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Abstract—In this paper, we investigate the application of the binary LDPC codes when concatenated with multilevel
nonbinary low density parity check (LDPC) codes over Galois codes (MLC) [5] or used in conjunction with bit-interleaved
field GF(g) for multiple-input multiple-output (MIMO) fading  4qed modulation with iterative decoding (BICM-ID) [101]L

channels. Depending on the size of the Galois field Gf) we S
study both iterative systems which employ joint MIMO detecion However, these work do not address the code design issue of

and channel decoding, and non-iterative systems which eny  the nonbinary LDPC codes.
separate MIMO detection and channel decoding. Based on the In previous work [8], EXIT chart is used to design nonbi-

concept of coset LDPC code and coset MIMO detector, we nary LDPC codes for AWGN channels and discrete memory-
develop extrinsic information transfer chart (EXIT) appro aches less channels. In this paper, we first extend the EXIT chart

for the design of nonbinary LDPC codes for MIMO channels. . .
Simulation results show that the proposed systems employinthe approach to the MIMO channel and consider a nonbinary

designed nonbinary LDPC codes achieve a superior performare  iterative system employing joint MIMO detection and channe
than that of the best optimized binary LDPC codes at a reduced decoding. We propose two general methods based on open-

complexity. loop simulation to compute the EXIT curves. Compared to
the method in [8], we relax the Gaussian assumption on the
. INTRODUCTION density of the logarithmic likelihood ratios (LLR) to obtai

in recent year, muliple atenna tansmision s b EEUAE S of renian LOPC Soces and bt
identified as one of the most practical methods to com 9 )

fading and increase the capacity of wireless channels.eTh% e concept of MIMO coset detector which makes it feasible

L ompute of the EXIT curves for the MIMO detector. To the
has been much research on designing good channel Co(Ig(j)est of our knowledge, this is the first work to study the desig

such as turbo codes and low density parity check (LDP : . ;
codes to realize the capacity gain promised by the multip? nonbinary LDPC codes for MIMO channels. Simulation

antenna channel. In particular, LDPC codes, original dm/isresults demonstrate that the nonbinary LDPC co_de_s des?gned
by Gallager in 1963 [1][2] have attracted substantial ieser by the propos_ed methods outperform the best o_pt|m|zed)b_|r_1ar
due to their capacity approaching performance and gr PC _code.s in both performance and complexllty. Iq addition
flexibility in code design and practical implementationhéts O 'the iterative system, we also propose a non-iterativesys

been shown that well designed irregular LDPC codes Cgﬁnploylng LDPC codes over large Galois field. The non-

achieve within a fraction of a dB of the Shannon limit for Ateratlve system leads to excellent performance at the @ost

. . . . an increased decoding complexity.
wide class of channels [3]. In [4], the design of binary irreg This paper is organized as follows. In Section I, we intro-

ular LDPC codes is investigated for multiple-input mulépl the ch | model. In Section 11l eat
output (MIMO) channels. The optimized binary LDPC code‘guce € channel model. In Section 1, we propose an 1teral

demonstrate excellent capacity-approaching perfornsafure system where a symbol-wise MIMO detector is concatenated

MIMO channels. Most research [4], [5], however, focuses o\ﬁ't_h the nonbma_ry L.DPC coc_ies. N(_)nb|nary LDP.C design
the design and construction of binary LDPC codes. using EXIT chart is discussed in Section IV. In Section V, we

Nonbinary LDPC codes were first investigated by Dave nsider an alternative ’?Oﬂ'itera“"? system Wherg a mmjai
and Mackay in 1998 [6]. It is shown that nonbinary LDPCLDPC over a large Galois field G@(|S employed. S|mullat|on _
codes constructed over higher order Galois fields may obt ﬁ?u'ts and performan_ce comparisons are present(_ed iroSecti
superior performance than the binary codes. Recentlgtitae & Compl_exny af‘a'ys's are given in Section VII. Finallyew
nonbinary LDPC codes over Gfj(are constructed by Hat conclude in Section VIl.
al. using the progressive edge growth (PEG) algorithm [7].

The performance of these codes improves as the size of the Il. CHANNEL MODEL

Galois fieldg increases. Furthermore, it is shown that the best consider a MIMO channel withV, transmit antennas and
nonbinary codes become almost regular for large values Qf receive antennas. The channel model can be described as
g [7]- In recent work, nonbinary LDPC codes are applied

to the nonbinary AWGN channel [8] and MIMO channels y=Hs+n (1)

9]. These codes demonstrate better performance than that
(9] P wheres € CV, y € CNr, andn € CVr are complex column

This work is supported in part by NSF under grant ECS-0547433 vectors that represent the transmitted signal, receivgbki



{bi} E orQ 148} y| Trnsi wherep(s;,) denotes the prior probability that tieth antenna
Encoder | Fier | $ transmits symbok;,.
3 GF@) IV. DESIGN OF NONBINARY LDPC CODES BASED ON
it [ o1 MAP
| gl tore <—<T EXIT CHART

In this section, we take the EXIT chart approach to design
nonbinary LDPC codes for the iterative system considered in
Section Il

For a binary LDPC coded system, density evolution and
and channel noise respectivelif is the N, by N, channel EXIT chart are the two most successful approaches for code
fading matrix with independent and identical distributed,) ~design. Direct extension of these approaches to the nomnbina
Rayleigh fading entries; the noise veciomas i.i.d. complex System, however, is non-trivial. In a nonbinary systemgein
Gaussian entries with zero mean and variamnte the probability messages are— 1 dimensional vectors, in

Throughout this paper, we assume that the fading m&irix order to perform density evolution, it is necessary to track
is perfectly known at the receiver, but not at the transmittey — 1 message densities. This becomes computationally in-
We also assume that each entry of the transmitted signajivedgasible for higher order nonbinary codes. Based on Gaussia
s is chosen independently from a finite constellation set sugpproximation, Liet. al. [12] prove that the distribution of
as the quadrature amplitude modulation (QAM). message vectors can be characterizedyby 1 parameters.

In the next section, we will first investigate an iterativdloreover, Bennataret. al. [8] show the distributions may
system that employs nonbinary LDPC codes over¢pand be characterized by a single parameter, which simplifies the
performs joint MIMO detection and channel decoding. analysis significantly. In this paper, we follow some of the
basic assumptions in [8] which are summarized as follows:

1) The labels of the nonzero entries in the parity check ma-

trix are uniformly distributed. Hence, the message vectors

Fig. 1. A schematic block diagram of the iterative system.

IIl. | TERATIVE SYSTEM WITH JOINT DETECTION AND

CHANNEL DECODING

Fig. 1 presents the block diagram of the proposed iterative
system using nonbinary LDPC codes. At the transmitter side,
a sequence of information bifd;} is mapped to a sequence
of nonbinary symbols in Glgj, whereq = 2P (everyp bits are
mapped to a single nonbinary symbol), through a bit-to-syimb
mapperg, before passing to the nonbinary LDPC encoder.
For the iterative system considered here, we assume that tiZg
constellation size is the same as the size of the Galois field
q. For instance, if the nonbinary LDPC code is over GF(16),
then we may choose to use the 16 QAM constellation. At the
output of the LDPC encoder, each coded nonbinary symbol
B € GF(q) is mapped to a constellation symbol. The sequence

flowing in nonbinary LDPC decoder are permutation-
invariant. This means that a LLRW £ W*! js
identically distributed toW, where W*" is defined
as the LLRV whose components are givenulgsﬁ =
wjxn,J = 1,--+,q — 1. Here the producy x h is over
GF(9).

Using the symmetry assumption, the permutation-
invariant property, and the all-zero codeword transmis-
sion, the distribution of the LLRV message in the non-
binary LDPC decoder can be approximated by a joint
(¢—1) x 1 Gaussian vector with meam and covariance
matrix > where

of constellation symbols are then passed to the transnat filt

and sent through the MIMO fading channel. a2/2 o2 o /2
For simplification of notations, we 1e{0,1,---,¢— 1} 02/2 o2
denote the elements in Gfj( Given a nonbinary system over m = X Y= (5)
GF(qg), the log-likelihood-ratio-vector (LLRV) is given by : -
02/2 02/2 o?
Z:{Z()vzla"' 7Zq71} (2) . .. .
Based on these assumptions, efficient code design methods

where P(8=0) for nonbinary LDPC codes are developed in [8] for AWGN

z; =1In PG (3) channels. Our new contributions here include (1) Generaliz

the code design method in [8] for AWGN channel to MIMO
Here P(5 = i) denotes the probability that the transmittedhannel and introduce the MIMO coset detector. (2) Propose
GF(g) symbol 8 equalsi. At the output of the maximum a two methods based on an open-loop system to produce accu-
posteriori (MAP) detector, the-th component of the LLRV rate EXIT curves and find optimal nonbinary LDPC codes for
corresponding to the signal transmitted from jhth antenna, MIMO channels.
denoted byz;(j), equals Consider a LDPC code with code lengthand rateR =

N, k/n. The LDPC code may be visualized as bipartite graph

> exp{—(y —Hs)?/26?} ] p(sk) with n variable nodes correspondingtocoded symbols and
s:8;=0 ’,g;} n—k check nodes correspondingrie- £ check equations. The

variable nodes and check nodes are connected by edges. The
operations of iterative decoding at variable nodes arelaimi
to the decoding of repetition codes and are referred to as the

2i(j) = log 2 (4)
> exp{—(y —Hs)?/202} ;}:[1 p(sk)

S:S;=1 =
! k#j



variable node decoder (VND); and the operations at checkR(? is represented by
nodes are similar to the decoding of single parity check sode RO _R© _RO
and are referred to as the check node decoder (CND). J Jtvi vi S}

Following the notations of [4], we let, denote the averageWhere the addition is performed over GJ(Similarly, the
mutual information between the transmitted symbol and igsior information fed back by the LDPC decoder is also shiifte
corresponding input prior LLRV at the decoder or the detectdy v; before sending to the MIMO detector
Similarly, we let I denote the average mutual information Q/- = Q10 — Qu..
between the transmitted symbol and its corresponding outpu - I !
extrinsic LLRV at the decoder or the detector. An EXIT curvElere Q; denotes the j-th component of the LLRV message
Ir(I4) characterizes hodi; changes as a function df;. In feq back from the LPDC decoder af denotes the input
the remainder of this section, we proceed by showing hd¥ior message of the MIMO detector. _
to compute the EXIT curve for the combined variable node 2) Open-loop system for ggneratmg EX,IT curvésr bi-
decoder/ detector (VND/DET) and the EXIT curve for checRary LDPC codes, the Gaussian assumption has been shown

node decoder (CND). Similar to [8], we use a coset LDPE be quite accurate in approximating the densities of thR LL
messages. This approximation, however, becomes lessagecur

Equivalent channel for nonbinary LDPC codes even for AWGN channels [8]. In
: Coset Vector V : [8], the CND messages are assumed to be Gaussian distributed
Sourc : : The VND messages are modeled as the summation of two
ource LDPC M H . .
4> >(#)—>[Mapper—> Channel —{ Demapper|~—> random vectors. One vector is the summation of the CND
messages and the other is the initial channel messages (not
Fig. 2. Coset LDPC codes necessarily Gaussian) computed from the empirical distrib

tion of the AWGN channel.

ensemble [13] to resolve the asymmetry of the channel. A Due to multi-dimensional integration, it is non-trivial imd
coset code is obtained by adding a fixed vector called tReclose-form EXIT function for the nonbinary codes even
coset vector to each codeword. With the random coset LDptder the Gaussian assumption. Therefore, we propose an
setting, the coset vector is generated randomly but is knoRR€en-loop system to generate random samples to evaluate the
at the receiver as shown in Fig. 2. With coset LDPC codesXIT functions empirically. Fig. 4 shows the block diagraim o
the equivalent channel output is shown to be symmetric. THie Proposed system. The open-loop system works as follows.
probability of decoding error is averaged over all channel
realizations and is independent of the codeword transmhitte,
In [14], it is proved that a coset LDPC code achieves sim- L) L)
MIMO MIMO

ilar performance as a standard LDPC with the same degree | - Coset | 4 NDs] Costt | o>
distribution. This enables us to use the random coset LDPC t Detector |~ A Detector T
2

code with the all-zero codeword transmission assumption to - L shg
2 | S—

find the optimal degree sequence for the standard LDPC code.
Fig. 4. Open-loop system to evaluate EXIT function.

Coset Vector V. ;  MIMO Coset Detector: With a specified pair ofd,, d..), whered,, denotes the degree
s o - l o of variable nodes a_mdC denotgs the.degree of Che_ck_nodes,
T = ﬁ’% and the channel signal-to-noise ratio (SNR), we initiate th
R Prior | open-loop system by generating two sets of LLRV samples
each with a joint Gaussian distribution given in (5). Thetfirs

set of samplesv; has a parameter? = o2 which is used
Fig. 3. The MIMO Coset detector to model the summation af, CND messages as the input
prior information of the MIMO coset detector. Heeg, is a
1) MIMO coset detectorCorresponding to the coset LDPCvalue along a fine grid in the range |6f - - - , 12). The second
code, we introduce a MIMO coset detector to deal with theet of samplesv, has a parameter? = ai% which is
coset vectow such that the operations between the two dasised to model the summation df, — 1 CND ?nessages as
lines in Fig. 3 are transparent to LDPC decoder. The LLRhe input message of VND. These samples combined with the
message in the MIMO detector shows the probabilities eéceived vectory first perform a combined VND/DET. The
s’ = s+ v because a standard MIMO detector does noutput of which is sent to the CND. Consequently, with the
know the existence of the coset vector. A standard MIMGutput samples of CND as input, another combined VND/DET
detector performs the MAP detection as’ifvere transmitted, is performed. Since we assume that the all-zero codeword is
whereas the LLRV messages in the LDPC decoder represgahsmitted, the output samples between point 0 and point 5
the probabilities ofs. Therefore, if we denote the outputcan be used to produce the EXIT curves.
extrinsic message of the MIMO detector B (?) and the Next, we describe the details of computing the EXIT curves
LLRV message sent to the LDPC decoderR{), thenR(?)  for the nonbinary LDPC codes based on the proposed open-
is simply a shifted version dk'(?). Hence, thej-th component loop system.



3) The combined VND/DET EXIT curv&€onsider an ar-
bitrary variable node of degreed,. Let 1) denote the CND
message coming from ite-th neighboring check node. Also,
let R,(j) denote thek-th component of output extrinsic LLRV ——oon
message from variable nodeto its j-th neighboring check I
node after one iteration of combined VND/DET. We compulE

0.9 1

R\ as follows: 2T |
d (n) {6
n .61~ 7
Qk = Z lk
, n=1
Qk = Qitv, — Qu, 05 1
! O 7
R,\” = [MAP(Q,y)]x
R =R R, L T T T
0 a, - © IavND/DET
J) _ n
R;” = nzlg;l#j L7+ Ry Fig. 5. Comparisons of the combined VND/DET curves dor= 2,--- ,8

(from the bottom to the top) using the two proposed appraache

where [MAP(Q’,y)]r denotes thek-th component of the

extrinsic output of the MIMO MAP detector with input prior

messagd)’ and received vectoy. of the edge connecting these two nodes. We computé:-the
The combined VND/DET EXIT curve is determined byth component of the output extrinsic LLRV messaé of

the variable node degred, and the channel SNR. Forthe CND sending from check nodeto its i-th neighboring

each d,, we denote the combined VND/DET curve bwariable node by

Ie vnoioeT(Za vnpiDeT; dv, SNR) Wherela ynpioer denotes the ,

mutual information of the input CND message. 1M = {F [Pa(R™)]}s

Based on the open-loop system shown in Fig.4, we pro- L@ (g — de Q)
pose two approaches for computing the combined VND/DET po(8) = el i ko (5)
EXIT curve. In the first approach, we obtaii ynpper and ") d. (n)

Ie ynpper by measuring the mutual information based on 1,7 (m) = _lk (m)
random samples collected at point 0 and point 3 respectively @ 71":1"2“ "y
Details of computing the mutual information based on random L ={P; {f (1 )} Y-

samples are briefly discussed towards the end of this section

We find that the first approach is less accurate due to tng,ef denotes the FOL_'rier tra(g)sform in the Iogarithmic_ do-
Gaussian assumption at the input of the MIMO coset detectH’l‘.""n(fl))ver GF@ [16] [17]; Pn(R™™) denot(_as the permuta_ltlon
In fact, the input to the MIMO coset detector comes frofif B by ha,; I(s) andl(m) denote the sign and magnitude

the CND and the density of the CND messages resembfig!'® Messagé respectively.

a “spike” distribution rather than a Gaussian distribution 'Nrough simulation we observe that the CND EXIT curve
Therefore, in the second approach, we relax the GaussiSindependentof the channel SNR and the degree of the VND
assumption at the input of the MIMO coset detector and uS@nnecting to the CND. Therefore, we |&fcno(/a.cno; de)
actual output of the CND to drive the MIMO detector. In thigleénote the CND EXIT curve for each check node degiee
approach, we obtaitix vnoipet and Ie vnpioer by measuring where I cnp represents the mutual information of the input

the mutual information based on random samples collected¢ssage to the CND. We then proceed to obtain the EXIT
point 4 and point 5 respectively. curve by measurlngA,CNQ and/g cnp based on the rando_m

In Fig. 5, we plot the combined VND/DET EXIT CurVessample_s collected at point 3 and point 4 (shown in Fig.4)
using the two approaches described above. While the thgFPeCtively. . _ .
set of EXIT curves are relatively close to each other, it is 5) Calculation of mutual information:When computing
noted that the EXIT curves obtained by the first approadhe EXIT curves based on the open-loop system, we make
based on the Gaussian assumption are always higher than tfBgasurements at different points and compute mutual infor-
obtained by the second approach. This result is in agreemBltion using the collected random LLRV samples. In general,
with the claim in [15] that EXIT charts based on the Gaussidhe calculation of the mutual information of vector samples
assumption lead to a predicted convergence threshold ghafgauires multi-dimensional integration. For nonbinaryes
lower than the actual threshold. Simulation results in Bact ©ver GF(), this requires; —1 dimensional integration which
VI also justify the effectiveness of the second approach wakes_ it computationally intensive for large values @f
showing that the gap between the actual convergence thgesHtSSUMINg that a coset LDPC code is used to ensure that the
and the predicted threshold of the designed LDPC code Si§mmetry condition of the channel holds, the computation of
smaller if the second approach is adopted. the mutual information per bit can be simplified [8] as

4) The CND EXIT curveConsider an arbitrary check node g—1
j of degreed.. Let R("™) denote the VND message from its L(C; W) =1—E |log, (1 + Zefwi)

. : i c=0|, (6
n-th neighboring variable node, and Igf, denote the label —o




whereC' denotes the transmitted symbol, aWd denotes the and receive antennad’{ = N, = 2) and 16QAM modulation.
corresponding LLRV message. In our paper, we follow (6) thach coded GF(256) symbal is mapped to two 16QAM
compute the mutual information used for generating the EXEymbols . = 2) and are transmitted simultaneously through
curves. two different transmit antennas. Next, we explain how the ML

6) Code design via linear programmingdnce we obtain
the VND/DET and CND EXIT curves, we can proceed with
the code optimization via linear programming. For simplic-
ity, we limit ourselves to consider check-regular codesyonl
For a given variable node degree distributianthe mixed
combined VND/DET curve igE,VND/DET(IA,VND/DET, SNR) =
Z/\dvIE,VND/DET(IA,VND/DET,dv,SNR)- Therefore the code
d

ofatimization problem can be solved by linear programming:

Fix de Fig. 7. N; = N, = 2, each GF(256) symbol is mapped to two 16QAM
maximize code rate? symbols

subject to A, =1, o )
: % o detector shown in Fig. 6 works. For each received vegtor

R=1— — Yde the ML detector computes channel LLRV as follows

Zdv )‘dv/dv 1
Ie, (I4,SNR) > Iz to(la, de) 1 a2 1 2
E,VND/DET\{ A E,CND\LA 2 = {F Hy — Hs H _ ﬁ Hy _ HSOH } (7)

V. NON-ITERATIVE SYSTEM : .
where|| - ||> denotes the norm square of a vectdr= ¢(i)

In this section, we study a non-iterative system using Nofenotes transmitted vector corresponding to the field eiime

binary LDPC codes over a large Galois field. As opposed &§,psequently, these LLRV values will be passed to the LDPC
the iterative system considered in Section Ill, here we emplgecoder for iterative decoding.

separate MIMO detection and channel decoding. Performanc; s jmportant to note that the proposed system in Fig.

comparisons between the iterative system and non-iteratly does not require any iterative processing between the ML
system are included in Section VI. detector and the LDPC decoder. This is because the ML de-
Fig. 6 describes the_ prop(_)sed non-iterative system. AssUfagtor produces the prior probabilities for each §FEymbol
that the LDPC code is defined over GF(whereq = 2°.  \hich can be used directly for nonbinary LDPC decoding
In this system, we assume a higher order modulation scheggy GF(). This is in contrast with the iterative system
with a constellation size af/ = 2" is used. At the output of where iterative processing between the MAP detector and the
the LDPC encoder, each coded nonbinary symbel GF(q) | DPC decoder is required for optimal performance [4]. In the
is mapped to a group of. constellation symbols throughiterative system, the MAP detector generates LLRV values to
the mappingg. Here we havep = n. - m. The sequence of pe ysed for LDPC decoding. Note that these LLRV values
constellation symbols are then passed to the transmitdiftdr are dependent for those bits either belonging to the same
sent through the fading channel. At the receiver side, basgshstellation symbol or transmitted simultaneously tigtou
on the output of the receive filter, symbol-wise maximurjjfferent transmit antennas. Hence, it is necessary to gizfs
likelihood (ML) detection is performed to compute the priofyformation about the dependent bits from the LDPC decoder
probabilities for each group of,. transmitted constellation p5ck to the MAP detector to produce updated LLRV. These
symbols. These prior probabilities will then be passede(aftupdated LLRV will be passed to the LDPC decoder for the

the mappingy~*) to the LDPC decoder for iterative decodingnext decoding iteration to achieve better performance.
After a finite number of decoding iterations, hard decisions

the nonbinary symbols will be made at the output of LDPGy

. . X . DESIGN EXAMPLES AND PERFORMANCE COMPARISON
decoder, which will be demapped to the sequence of estimated ) ) )
information bits In this section, we present simulation results for the pro-

posed iterative and non-iterative systems employing narli

{b:} E GF@) |{3;} - Transt| [ Fading LDPC codes. Performance comparisons with the binary LDPC
Encoder coded system are also provided.
We consider a MIMO channel with two transmit and receive

b; GF(q) vl antennas §; = N, = 2) and use 16QAM modulation in

}H DLQDCEEE,‘iH all simulations. Fig. 8 shows the EXIT curves of MIMO
detectors over Galois fields of different sizes. Each cunve i

Fig. 6. A schematic block diagram of the proposed non-iterasystem.  the figure describes the functional relation between theuatut
information of input prior information (sum of the feedback

The proposed system in Fig. 6 is applicable to both thH@ND messages) and the mutual information of output extrinsi
single-input single-output (SISO) channel and the MIM@nessage of MIMO detector. As shown in Fig. 8, the left
channel. In Fig. 7 we show the MIMO system that employsndpoint (at/a peT = 0) of each curve increases with the field
a nonbinary LDPC code over GF(256). We use two transnsiizeq. This is because the symbol-wise ML detector (when no
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Fig. 8. EXIT curve for MIMO detectors at 4.1dB arfél = 1/2. Fig. 9. Bit-error-rate (BER) and block-error-rate (BLER)neparisons of
different systems.

10 —5— GF(16) Code 1
: —6- GF(16) Code 2

prior information available) is optimized for minimizingne
error probability of symbols while the bit-wise ML detector
is optimized for minimizing the error probability of bitsn |
contrast, at/aper = 1, the right end-point of each curve
decreases with the field size. This is because more prio10
information feedback are available to the MIMO detector
employing smaller Galois field.

Our code design choices for the iterative and non-iterative .|
systems are as follows: For the binary iterative system, we
apply the code design method of [4] to find the optimal binary
LDPC code matched to the MIMO detector. For the nonbinary
iterative system, we design two codes over GF(16) using cod,.
design methods discussed in Section IV. The two nonbinar, *°
LDPC codes: code 1 and code 2 are obtained by using the first . ,
and second approach of computing the combined VND/D mt;LgIs Comparison of the two GF(16) codes with a code length0000
EXIT curve, respectively. For non-iterative system, iastef
searching the optimal irregular codes, we simply use a aggul
LDPC code over GF(256) withl, = 2 andd. = 4. This system with regualr LDPC code over GF(256) achieves the
code has been shown to demonstrate excellent performapest performance at the cost of an increase decoding complex
for AWGN channels [18]. The degree distributions of they. It is about 0.46 dB better than the binary iterative syst
optimized codes are shown in Table I. In Fig. 9, we compamhe best nonbinary iterative system is the system employing
the optimized LDPC code 2 over GF(16). It is about 0.06 dB

I
4.65

4 ‘75 4{8
Ey/No (dB)

TABLE | . .
better than code 1 and is about 0.25 dB better than the binary
DEGREE DISTRIBUTIONS OF THE OPTIMIZEL DPC CODES . .
_ iterative system.
Binary dy =12,3,7,8,23,24],dc = [7]

uy = [0.5682,0.298, 0.029,0.0761,0.0117,0.017]

Curve fit at 4.1dB

GF(16) code 1| d, = [2,8,10],dc = [5]
uy = [0.9244,0.0402, 0.0354]
Curve fit at 4.1dB

GF(16) code 2| d, = [2,8,9],dc = [5]
uy = [0.9299,0.0378, 0.0323]

In Fig. 10, we also plot the performance curves of the
nonbinary iterative system using the two optimized codes ov
GF(16), assuming a longer code length of 10000 symbols.
Again, the system employing code 2 is about 0.05 dB better
than code 1. Note that the predicted convergence threshold
of code 2 is at 4.16 dB, whereas the predicted convergence

Curve fit at 4.16dB

threshold of code 1 is at 4.1 dB. The better performance of
In Table I, d, and d. denote the degree sequence of the variabteode 2 shows that the second approach in Section IV produces
nodes and the check nodes, (espectlveL)(i) denotes the fraction mgore accurate EXIT curves and therefore leads to better
of variables nodes of degre (i). code design and more reliable prediction of the convergence

. . . threshold.
the performance of different systems. For the iterativéesys

(employing either the binary LDPC code or nonbinary code
over GF(16)), iterative processing is done by performing 5
inner decoder iterations per detector/decoder iteratiod, 40 In this section, we compare the complexity of iterative and
outer detector/decoder iterations. For the non-iteraystem, non-iterative systems. First, we note that employing nonbi
100 inner decoding iterations are performed. All codes lrmavenary codes does increase the decoding complexity. Efficient
code length of 2304 bits. Fig. 9 shows that the non-iteratizkecoding algorithms for nonbinary LDPC codes are discussed

VII. COMPLEXITY ANALYSIS



in [17], which shows that the decoding complexity increasekevelop nonbinary LDPC code design methods for the itexativ
linearly with ¢. Specifically, the decoding of complexity ofsystem based on EXIT chart and the notion of coset MIMO de-
the GF(256) code is about 60 times higher than the binatgctor. For the non-iterative system, we propose to useaegu
LDPC code. However, it is also important to point out thatonbinary LDPC codes over large Galois field. Our simulation
for the non-iterative system, no iteration between the MIM@esults show that the nonbinary iterative system achidves t
detector and the channel decoder is required. The compledest balance between complexity and performance. It has the
saving in using the MIMO detector only once contributes tlmwest complexity and achieves a performance better than th
the complexity reduction of the overall system. binary iterative system. The non-iterative system acliese
The complexity bottleneck of the iterative system lies ia thperformance about 0.46 dB better than that of the iterative
MIMO detector. To reduce the detection complexity, we firdtinary system, however, at an increase complexity compared
compute the channel condition probability in the logaritthoa  to the nonbinary iterative system.
main (og P(y|s)) for all possible input symbol combinations.
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