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Abstract. This paper deals with the critical point of three-dimensional bootstrap percola-

tion-like cellular automata. Some general sufficient or necessary conditions for pc = 0 are

obtained. In the case of pc > 0, some explicit upper and lower bounds are provided in terms
of the critical value of oriented site percolation.

1. Introduction.

This section consists of two parts. In part 1, we introduce some models which will be
dealt with in the paper. In part 2, we review some related known results.

1. Models. We recall the cellular automaton models introduced by Schonmann [1].
The Lattice. Consider the lattice Z

d with the �1-norm ‖x‖ =
∑d

i=1 |xi|. Denote by
Nx(x ∈ Z

d) the nearest neighbors of x: Nx = {y ∈ Z
d; ‖y − x‖ = 1}. Set N = N0. The

models studied in the paper are specified case by case by a class D of some subsets of
N . Throughout the paper, we assume that D possesses the monotonicity: if A ∈ D and
A ⊂ B, then B ∈ D.

The Systems. Consider ηt : Z
d → {0, 1} with discrete time t = 0, 1, 2, · · · . We say that

the site x is empty (resp. occupied) at time t, if ηt(x) = 0 (resp. 1). The system always
starts (at t = 0) from a translation invariant product random field; that is, the random
variables η0(x), x ∈ Z

d are i.i.d. with distribution P(η0(x) = 1) = p. We call p ∈ [0, 1] the
initial density. The system then evolves according to the following sort of deterministic
rules:

(1) If ηt(x) = 1, then ηt+1(x) = 1 (1’s are stable).
(2) If ηt(x) = 0 and {y : ηt(y) = 1}∩Nx ∈ Dx, then ηt+1(x) = 1, otherwise ηt+1(x) = 0.

The standard basis in Z
d are denoted by e1 = (1, 0, 0, · · · , 0), · · · , ed = (0, 0, 0, · · · , 1).

Next, denote by |A| the cardinality of set A.
Examples. (1) Bootstrap percolation. Take � ∈ {0, · · · , 2d} and D = {A ⊂ N : |A| ≥

�}. In words, a 0 becomes 1 if at least � of its neighbors are 1’s.
(2) The basic model. It is the particular case of bootstrap percolation with � = d.
(3) The modified basic model. D = {A ⊂ N : A ∩ {−ei,+ei} �= ∅ for i = 1, · · · , d}.

In this model a 0 becomes a 1 if in each one of the d coordinates directions it has at least
one neighbor which is a 1.

(4) Oriented models. Take (a1, · · · , ad) ∈ {−1,+1}d. For each one of the 2d choices
we have one of the oriented models defined by D = {A ⊂ N : {a1e1, a2e2, · · · , aded} ⊂ A}.
In the case that ai = +1 for i = 1, · · · , d, the model is called the basic oriented model.

Given two models specified by D1 and D2 respectively, we say that the latter dom-
inates the former if D1 ⊂ D2. Informally, if a 0 becomes a 1 in the former, the same
occurs in the latter. The following statements are clearly true. The bootstrap percolation
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model with � = �1, dominates the one with � = �2 if �1 ≤ �2. The basic model dominates
the modified basic model which then dominates all the oriented models.

Problems. Endow {0, 1}Z
d

with the product topology and denote by Σ its Borel σ-
algebra. Let P be the set of probability measures on ({0, 1}Z

d

,Σ). On P we define the
following partial order. If μ, ν ∈ U , we say that ν dominates μ and write μ ≤ ν if∫

f(η)dμ(η) ≤ ∫
f(η)dν(η) for every continuous nondecreasing function f : {0, 1}Z

d → R.
Here, the ordinary partial order in used on {0, 1}Z

d

: η ≤ η′ iff η(x) ≤ η′(x) for all x ∈ Z
d.

Let μp
0 = (translation invariant product measure with density p) be the initial distribution

on {0, 1}Z
d

and let μp
t be the corresponding distribution of the process (ηt : t ≥ 0). at time

t. Since the 1′s are stable we have μp
0 ≤ μp

1 ≤ μp
2 ≤ · · · . Since {0, 1}Z

d

is compact and so
is P, it follows that μp

t converges weakly to a probability distribution μp ∈ P. Clearly, μp

is translation invariant. The asymptotic density is defined by ρ(p) = μp{η : η(0) = 1}. By
attractiveness, we have μp1 ≤ μp2 whenever p1 ≤ p2. In particular ρ(p1) ≤ ρ(p2).

We are mainly interested in the following problems.
1) When is it the case that ρ(p) = 1? Clearly ρ(0) = 0 and ρ(1) = 1. From the

monotonicity of ρ, it is natural to define pc = inf{p ∈ [0, 1] : ρ(p) = 1}.
2) Define the random time T = inf{t ≥ 0 : ηt(0) = 1}. The question is whether there

exists constants γ,C ∈ (0,∞) such that P(T > t) ≤ Ce−γt. We may define for every
p, γ(p) = sup{γ ≥ 0 : there exists a C < ∞ such that P(T > t) ≤ Ce−γt}. Since γ is
monotonic, it is natural to define another critical point πc = inf{p ∈ [0, 1] : γ(p) > 0}.
Clearly, we have pc ≤ πc.

2. Some Known Results.
It is not difficult to show that if a model does not dominate any oriented model, then

it has pc = πc = 1[1]. On the other hand, for models that dominate some oriented models,
pc ≤ πc < 1. Thus when we consider the critical values pc and πc, we are only interested
in those models which dominate some oriented models.

In order to state the further results, we need the close related oriented site percolation
model. Again, each site x ∈ Z

d is occupied independently with probability p. We say
that (x1, x2, · · · , xn) is an oriented path in Z

d with length n if xi ∈ Z
d, i = 1, · · · , n and

either n = 1 or xi+1 − xi ∈ {e1, · · · , ed}, i = 1, · · · , n − 1. Define
p∗c = inf{p ∈ [0, 1] : P[there is an infinite oriented path] > 0}.

Then it is well known that p∗c = 1 when d = 1 and 0 < p∗c < 1 when d ≥ 2. Certainly, all
the critical values pc, πc and p∗c depend on the dimension d. So sometimes, we write p∗c(d)
instead of p∗c if it is necessary.

The following result is taken from [1; Proposition 4.2 and Theorem 3.1]):

Theorem 1.1. (1) For the oriented models, we have 0 < pc = πc = 1 − p∗c < 1.
(2) For the modified basic model, we have pc = πc = 0 in all dimensions.

Schonmann[2] presented a classification of two-dimensional models.

Theorem 1.2. Let d = 2. Assume that {e1, e2} ∈ D.
(1) If at least one of the sets {−e1, e2}, {e1,−e2} is in D, then pc = 0.
(2) If neither of the sets in (1) belongs to D, then we have 1 − p

∗1/4
c ≤ pc ≤ 1 − p∗c .

Except the results listed above, our knowledge about the critical values pc and πc are
far away to be complete. Indeed, the main aim of the paper is to present some sufficient
or necessary conditions for pc = 0 (Theorem 2.1 and Theorem 2.4) in three-dimensional
situation. Some analogs of Theorem 1.2 (2) are also presented. Next, one can also study
the critical value pc = pc(d, L) replacing Z

d with d-dimensional hypercubic lattice with
large linear size L. For instance, Aizenman and Lebowitz[4] showed that the finite-size
scaling of the bootstrap percolation model with � = 2, d = 2 is pc ∼ O(1/ log L). For the
bootstrap percolation model with � = 2, d = 3, van Enter, Adler and Duarte[5] showed
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that the corresponding scaling is pc ∼ O(1/ log(log L)). Furthermore, they showed[6] that
the finite scaling of the Schonmann’s two-dimensional directed model in Theorem 1.2 sat-
isfies pc/(log pc)2 < O(1/ log L). Our Theorem 2.3 below says that for the model given in
Theorem 2.1, we have pc ∼ O(1/ log(log L)).

2. Critical Points for Three–dimensional Models

We introduce the characteristic set D∗:

D∗ = {A ∈ D : for every B ⊂ A and B �= A, we have B /∈ D}.
Clearly, both D and D∗ can be used to describe (or specify) the growth rules of the model.
Actually, each representation has its own advantages, we will use both of them according
to our convenience.

Theorem 2.1. Let D∗
0 denote the characteristic set of the three-dimensional modified basic

model, that is D∗
0 = {{a1e1, a2e2, a3e3}, a1, a2, a3 = 1,−1}. Then for every model obtained

by subtracting an arbitrary element in D∗
0 , we have pc = 0.

To prove Theorem 2.1, we need some notations.
(1) We say that a finite set Γ ⊂ Z

d is internally spanned by the configuration η ∈
{0, 1}Z

d

if starting from the configuration ηΓ: ηΓ(x) = η(x) if x ∈ Γ and = 0 otherwise,
and letting the system evolve according to the d-dimensional dynamics restricted to Γ, Γ
will eventually become completely occupied. Let Qd

N = {x ∈ Z
d : |xi| ≤ N, i = 1, · · · , d}.

Define

Rd(N, p) = P[Qd
N is internally spanned by a random configuration chosen

according to a product measure with density p].

For simplicity, in what follows, we write R(N, p) = R2(N, p).
(2) We introduce the following sets:

A(i, k) = {(x1, x2, x3) ∈ Z
3 : x1 = i, 0 ≤ x2, x3 ≤ k}

B(i1, i2, k) = {(x1, x2, x3) ∈ Z
3 : i1 ≤ x1 ≤ i2, 0 ≤ x2 ≤ i2 − i1, x3 = k}

C(i1, i2, k) = {(x1, x2, x3) ∈ Z
3 : i1 ≤ x1 ≤ i2, x2 = k, 0 ≤ x3 ≤ i2 − i1 + 1}

D(i1, i2, k) = {(x1, x2, x3) ∈ Z
3 : i1 ≤ x1 ≤ i2, x2 = k, 0 ≤ x3 ≤ i2 − i1}, k ∈ N.

(3) Define a sequence {mk} as follows: m1 = −1, mk+1 = mk − k, k ≥ 1. That is,
mk = −k(k − 1)/2 − 1.

Proof of Theorem 2.1. Because of the geometric symmetry, we need only to consider the
case that D∗ = D∗

0 \ {−e1, e2, e3}.
a) First, we prove that if A(mk, k) is (completely) occupied at time t = t0, then

Prob.[A(mk+1, k+1) will become occupied at some time t ≥ t0] ≥ [1−(1−p)k]R(k, p)k+2.

Here we write “Prob.” rather than “P” since the probability is conditional.
According to our assumption, {{e1, a2e2, a3e3}, a2, a3 = 1,−1} ⊂ D∗. Thus, if

A(mk, k) is occupied at t = t0, then

Prob.[A(mk − 1, k) will become occupied at some t = t1 ≥ t0] ≥ R(k, p).

Similarly, we have

Prob.[All A(mk − i, k), 1 ≤ i ≤ k will become occupied at some time t = t2] ≥ R(k, p)k.
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Next, because {{a1e1, a2e2,−e3}, a1, a2 = 1,−1} ⊂ D∗, if all A(mk − i, k), 1 ≤ i ≤ k are
occupied at t = t2, then at the same time B(mk+1,mk, k) is also occupied and

Prob.[B(mk+1,mk, k + 1) will be occupied at some t = t3 ≥ t2] ≥ R(k, p).

Assume that A(mk − i, k), 1 ≤ i ≤ k and B(mk+1,mk, k + 1) are all occupied at time
t = t3. Then C(mk+1,mk, k) is also occupied at the same time. We now claim that

Prob.[C(mk+1,mk, k+1) will become occupied at some t = t4 ≥ t3] ≥ [1−(1−p)k]R(k, p).

Actually, if at some time t, D(mk+1,mk, k + 1) is occupied and meantime there is at
least one occupied site on the segment C(mk+1,mk, k + 1) \ D(mk+1,mk, k + 1), then
C(mk+1,mk, k + 1) must be occupied at some t = t4. Here we also have to use the facts
that {{a1e1,−e2, a3e3}, a1, a3 = 1,−1} ⊂ D∗ and at t = t3, C(mk+1,mk, k) is occupied.
So at t = t4, A(mk+1, k + 1) becomes occupied. ¿From the above statements, our desired
assertion easily follows:

Prob.[A(mk+1, k + 1) will be occupied at some t ≥ t0]

≥ R(k, p)kR(k, p)[1 − (1 − p)k]R(k, p)

= [1 − (1 − p)k]R(k, p)k+2.

b) Let
α(p) = P[ all A(mk, k), k ≥ 1 will become occupied].

We now prove that α(p) > 0. From a), we have

α(p) ≥ p4Π∞
k=1(1 − (1 − p)k)R(k, p)k+2,

where p4 = P[A(−1, 1) is occupied at t = 0].
It is known that for two-dimensional modified basic model, there exists γ(p) > 0 and

C(p) < ∞ such that
1 − R(k, p) ≤ C(p) exp[−γ(p)k]

for every p > 0 and k ∈ N. From this, it is not difficult to show that log α(p) > −∞, which
implies α(p) > 0.

c) The origin is said to be a good site in the configuration η if the system starts from
η, all the sets A(mk, k), k = 1, 2, · · · will become occupied eventually. This implies the
negative half line (−k, 0, 0), k = 1, 2, · · · will be finally occupied. Put B = {η : the origin
is a good site in η}. Define the shift operator T i : T i(η)(x) = η(x + ie1), x ∈ Z

3. By the
ergodicity of product measure, we have

lim
n→∞

1
n

n∑
i=0

1B(T iη) −→ μ(B) ≥ α(p) > 0.

This means that with probability one, there exists an i0 > 0 such that T i0(η) ∈ B. It
follows that the half x-axis (x1, 0, 0), x1 ≤ i0 − 1 will be occupied. In particular, the origin
will be occupied. This completes the proof of pc = 0. �
Theorem 2.3. For the models introduced in Theorem 2.1, we have the threshold scaling
O

(
1/ log(log L)

)
for a finite system of size L.

Proof. Here we modify the definition of a good site given in the proof of Theorem 2.1.
Given p, the origin is called a good site in the configuration η if the sets A(mk, k), k =
1, 2, · · · , [e1/p] are occupied simultaneously in η and the system starts from η, all the sets
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A(mk, k), k = [e1/p]+1, [e1/p]+2, · · · will become occupied eventually. Similarly, we define
x ∈ Z

d to be a good site if the origin is a good site in the configuration θ−xη. Also from
the proof of Theorem 2.1, we see that the probability of a particular point is a good site in
the present sense is at least α(p) = Π[e1/p]

k=1 p(k+1)2Π∞
k=[e1/p]

[1 − (1 − p)k]R(k, p)k+2. Hence,

log α(p) = (log p)
( [e1/p]∑

k=1

(k + 1)2
)

+
∞∑

k=[e1/p]

log[1 − (1 − p)k] +
∞∑

k=[e1/p]

(k + 2) log R(k, p).

Now we discuss the asymptotics of these three terms respectively as p → 0.
Firstly,

(log p)
( [e1/p]∑

k=1

(k + 1)2
)

= (log p)
([e1/p] + 1)([e1/p] + 2)(2[e1/p] + 3) − 1

6
∼ O

(
(log p)e3/p

)
.

Secondly,
∑∞

k=[e1/p] log(1−(1−p)k) ∼ ∑∞
k=[e1/p](1−p)k ∼ O(1/p). Thirdly, by [3; Theorem

2], we have
1 − R(N, p)

2(2N + 1)(1 − p)2N+1
→ 1 as N → ∞. Therefore

∑∞
k=[e1/p](k + 2) log R(k, p) =

∑∞
k=[e1/p](k + 2) log[1 − (1 − R(k, p))]

= O
( ∑∞

k=[e1/p](k + 2)[1 − R(k, p)]
)

= O
( ∑∞

k=[e1/p](k + 2)2(2k + 1)(1 − p)2k+1
)

= O
( ∑∞

k=2 k(k − 1)[(1 − p)2]k−2
)

= O
(
p−3

)
. (2.1)

The last step holds because if we define f(r) =
∑∞

k=1 rk = −1 + 1/(1 − r), then f ′(r) =∑∞
k=1 krk−1 = 1/(1 − r)2 and f ′′(r) =

∑∞
k=2 k(k − 1)rk−2 = 2/(1 − r)3. Let r = (1 − p)2,

then we easily get (2.1).
Thus the first term gives the asymptotics

log α(p) ∼ O
(
(log p)e3/p

)
as p → 0. (2.2)

Now we invert (2.2) to obtain the system size L3 ∼ 1/α(p) that is needed to contain at least
one critical wedge in the proof of Theorem 2.1. This gives us p ∼ O

(
1/ log(log L)

)
. �

In the remaining part of this section we shall give some necessary conditions for pc =
0. As we mentioned before, we need only to study the models which dominate three-
dimensional oriented basic model, namely {e1, e2, e3} ∈ D. It easily follows for these
models pc ≤ 1 − p∗c(3).

Theorem 2.4. Let {e1, e2, e3} ∈ D. For a model with pc = 0, it is necessary that all of
the following three conditions holds.

(1) At least one of the sets {e1, e2,−e3}, {e1,−e2,−e3}, {−e1, e2, e3}, {−e1,−e2, e3}
belongs to D.

(2) At least one of the sets {e1, e2,−e3}, {e1,−e2, e3}, {−e1, e2,−e3}, {−e1,−e2, e3}
belongs to D.

(3) At least one of the sets {e1,−e2, e3}, {e1,−e2,−e3}, {−e1, e2, e3}, {−e1, e2,−e3}
belongs to D.
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For those models which do not satisfy any of the above conditions, we have

1 − p∗c(2)
1/8 ≤ pc ≤ 1 − p∗c(3). (2.3)

Proof. Because the geometric symmetry of e1, e2 and e3, we need only to consider the
model which does not satisfy (1) and show that (2.3) holds. First, we introduce some
notation. Define Q0 = {x ∈ Z3, xi = 0, 1, i = 1, 2, 3}. For every k = (k1, k2, k3) ∈ Z3, let
Qk = Q(k1, k2, k3) = Q0 + 2k.

Consider a new lattice in Z
2 with coordinates k1, k3 and declare the site (k1, k3) of this

new lattice to be vacant at time t if and only if all of the eight sites in Qk are vacant at the
same time in the original lattice, where k = (k1, 0, k3). Assume that at time t = 0, double-
oriented percolation of vacant sites occurs in the new lattice. This means that there is a
doubly infinite chain of sites, · · · , z−2, z−1, z0, z1, z2, · · · in the configuration η such that
z0 = 0, η(zi) = 0 and zi+1−zi = (1, 0) or (0, 1). Then we show that under our assumption,
each site of this infinite vacant chain will remain vacant at any later time. Equivalently, in
our original lattice, all the cubes Qk corresponding to the infinite chain in the new lattice
will remain vacant at all time as well. The proof goes as follows: At t = 0, assume that
(k1, k3) belongs to the infinite vacant chain in the new lattice. Then, according to our
definition, the cube Qk, where k = (k1, 0, k3), is vacant at time t = 0. Moreover, based on
the structure of the neighbor cubes of Qk, one of the following four cases should happen:

(1) Q(k1 − 1, 0, k3) and Q(k1 + 1, 0, k3) are vacant.
(2) Q(k1, 0, k3 − 1) and Q(k1, 0, k3 + 1) are vacant.
(3) Q(k1, 0, k3 − 1) and Q(k1 + 1, 0, k3) are vacant.
(4) Q(k1 − 1, 0, k3) and Q(k1, 0, k3 + 1) are vacant.

In case (1), all the eight sites in Q(k1, 0, k3) remain vacant at t = 1 because none of
the sets {a1e2, a2e3}, a1, a2 = 1,−1 belongs to D. This follows from the property of D
mentioned at the beginning of the paper. The same occurs in case (2), since none of the
sets (a1e1, a2e2), a1, a2 = 1, −1 belongs to D. In case (3), in Q(k1, 0, k3), the two sites
(2k1, 0, 2k3 + 1), (2k1, 1, 2k3 + 1) remain vacant at t = 1 because neither of the two sets
{−e1,−e2, e3}, {−e1, e2, e3} belongs to D. Other sites remain vacant at t = 1 because none
of the sets {a1e2, a2e3}, {a1e1, a2e2}, a1, a2 = 1, −1 belongs to D. Similarly, in case (4),
consider Q(k1, 0, k3), the two sites (2k1 + 1, 0, 2k3), (2k1 + 1, 1, 2k3) remain vacant at t = 1
because neither of the two sets {e1,−e2,−e3}, {e1, e2,−e3} belongs to D. Other sites also
remain vacant at t = 1 because none of the sets {a1e2, a2e3}, {a1e1, a2e2}, a1, a2 = 1, −1
belongs to D.

Thus, we have seen that for every (k1, k3) belongs to the infinite vacant chain in the
new lattice at t = 0, the corresponding cubic Q(k1, 0, k3) in the original lattice will remain
to be vacant at t = 1. Induction on t leads to the conclusion that if doubly-oriented
percolation occurs in our new lattice, it will remain empty later. In other words, if p
satisfies (1 − p)8 ≥ p∗c(2), then we will have p ≤ pc. This implies our assertion. �

The next result follows immediately from Theorem 2.4 but it is not a consequence of
Theorem 2.6 below.

Corollary 2.5. If D∗ = {{e1, e2, e3}, {e1,−e2, e3}, {−e1, e2,−e3}, {−e1,−e2,−e3}}, then
we have 1 − p∗c(2)

1/8 ≤ pc ≤ 1 − p∗c(3).

Theorem 2.6. A necessary condition for pc = 0 is as follows: for every pair of i, j, (1 ≤
i �= j ≤ 3), there exists an A ∈ D such that A ∩ {±ei,±ej} = {−ei, ej} or {ei,−ej}. For
those models which do not satisfy the above condition, we have 1−p∗c(2)1/4 ≤ pc ≤ 1−p∗c(3).

Proof. Again, because of geometric symmetry, we need only to consider the case of i = 1
and j = 2. Our method is to compare our model with a two-dimensional bootstrap
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percolation model which is intuitively the projection of our model on e1 × e2-plane. We
denote by D′ this new two-dimensional model, where

D′ = {A ⊂ {±e1,±e2} : there exists B ∈ D such that A = B ∩ {±e1,±e2}}.

Now assume that neither of the two sets: {e1,−e2}, {−e1, e2} belongs to D′. It then follows
from Theorem 1.2 that this two-dimensional model has the critical value pc ≥ 1−p∗c(2)1/4.
Since it dominates our original model, the assertion of the theorem easily follows. �
Corollary 2.7. If D∗ = {{e1, e2, e3}, {e1,−e2, e3}, {−e1, e2,−e3}}, then we have
1 − p∗c(2)1/4 ≤ pc ≤ 1 − p∗c(3).

Proof. Since there does not exist a set A ∈ D such that A ∩ {±e1,±e3} = {−e1, e3} or
{e1,−e3}, the corollary easily follows from Theorem 2.6. �
Theorem 2.8 ( 1/4 oriented model). For each of the models:

(1) D∗ = {{e1, e2, e3}, {e1, e2,−e3}}
(2) D∗ = {{e1, e2, e3}, {−e1, e2, e3}}
(3) D∗ = {{e1, e2, e3}, {e1,−e2, e3}}

we have 1 − p∗c(2) ≤ pc ≤ 1 − p∗c(3).

Proof. Here we prove the statement (1) only since the proof for the other models is similar.
Actually, our model is dominated by the basic oriented model in the e1 × e2-plane, whose
critical value pc is 1 − p∗c(2) by Theorem 1.1 (1). �
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