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Abstract— In this paper, we investigate the application of
nonbinary low density parity check (LDPC) codes over Galois
field GF(q) for multiple-input multiple-output (MIMO) fading
channels. Depending on the size of the Galois field GF(q), we
study both iterative systems which employ joint MIMO detection
and channel decoding, and non-iterative systems which employ
separate MIMO detection and channel decoding. Based on the
concept of coset LDPC code and coset MIMO detector, we
develop extrinsic information transfer chart (EXIT) appro aches
for the design of nonbinary LDPC codes for MIMO channels.
Simulation results show that the proposed systems employing the
designed nonbinary LDPC codes achieve a superior performance
than that of the best optimized binary LDPC codes at a reduced
complexity.

I. I NTRODUCTION

In recent years, multiple antenna transmission has been
identified as one of the most practical methods to combat
fading and increase the capacity of wireless channels. There
has been much research on designing good channel codes
such as turbo codes and low density parity check (LDPC)
codes to realize the capacity gain promised by the multiple
antenna channel. In particular, LDPC codes, original devised
by Gallager in 1963 [1][2] have attracted substantial interest
due to their capacity approaching performance and great
flexibility in code design and practical implementation. Ithas
been shown that well designed irregular LDPC codes can
achieve within a fraction of a dB of the Shannon limit for a
wide class of channels [3]. In [4], the design of binary irreg-
ular LDPC codes is investigated for multiple-input multiple-
output (MIMO) channels. The optimized binary LDPC codes
demonstrate excellent capacity-approaching performances for
MIMO channels. Most research [4], [5], however, focuses on
the design and construction of binary LDPC codes.

Nonbinary LDPC codes were first investigated by Davey
and Mackay in 1998 [6]. It is shown that nonbinary LDPC
codes constructed over higher order Galois fields may obtain
superior performance than the binary codes. Recently, irregular
nonbinary LDPC codes over GF(q) are constructed by Huet
al. using the progressive edge growth (PEG) algorithm [7].
The performance of these codes improves as the size of the
Galois fieldq increases. Furthermore, it is shown that the best
nonbinary codes become almost regular for large values of
q [7]. In recent work, nonbinary LDPC codes are applied
to the nonbinary AWGN channel [8] and MIMO channels
[9]. These codes demonstrate better performance than that of
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the binary LDPC codes when concatenated with multilevel
codes (MLC) [5] or used in conjunction with bit-interleaved
coded modulation with iterative decoding (BICM-ID) [10][11].
However, these work do not address the code design issue of
the nonbinary LDPC codes.

In previous work [8], EXIT chart is used to design nonbi-
nary LDPC codes for AWGN channels and discrete memory-
less channels. In this paper, we first extend the EXIT chart
approach to the MIMO channel and consider a nonbinary
iterative system employing joint MIMO detection and channel
decoding. We propose two general methods based on open-
loop simulation to compute the EXIT curves. Compared to
the method in [8], we relax the Gaussian assumption on the
density of the logarithmic likelihood ratios (LLR) to obtain
more accurate design of nonbinary LDPC codes and better
prediction of the convergence threshold. We also introduce
the concept of MIMO coset detector which makes it feasible
to compute of the EXIT curves for the MIMO detector. To the
best of our knowledge, this is the first work to study the design
of nonbinary LDPC codes for MIMO channels. Simulation
results demonstrate that the nonbinary LDPC codes designed
by the proposed methods outperform the best optimized binary
LDPC codes in both performance and complexity. In addition
to the iterative system, we also propose a non-iterative system
employing LDPC codes over large Galois field. The non-
iterative system leads to excellent performance at the costof
an increased decoding complexity.

This paper is organized as follows. In Section II, we intro-
duce the channel model. In Section III, we propose an iterative
system where a symbol-wise MIMO detector is concatenated
with the nonbinary LDPC codes. Nonbinary LDPC design
using EXIT chart is discussed in Section IV. In Section V, we
consider an alternative non-iterative system where a nonbinary
LDPC over a large Galois field GF(q) is employed. Simulation
results and performance comparisons are presented in Section
VI. Complexity analysis are given in Section VII. Finally, we
conclude in Section VIII.

II. CHANNEL MODEL

Consider a MIMO channel withNt transmit antennas and
Nr receive antennas. The channel model can be described as

y = Hs + n (1)

wheres ∈ C
Nt , y ∈ C

Nr , andn ∈ C
Nr are complex column

vectors that represent the transmitted signal, received signal,
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Fig. 1. A schematic block diagram of the iterative system.

and channel noise respectively;H is the Nr by Nt channel
fading matrix with independent and identical distributed (i.i.d.)
Rayleigh fading entries; the noise vectorn has i.i.d. complex
Gaussian entries with zero mean and varianceσ2.

Throughout this paper, we assume that the fading matrixH

is perfectly known at the receiver, but not at the transmitter.
We also assume that each entry of the transmitted signal vector
s is chosen independently from a finite constellation set such
as the quadrature amplitude modulation (QAM).

In the next section, we will first investigate an iterative
system that employs nonbinary LDPC codes over GF(q) and
performs joint MIMO detection and channel decoding.

III. I TERATIVE SYSTEM WITH JOINT DETECTION AND

CHANNEL DECODING

Fig. 1 presents the block diagram of the proposed iterative
system using nonbinary LDPC codes. At the transmitter side,
a sequence of information bits{bi} is mapped to a sequence
of nonbinary symbols in GF(q), whereq = 2p (everyp bits are
mapped to a single nonbinary symbol), through a bit-to-symbol
mapperg, before passing to the nonbinary LDPC encoder.
For the iterative system considered here, we assume that the
constellation size is the same as the size of the Galois field
q. For instance, if the nonbinary LDPC code is over GF(16),
then we may choose to use the 16 QAM constellation. At the
output of the LDPC encoder, each coded nonbinary symbol
β ∈ GF(q) is mapped to a constellation symbol. The sequence
of constellation symbols are then passed to the transmit filter
and sent through the MIMO fading channel.

For simplification of notations, we let{0, 1, · · · , q − 1}
denote the elements in GF(q). Given a nonbinary system over
GF(q), the log-likelihood-ratio-vector (LLRV) is given by

z = {z0, z1, · · · , zq−1} (2)

where

zi = ln
P (β = 0)

P (β = i)
. (3)

Here P (β = i) denotes the probability that the transmitted
GF(q) symbol β equalsi. At the output of the maximum a
posteriori (MAP) detector, thei-th component of the LLRV
corresponding to the signal transmitted from thej-th antenna,
denoted byzi(j), equals

zi(j) = log

∑

s:sj=0
exp

{

−(y − Hs)2
/

2σ2
}

Nt
∏

k=1
k 6=j

p(sk)

∑

s:sj=i

exp
{

−(y − Hs)2
/

2σ2
}

Nt
∏

k=1
k 6=j

p(sk)

(4)

wherep(sk) denotes the prior probability that thek-th antenna
transmits symbolsk.

IV. D ESIGN OF NONBINARYLDPC CODES BASED ON

EXIT CHART

In this section, we take the EXIT chart approach to design
nonbinary LDPC codes for the iterative system considered in
Section III.

For a binary LDPC coded system, density evolution and
EXIT chart are the two most successful approaches for code
design. Direct extension of these approaches to the nonbinary
system, however, is non-trivial. In a nonbinary system, since
the probability messages areq − 1 dimensional vectors, in
order to perform density evolution, it is necessary to track
q − 1 message densities. This becomes computationally in-
feasible for higher order nonbinary codes. Based on Gaussian
approximation, Liet. al. [12] prove that the distribution of
message vectors can be characterized byq − 1 parameters.
Moreover, Bennatanet. al. [8] show the distributions may
be characterized by a single parameter, which simplifies the
analysis significantly. In this paper, we follow some of the
basic assumptions in [8] which are summarized as follows:

1) The labels of the nonzero entries in the parity check ma-
trix are uniformly distributed. Hence, the message vectors
flowing in nonbinary LDPC decoder are permutation-
invariant. This means that a LLRṼW , W×h is
identically distributed toW, where W×h is defined
as the LLRV whose components are given byw×h

j =
wj×h, j = 1, · · · , q − 1. Here the productj × h is over
GF(q).

2) Using the symmetry assumption, the permutation-
invariant property, and the all-zero codeword transmis-
sion, the distribution of the LLRV message in the non-
binary LDPC decoder can be approximated by a joint
(q−1)×1 Gaussian vector with meanm and covariance
matrix Σ where

m =











σ2
/

2
σ2

/

2
...

σ2
/

2










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





(5)

Based on these assumptions, efficient code design methods
for nonbinary LDPC codes are developed in [8] for AWGN
channels. Our new contributions here include (1) Generalize
the code design method in [8] for AWGN channel to MIMO
channel and introduce the MIMO coset detector. (2) Propose
two methods based on an open-loop system to produce accu-
rate EXIT curves and find optimal nonbinary LDPC codes for
MIMO channels.

Consider a LDPC code with code lengthn and rateR =
k/n. The LDPC code may be visualized as bipartite graph
with n variable nodes corresponding ton coded symbols and
n−k check nodes corresponding ton−k check equations. The
variable nodes and check nodes are connected by edges. The
operations of iterative decoding at variable nodes are similar
to the decoding of repetition codes and are referred to as the
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variable node decoder (VND); and the operations at check
nodes are similar to the decoding of single parity check codes
and are referred to as the check node decoder (CND).

Following the notations of [4], we letIA denote the average
mutual information between the transmitted symbol and its
corresponding input prior LLRV at the decoder or the detector.
Similarly, we let IE denote the average mutual information
between the transmitted symbol and its corresponding output
extrinsic LLRV at the decoder or the detector. An EXIT curve
IE(IA) characterizes howIE changes as a function ofIA. In
the remainder of this section, we proceed by showing how
to compute the EXIT curve for the combined variable node
decoder/ detector (VND/DET) and the EXIT curve for check
node decoder (CND). Similar to [8], we use a coset LDPC

+
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Fig. 2. Coset LDPC codes

ensemble [13] to resolve the asymmetry of the channel. A
coset code is obtained by adding a fixed vector called the
coset vector to each codeword. With the random coset LDPC
setting, the coset vector is generated randomly but is known
at the receiver as shown in Fig. 2. With coset LDPC codes,
the equivalent channel output is shown to be symmetric. The
probability of decoding error is averaged over all channel
realizations and is independent of the codeword transmitted.
In [14], it is proved that a coset LDPC code achieves sim-
ilar performance as a standard LDPC with the same degree
distribution. This enables us to use the random coset LDPC
code with the all-zero codeword transmission assumption to
find the optimal degree sequence for the standard LDPC code.
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1) MIMO coset detector:Corresponding to the coset LDPC
code, we introduce a MIMO coset detector to deal with the
coset vectorv such that the operations between the two dash
lines in Fig. 3 are transparent to LDPC decoder. The LLRV
message in the MIMO detector shows the probabilities of
s′ = s + v because a standard MIMO detector does not
know the existence of the coset vector. A standard MIMO
detector performs the MAP detection as ifs′ were transmitted,
whereas the LLRV messages in the LDPC decoder represent
the probabilities ofs. Therefore, if we denote the output
extrinsic message of the MIMO detector byR

′(0) and the
LLRV message sent to the LDPC decoder byR(0), thenR(0)

is simply a shifted version ofR
′(0). Hence, thej-th component

of R(0) is represented by

R
(0)
j = R

′(0)
j+vi

− R
′(0)
vi

,

where the addition is performed over GF(q). Similarly, the
prior information fed back by the LDPC decoder is also shifted
by vi before sending to the MIMO detector

Q
′

j = Qj+vi
− Qvi

.

Here Qj denotes the j-th component of the LLRV message
fed back from the LPDC decoder andQ

′

denotes the input
prior message of the MIMO detector.

2) Open-loop system for generating EXIT curves:For bi-
nary LDPC codes, the Gaussian assumption has been shown
to be quite accurate in approximating the densities of the LLR
messages. This approximation, however, becomes less accurate
for nonbinary LDPC codes even for AWGN channels [8]. In
[8], the CND messages are assumed to be Gaussian distributed.
The VND messages are modeled as the summation of two
random vectors. One vector is the summation of the CND
messages and the other is the initial channel messages (not
necessarily Gaussian) computed from the empirical distribu-
tion of the AWGN channel.

Due to multi-dimensional integration, it is non-trivial tofind
a close-form EXIT function for the nonbinary codes even
under the Gaussian assumption. Therefore, we propose an
open-loop system to generate random samples to evaluate the
EXIT functions empirically. Fig. 4 shows the block diagram of
the proposed system. The open-loop system works as follows.
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Fig. 4. Open-loop system to evaluate EXIT function.

With a specified pair of(dv, dc), wheredv denotes the degree
of variable nodes anddc denotes the degree of check nodes,
and the channel signal-to-noise ratio (SNR), we initiate the
open-loop system by generating two sets of LLRV samples
each with a joint Gaussian distribution given in (5). The first
set of samplesw1 has a parameterσ2 = σ2

n which is used
to model the summation ofdv CND messages as the input
prior information of the MIMO coset detector. Hereσn is a
value along a fine grid in the range of[0, · · · , 12). The second
set of samplesw2 has a parameterσ2 = σ2

n
dv−1

dv
which is

used to model the summation ofdv − 1 CND messages as
the input message of VND. These samples combined with the
received vectory first perform a combined VND/DET. The
output of which is sent to the CND. Consequently, with the
output samples of CND as input, another combined VND/DET
is performed. Since we assume that the all-zero codeword is
transmitted, the output samples between point 0 and point 5
can be used to produce the EXIT curves.

Next, we describe the details of computing the EXIT curves
for the nonbinary LDPC codes based on the proposed open-
loop system.
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3) The combined VND/DET EXIT curve:Consider an ar-
bitrary variable nodei of degreedv. Let l(n) denote the CND
message coming from itsn-th neighboring check node. Also,
let R(j)

k denote thek-th component of output extrinsic LLRV
message from variable nodei to its j-th neighboring check
node after one iteration of combined VND/DET. We compute
R

(j)
k as follows:

Qk =
dv
∑

n=1
l
(n)
k

Q
′

k = Qk+vi
− Qvi

R
′(0)
k = [MAP(Q

′

,y)]k

R
(0)
k = R

′(0)
k+vi

− R
′(0)
vi

R
(j)
k =

dv
∑

n=1,n6=j

l
(n)
k + R

(0)
k

where [MAP(Q′,y)]k denotes thek-th component of the
extrinsic output of the MIMO MAP detector with input prior
messageQ′ and received vectory.

The combined VND/DET EXIT curve is determined by
the variable node degreedv and the channel SNR. For
each dv, we denote the combined VND/DET curve by
IE,VND/DET(IA,VND/DET; dv, SNR) whereIA,VND/DET denotes the
mutual information of the input CND message.

Based on the open-loop system shown in Fig.4, we pro-
pose two approaches for computing the combined VND/DET
EXIT curve. In the first approach, we obtainIA,VND/DET and
IE,VND/DET by measuring the mutual information based on
random samples collected at point 0 and point 3 respectively.
Details of computing the mutual information based on random
samples are briefly discussed towards the end of this section.
We find that the first approach is less accurate due to the
Gaussian assumption at the input of the MIMO coset detector.
In fact, the input to the MIMO coset detector comes from
the CND and the density of the CND messages resembles
a “spike” distribution rather than a Gaussian distribution.
Therefore, in the second approach, we relax the Gaussian
assumption at the input of the MIMO coset detector and use
actual output of the CND to drive the MIMO detector. In this
approach, we obtainIA,VND/DET and IE,VND/DET by measuring
the mutual information based on random samples collected at
point 4 and point 5 respectively.

In Fig. 5, we plot the combined VND/DET EXIT curves
using the two approaches described above. While the two
set of EXIT curves are relatively close to each other, it is
noted that the EXIT curves obtained by the first approach
based on the Gaussian assumption are always higher than those
obtained by the second approach. This result is in agreement
with the claim in [15] that EXIT charts based on the Gaussian
assumption lead to a predicted convergence threshold that is
lower than the actual threshold. Simulation results in Section
VI also justify the effectiveness of the second approach by
showing that the gap between the actual convergence threshold
and the predicted threshold of the designed LDPC code is
smaller if the second approach is adopted.

4) The CND EXIT curve:Consider an arbitrary check node
j of degreedc. Let R(n) denote the VND message from its
n-th neighboring variable node, and lethn denote the label
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Fig. 5. Comparisons of the combined VND/DET curves fordv = 2, · · · , 8
(from the bottom to the top) using the two proposed approaches.

of the edge connecting these two nodes. We compute thek-
th component of the output extrinsic LLRV messagel

(i)
k of

the CND sending from check nodej to its i-th neighboring
variable node by

l
′(n)
k = {F

[

Pn(R(n))
]

}k

l
′′(i)
k (s) =

dc
∏

n=1,n6=i

l
′(n)
k (s)

l
′′(i)
k (m) =

dc
∑

n=1,n6=i

l
′(n)
k (m)

l
(i)
k = {P−1

i

[

F−1(l
′′(i))

]

}k.

HereF denotes the Fourier transform in the logarithmic do-
main over GF(q) [16] [17]; Pn(R(n)) denotes the permutation
of R(n) by hn; l(s) and l(m) denote the sign and magnitude
of the messagel respectively.

Through simulation we observe that the CND EXIT curve
is independent of the channel SNR and the degree of the VND
connecting to the CND. Therefore, we letIE,CND(IA,CND; dc)
denote the CND EXIT curve for each check node degreedc,
whereIA,CND represents the mutual information of the input
message to the CND. We then proceed to obtain the EXIT
curve by measuringIA,CND andIE,CND based on the random
samples collected at point 3 and point 4 (shown in Fig.4)
respectively.

5) Calculation of mutual information:When computing
the EXIT curves based on the open-loop system, we make
measurements at different points and compute mutual infor-
mation using the collected random LLRV samples. In general,
the calculation of the mutual information of vector samples
requires multi-dimensional integration. For nonbinary codes
over GF(q), this requiresq − 1 dimensional integration which
makes it computationally intensive for large values ofq.
Assuming that a coset LDPC code is used to ensure that the
symmetry condition of the channel holds, the computation of
the mutual information per bit can be simplified [8] as

Ib(C;W) = 1 − E

[

logq(1 +

q−1
∑

i=0

e−Wi)
∣

∣C = 0

]

, (6)
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whereC denotes the transmitted symbol, andW denotes the
corresponding LLRV message. In our paper, we follow (6) to
compute the mutual information used for generating the EXIT
curves.

6) Code design via linear programming:Once we obtain
the VND/DET and CND EXIT curves, we can proceed with
the code optimization via linear programming. For simplic-
ity, we limit ourselves to consider check-regular codes only.
For a given variable node degree distributionλ, the mixed
combined VND/DET curve isIE,VND/DET(IA,VND/DET, SNR) =
∑

dv

λdv
IE,VND/DET(IA,VND/DET, dv, SNR). Therefore the code

optimization problem can be solved by linear programming:

Fix dc

maximize code rateR
subject to

∑

dv

λdv
= 1,

R = 1 − 1/dcP
dv

λdv /dv

IE,VND/DET(IA, SNR) > I−1
E,CND(IA, dc)

V. NON-ITERATIVE SYSTEM

In this section, we study a non-iterative system using non-
binary LDPC codes over a large Galois field. As opposed to
the iterative system considered in Section III, here we employ
separate MIMO detection and channel decoding. Performance
comparisons between the iterative system and non-iterative
system are included in Section VI.

Fig. 6 describes the proposed non-iterative system. Assume
that the LDPC code is defined over GF(q), whereq = 2p.
In this system, we assume a higher order modulation scheme
with a constellation size ofM = 2m is used. At the output of
the LDPC encoder, each coded nonbinary symbolβ ∈ GF (q)
is mapped to a group ofnc constellation symbols through
the mappingφ. Here we havep = nc · m. The sequence of
constellation symbols are then passed to the transmit filterand
sent through the fading channel. At the receiver side, based
on the output of the receive filter, symbol-wise maximum
likelihood (ML) detection is performed to compute the prior
probabilities for each group ofnc transmitted constellation
symbols. These prior probabilities will then be passed (after
the mappingφ−1) to the LDPC decoder for iterative decoding.
After a finite number of decoding iterations, hard decisionson
the nonbinary symbols will be made at the output of LDPC
decoder, which will be demapped to the sequence of estimated
information bits.

g
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Filter


Fading
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MAP
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-1
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φ
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{b̂i}

Fig. 6. A schematic block diagram of the proposed non-iterative system.

The proposed system in Fig. 6 is applicable to both the
single-input single-output (SISO) channel and the MIMO
channel. In Fig. 7 we show the MIMO system that employs
a nonbinary LDPC code over GF(256). We use two transmit

and receive antennas (Nt = Nr = 2) and 16QAM modulation.
Each coded GF(256) symbolβ is mapped to two 16QAM
symbols (nc = 2) and are transmitted simultaneously through
two different transmit antennas. Next, we explain how the ML

Tx116QAM

s1

Tx2
16QAM

s2

T=t

β
φ

β ∈ GF(256)

Fig. 7. Nt = Nr = 2, each GF(256) symbol is mapped to two 16QAM
symbols

detector shown in Fig. 6 works. For each received vectory,
the ML detector computes channel LLRV as follows

zi =

{

1

2σ2

∥

∥y − Hsi
∥

∥

2
−

1

2σ2

∥

∥y − Hs0
∥

∥

2
}

(7)

where‖ · ‖2 denotes the norm square of a vector,si = φ(i)
denotes transmitted vector corresponding to the field element i.
Subsequently, these LLRV values will be passed to the LDPC
decoder for iterative decoding.

It is important to note that the proposed system in Fig.
6 does not require any iterative processing between the ML
detector and the LDPC decoder. This is because the ML de-
tector produces the prior probabilities for each GF(q) symbol
which can be used directly for nonbinary LDPC decoding
over GF(q). This is in contrast with the iterative system
where iterative processing between the MAP detector and the
LDPC decoder is required for optimal performance [4]. In the
iterative system, the MAP detector generates LLRV values to
be used for LDPC decoding. Note that these LLRV values
are dependent for those bits either belonging to the same
constellation symbol or transmitted simultaneously through
different transmit antennas. Hence, it is necessary to passsoft
information about the dependent bits from the LDPC decoder
back to the MAP detector to produce updated LLRV. These
updated LLRV will be passed to the LDPC decoder for the
next decoding iteration to achieve better performance.

VI. D ESIGN EXAMPLES AND PERFORMANCE COMPARISON

In this section, we present simulation results for the pro-
posed iterative and non-iterative systems employing nonbinary
LDPC codes. Performance comparisons with the binary LDPC
coded system are also provided.

We consider a MIMO channel with two transmit and receive
antennas (Nt = Nr = 2) and use 16QAM modulation in
all simulations. Fig. 8 shows the EXIT curves of MIMO
detectors over Galois fields of different sizes. Each curve in
the figure describes the functional relation between the mutual
information of input prior information (sum of the feedback
CND messages) and the mutual information of output extrinsic
message of MIMO detector. As shown in Fig. 8, the left
endpoint (atIA,DET = 0) of each curve increases with the field
sizeq. This is because the symbol-wise ML detector (when no
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Fig. 8. EXIT curve for MIMO detectors at 4.1dB andR = 1/2.

prior information available) is optimized for minimizing the
error probability of symbols while the bit-wise ML detector
is optimized for minimizing the error probability of bits. In
contrast, atIA,DET = 1, the right end-point of each curve
decreases with the field size. This is because more prior
information feedback are available to the MIMO detector
employing smaller Galois field.

Our code design choices for the iterative and non-iterative
systems are as follows: For the binary iterative system, we
apply the code design method of [4] to find the optimal binary
LDPC code matched to the MIMO detector. For the nonbinary
iterative system, we design two codes over GF(16) using code
design methods discussed in Section IV. The two nonbinary
LDPC codes: code 1 and code 2 are obtained by using the first
and second approach of computing the combined VND/DET
EXIT curve, respectively. For non-iterative system, instead of
searching the optimal irregular codes, we simply use a regular
LDPC code over GF(256) withdv = 2 and dc = 4. This
code has been shown to demonstrate excellent performance
for AWGN channels [18]. The degree distributions of the
optimized codes are shown in Table I. In Fig. 9, we compare

TABLE I

DEGREE DISTRIBUTIONS OF THE OPTIMIZEDLDPC CODES

Binary dv = [2, 3, 7, 8, 23, 24], dc = [7]
uv = [0.5682, 0.298, 0.029, 0.0761, 0.0117, 0.017]
Curve fit at 4.1dB

GF(16) code 1 dv = [2, 8, 10], dc = [5]
uv = [0.9244, 0.0402, 0.0354]
Curve fit at 4.1dB

GF(16) code 2 dv = [2, 8, 9], dc = [5]
uv = [0.9299, 0.0378, 0.0323]
Curve fit at 4.16dB

In Table I, dv and dc denote the degree sequence of the variable
nodes and the check nodes, respectively.uv(i) denotes the fraction
of variables nodes of degreedv(i).

the performance of different systems. For the iterative systems
(employing either the binary LDPC code or nonbinary code
over GF(16)), iterative processing is done by performing 5
inner decoder iterations per detector/decoder iteration,and 40
outer detector/decoder iterations. For the non-iterativesystem,
100 inner decoding iterations are performed. All codes havea
code length of 2304 bits. Fig. 9 shows that the non-iterative
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Fig. 9. Bit-error-rate (BER) and block-error-rate (BLER) comparisons of
different systems.
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Fig. 10. Comparison of the two GF(16) codes with a code lengthof 10000
symbols.

system with regualr LDPC code over GF(256) achieves the
best performance at the cost of an increase decoding complex-
ity. It is about 0.46 dB better than the binary iterative system.
The best nonbinary iterative system is the system employing
the optimized LDPC code 2 over GF(16). It is about 0.06 dB
better than code 1 and is about 0.25 dB better than the binary
iterative system.

In Fig. 10, we also plot the performance curves of the
nonbinary iterative system using the two optimized codes over
GF(16), assuming a longer code length of 10000 symbols.
Again, the system employing code 2 is about 0.05 dB better
than code 1. Note that the predicted convergence threshold
of code 2 is at 4.16 dB, whereas the predicted convergence
threshold of code 1 is at 4.1 dB. The better performance of
code 2 shows that the second approach in Section IV produces
more accurate EXIT curves and therefore leads to better
code design and more reliable prediction of the convergence
threshold.

VII. C OMPLEXITY ANALYSIS

In this section, we compare the complexity of iterative and
non-iterative systems. First, we note that employing nonbi-
nary codes does increase the decoding complexity. Efficient
decoding algorithms for nonbinary LDPC codes are discussed
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in [17], which shows that the decoding complexity increases
linearly with q. Specifically, the decoding of complexity of
the GF(256) code is about 60 times higher than the binary
LDPC code. However, it is also important to point out that
for the non-iterative system, no iteration between the MIMO
detector and the channel decoder is required. The complexity
saving in using the MIMO detector only once contributes to
the complexity reduction of the overall system.

The complexity bottleneck of the iterative system lies in the
MIMO detector. To reduce the detection complexity, we first
compute the channel condition probability in the logarithmdo-
main (logP (y|s)) for all possible input symbol combinations.
This requires computing all the terms inside the summation of
(4), which amounts to2Ntm/(Ntm) operations per bit. Using
the Jacobi logarithm:

∗
max(x1, x2) , max(x1, x2) + ln(1 + e−|x1−x2|),

the complexity of the summation step needed to compute the
LLR for the binary system is2Ntm/2−1 per bit and is(2Ntm−
2m)/m per symbol LLRV for the nonbinary system. Using this
implementation, we are able to reduce the complexity of the
MIMO detector as much as possible at the cost of increased
memory. Table II shows the the complexity comparison per
bit and per iteration. Here we ignore the complexity of the
ML detection of the non-iterative system since it is done only
once and not iteratively. We also do not take into account
the complexity of simple operations such as addition and
subtraction. From Table II, we see that the complexity of
the nonbinary iterative system is much lower than that of
the binary iterative system. The complexity comparison with
the non-iterative system depends greatly on the complexity
of computing logP (y|s). In our simulation, we observe that
the binary iterative system has a complexity close to that
of the non-iterative system, and the latter usually converges
faster. Therefore, in terms of simulation time, the non-iterative
system runs slightly faster than the binary iterative system. It
is also noted that the complexity of the iterative system canbe
reduced by increasing the number of inner decoding iterations
per outer detector/decoder iteration and decreasing the number
of outer iterations at the cost of slightly degraded performance.

TABLE II

ESTIMATED COMPLEXITY OF DIFFERENT SYSTEMS PER BIT PER

ITERATION

logP (y|s) max∗ log/exp
Binary iterative 32 160 0

Nonbinary iterative 32 60 80
Non-iterative \ \ 512

VIII. C ONCLUSION

In this paper, we study the application of nonbinary LDPC
codes for MIMO fading channels. We consider both the itera-
tive system and the non-iterative system employing nonbinary
LDPC codes. For the iterative system, symbol-wise MIMO
MAP detector is concatenated with the nonbinary LDPC
decoder to perform joint (iterative) detection and decoding. We

develop nonbinary LDPC code design methods for the iterative
system based on EXIT chart and the notion of coset MIMO de-
tector. For the non-iterative system, we propose to use regular
nonbinary LDPC codes over large Galois field. Our simulation
results show that the nonbinary iterative system achieves the
best balance between complexity and performance. It has the
lowest complexity and achieves a performance better than the
binary iterative system. The non-iterative system achieves a
performance about 0.46 dB better than that of the iterative
binary system, however, at an increase complexity compared
to the nonbinary iterative system.
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