which decreases the number of transmitted BMs,--- , sp} and thus the SU must senge ¢; PU bands out
further and hence yields a slight performance loss compamfdPU bands{¢.,+1, - ,t.} , and he must also senge— j

to the non-adaptive protocol. PU bands out of PU band§. 1, - ,tc}. It follows that
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j>e¢1 andj > B—(C —c¢). These specify the lower limit of
the summation in (5). Hence, the total numbegdd given by
(j:gi)(g ;). For each of sucls, we haveP(X,, c[qi,s) =
¢t (1 — g )J €1 because with probability;, the SU detects
each of the PU band§, to, - , . } , and with probability
1 — ¢; the SU fails to detect any of the— ¢; PU bands in
Is —{t1,to,-- -,
of the PU bands idty,ta, - -+ ,tc} —{t1,t2, - - ,t.} becomes
irrelevant, and hence they do not appear in (5).

Similar to (28), we writeP(Y.,) as

L
@Z}WZP(YM%S)

We definels = {s1,---,sp}({t1,t2, - ,te, } and letj =
|Is| denote the number of elements in For a givenj, we
examine all possible such thatP(Y;, |¢;,s) > 0. The total
number of suchs equals(cjl)(C 1), and P(Y, |gi,s) = (1—

¢).

P(Ye,) (29)

APPENDIXB
PROOF OFPROPOSITION4.1

First, we have (30), shown at the top of next page.
Conditioned upor¥,,, we note that forB. ,, to occur, allc

te, }- The detection results of the SU for any

12

It then follows from (33) and (35) that

P(Dg)P(Ben| D, )
= P(Dk)P(U|Dk)P(Gec| Dk, U)

= P(DgU)|1 - %(1 — P(Geye)) (30)
= P(DKU) - P(DK)(l - P(Gc,c))'
APPENDIXC

PROOF OFPROPOSITION4.3

Using the law of total probability, we obtain equation (37)
shown on the next page. The second line of (37) follows
from the Bayes’ rule and the third line follows from (i)
P(Ge, ¢|Dk, Fn,) = P(G,, ) since the number of the re-
ported busy PU bands by an active user does not depend on
when SBM1 has been transmitted and how many active users
existed; (i) P(Hk1|Dk,Fn17Gc1,c) P(Hk1|Dk,Gc1,c)
since the number of the remaining active users does not
depend on when SBM1 has been transmitted; and (iii) the
identity P(Be| Dk, Fyy, Gey.oo Hiy) = P(Be—ey.nn, | Diy)
follows since after SBM1, given the values ef, ¢; and
k1, the signaling continues witla — ¢; busy PU bands to
be broadcasted; — n; time slots remaining before reaching
the time slotn, and k; active users with new information to

busy PU bands should be reported by SBM1. Hence, we hay@adcast plus the dummy user that transmitted SBM1.

P(Bcn|Dk, Fy) = P(Ge,e) foreveryl <k <K —1.

(31)
Therefore, to prove (10), it is sufficient to show that
P(Dg)P(Bcn|Dk, Fy)
= P(DgU) — P(Dk)(1 — P(Gee)).  (32)

To develop (17), we first note that for even k£ < K —1,
we have

n—1

Z P(Fnllbk)P(BC,nlf)kaFnl)

n1:1

+P(F,|Dy)P(Ge.c).

P(Be.n|Dy)

(38)

To prove (32), we leU/ denote the complement of the evenNext, we have

U and note that
P(Bc,n|DK7 Fn) =
—|—P(U|DK,
= P(U|Dk)P(Ge.c| Dk,

P(U|DK1 Fn)P(BC,n|DK7 Fna U)
Fn)P(Bc7n|DK7 FnaU)
U),

where the second line follows since (B(U|Dg, F,) =
P(U|Dk) because U is independent of F,. (ii)
( cn|DKaFnaU)—P( cc|DKa )
upon £, and U, in order for B.,, to occur, the SBM1 must
contain alle busy PU bands. and (il (B...| Dk, Fy, U) = 0.
Moreover, since

(33)

P(Ge¢, DgU)
P(DgU)
P(Dg)P(G., U|Dk)
P(DgU)
P(DK)P(G01,C)
P(DgU) ’

P(G,,o|Dk,U) =

(34)

we have

P(Gc,chKa ) =1- 201:11 (Gcl,c|DKa U)

=1- P (1 - P(G...)).

P(DgU) (35)

P(Ben|Dy, Fy,) P(R|Dy, Fp,)P(Ben|Dy, Fp,, R)
+P(E|Dk, F,)P(Ben| Dy, Foy , R)

P(Bc,n—n1 |Dk)

k—l—l

k
+—P( c,n|DkaFn1)-

kE+1 (39)

because condmoned'” writing the second line of (39), we note that (i) the

identities P(R|Dy, F,,,) = & and P(R|Dy, Fy,) = 5
follow since we assume that the dummy user and the regular
active users transmit BMs with the same probability,

(i) P(Ben|Di,Fnys R) = P(Benn,|Di) since when the
dummy user sends an SBM in time slof, the only change

in the state of network is that the remaining time slots left f
signaling becomes — ny; and (iii) P(BC_,n|Dk,Fm,}_%) =
P(B¢n|Dy, Fp,) since assuming that SBM1 was transmitted
by a regular user, the presence of the dummy user becomes
irrelevant to the behavior of the network. This is becausaup
receiving the SBM, the dummy user stops transmission as this
SBM contains the information that is carried by the dummy
user. The regular user who just sent the SBM will now become
the dummy user. We can then substitute (39) in (38) to obtain
(17).
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K K K
P(B.n) = P( U B. > Z (BemDi) = P(Dy)P(Ben| Di)
k=1 k=1 k=1
K n—1
= Z P(Dy) ( P(F,,|Dy)P(Ben|Dy, Fry) + P(F,|Dy)P(Be,n| Dy, Fn)>
k=1 Tll:l
K n—1 K—-1
= Zp(Dk)( > P(F,,|Dy)P(Be.n|Dy, Fn,) ) + ( P(F,|Dy)P(B c7n|Dk,Fn))
k=1 ni=1 k=1
+P(Dg)P(F,|Dr)P(Ben|Di, Fr). (30)
c—1 k-1
P(Bc,n|DkaFn1) - Z Z P(Gcl,ch1|DkaFnl)P(Bc,n|DkaFnlchl,mHkl)
01:1 klzl
c—1 k—1
= Z ZP( 010|Dk7Fn1) (Hk1|DkaFn1aGC1C) ( Cn|Dk7Fn1ch1chk1)
01:1 klzl
c—1 k-1
= Z Z P(Gey,e) P(Hi, | Dy Gey o) P(Be—cyn—ni [Dry) (37)
01:1 klzl
APPENDIXD Next, similar to (38), we have for evety< k < K — 1,

PROOF OFPROPOSITION4.2
Let us define the events

Z = {An SU is active at the end of the sensing
period
W.,.. = {By the end of the sensing period an SU
detectse; out of ¢ busy PU bands
W1 = {An SU detects at least one busy PU band
out of ¢ — ¢; busy PU bands

Using these definitions, one finds that

P(Dy,) = (ij) P(2)] 1-P2)]*" (40
P(DgU) = P(Dg) — P(DgU) = P(Dg) — P(T) (41)
P(Ger) = PV, o|2) = ) = 20 a2y

and
P(Qe,.c) = POW1|Z) = P %)Z ) _ ];fgl)). (43)
Noting thatP(Z) = 1—P(Y.), P(Dx) = [P(2)]", P(T) =

[P(X.0)]", P(We, o) = (°)P(X,, ), and P(Wy) = 1 —

c1

P(Y._.,), the above results can be written in the forms (12)

(15).
APPENDIXE

PROOF OFPROPOSITIONS.2
Similar to (37), we have

P(BC7H|D7€’FH1-,Z1):Z¢:1 1Zk1 1 ( c1, C)

XP(HlﬁleaG01,C)P(Bc—01,n—n1|Dk1,Z1+1)- (44)

P( cn|Dk Zd)

= an 1 o P( ni, Zl|ﬁk7zd)P(BC7n|ﬁk;Zd’Fnhzl)

zZ1= =0
+Zz1 =0 ( n7zllﬁk7zd)P(GC;C)' (45)

The dual of (39) is written as

P(Ben|Di 2y Fry2y)
= P(R|Dy.., F, 2.)P(Ben|Dpzy, Fo, 2y R)
+P(R| Dy s Fuy 20 ) P(Besn| D 2 Fuy 15 R)
= P(R|Dk7Zd,Fnhzl)P(Bc,nf’nl|Dk72d+21+1)

+P(§|l§kazd’Fnlyzl)P(BC7n|Dk’Fn1-,Zl) (46)

Conditioned uporﬁk,zd andF,,, .,, the transmission proba-
bility of the dummy user during time slat; must bergad =1
and the transmission probability of a regular user must be
Toa*t. Hence, we obtain (47) shown at the top of the next

page.
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