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Abstract

This paper investigates performance of channel codednoncoherent systems over block fading

channels. We consider an iterative system where an outer channel code is serially concatenated with

an inner modulation code amenable to noncoherent detection. We emphasize that, in order to obtain

near-capacity performance, the information rates of modulation codes should be close to the channel

capacity. For certain modulation codes, a single-input single-output (SISO) system with only one transmit

antenna may outperform a dual-input and single-output (DISO) system with two transmit antennas. This

is due to the intrinsic information rate loss of these modulation codes compared to the DISO channel

capacity. We also propose a novel noncoherent detector based on Markov Chain Monte Carlo (MCMC).

Compared to existing detectors, the MCMC detector achievescomparable or superior performance at

reduced complexity. The MCMC detector does not require explicit amplitude or phase estimation of

the channel fading coefficient, which makes it an attractivecandidate for high rate communication

employing quadrature amplitude modulation (QAM) and for multiple antenna channels. At transmission

rates of1 ∼ 1.667 bits/sec/Hz, the proposed SISO systems employing 16QAM andMCMC detection

perform within 1.6-2.3 dB of the noncoherent channel capacity achieved by optimal input.

Index Terms

Noncoherent detection, Markov Chain Monte Carlo, fading channel, multiple antenna, transmit

diversity, iterative decoding, channel capacity.
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I. INTRODUCTION

In recent years, noncoherent communication, which assumesthat the receiver does not have

explicit channel informationa priori has attracted significant attention. Here, noncoherent com-

munication is interpreted in its broadest sense as joint data and channel estimation. In the

noncoherent scenario: (1) The transmitted signal power spent on pilot symbols (if any) is taken

into account; (2) Implicit/explicit channel estimations are done using all transmitted symbols

rather than using pilots symbols alone.

With the goal of approaching channel capacity, it is important to study channel coded non-

coherent systems where powerful channel codes are employedin addition to the modulation

codes to strengthen the error correction capability. Capacity-approaching joint channel decoding

and noncoherent detection strategies for single-input single-output (SISO) channel at the spectral

efficiency ofR = 1/2 (bits/sec/Hz) with QPSK modulation are developed in [1]. The proposed

low-complexity noncoherent detector, which requires separate amplitude estimation and phase

quantization of the channel, is designed for the single antenna channel only and requires the

signal constellation to have a constant amplitude level. Channel coded SISO systems withR = 1

and QPSK modulation are studied in [2] and a noncoherent detector based on linear prediction

and per-survivor processing is proposed. For dual-input and single-output (DISO) channels that

employ two transmit antennas and single receive antenna, [3] considers turbo coded noncoherent

systems employing the unitary space-time modulation (USTM) with R = 0.875 ∼ 1.75 , in which

the optimal a posterior probability (APP) detector is used. In [4], the performanceof channel

coded systems employing pilot-symbol assisted modulation(PSAM) based on Alamouti’s codes

[5] and QPSK/8PSK modulation are studied forR = 1 ∼ 1.5 . The PSAM codes demonstrate

better performance than that of the USTM. A low complexity noncoherent detector based on

bit-flipping and phase quantization is proposed in [4]. Thisdetector has a complexity that is

linear in the coherence length and is shown to obtain near-optimal soft information [6].

Although there is much work on the design of modulation code and noncoherent detection

algorithm for both the SISO coded system and the DISO coded system, very little research has

been done on the comparison of these two systems. For instance, an interesting question is that,

for R = 1 ∼ 2 , is it safe to assume that a system with two transmit antennas, as in a DISO

system, automatically performs better than a SISO system with only one transmit antenna? Our
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results show that adding a second antenna does not necessarily enhance performance. Since the

choice of modulation codes directly affects the performance of coded systems, DISO systems

with certain choices of modulation codes may perform worse than that of a SISO system.

In this work, we point out an important design criterion for channel coded system. That

is, in order to obtain near capacity performance, one shouldchoose modulation codes whose

mutual information rates are close to the optimal channel capacity. We provide an explicit

comparison of the mutual information rates between a simple16QAM modulation code for

the SISO channel, and USTM code and PSAM code [4] for the DISO channel. It is shown that

the mutual information rates of USTM and PSAM codes are much lower than that of the 16QAM

code for SISO channel, which implies that they fall well below the DISO channel capacity. This

contributes to the fact that such DISO systems perform even worse than the SISO system. To

the best of our knowledge, this is the first work to investigate the effect of transmit diversity for

channel coded noncoherent systems through an explicit comparison of the SISO system and the

DISO system.

Furthermore, we propose a novel noncoherent detector that is different from existing detectors

[1][4] in the sense that it does not require amplitude estimation or phase quantization of the

channel fading coefficient. Such a detector is based on the Markov Chain Monte Carlo (MCMC)

method. Applications of the MCMC detectors for coherent multiple-input and multiple-output

(MIMO) channels have been studied in [7]–[10], which demonstrate significant performance

improvement over traditional MIMO detectors such as the sphere decoding detector. In this

paper, we extend the application of the MCMC approach to the noncoherent setting. For a

SISO system with 16QAM modulation, we are able to achieve near capacity performance at

R = 1 ∼ 1.667 . These transmission rates are higher than the rate of1/2 in [1] with QPSK

modulation, and are comparable with that of the DISO systemsconsidered in [3][4].

Noncoherent MCMC detectors are first studied by X. Wang et. al. [11]–[14] for OFDM systems

and multicarrier CDMA systems. The noncoherent MCMC detector proposed in this paper

originates from coherent MCMC detectors of [7]–[10]. Such MCMC detectors require neither the

burning period nor bit-counting for computinga posteriori probabilities [8]. They significantly

outperform traditional MIMO detectors such as the sphere decoding detector. Detailed differences

between the proposed detector and those of [11]–[14] will behighlighted in Section IV.

The rest of the paper is organized as follows. Section II contains the system model. Section III
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studies the mutual information rate of modulation codes andits impact on coded performance.

Section IV includes a detailed description of the noncoherent MCMC detector. Simulation results

of the coded system with MCMC detection are presented in Section V. Conclusions are given

in Section VI.

II. SYSTEM MODEL

We consider a SISO block fading channel where the channel remains constant for each block

of Tc symbols (whereTc is called the coherence length), and is independent betweenblocks.

We model the channel by :

y =
√

ρ h s + w, (1)

where h ∼ CN (0, 1) is the Rayleigh fading coefficient of a given block and is a circularly

symmetric complex Gaussian random variable with zero mean and unit variance; the vectors

y, s,w are Tc-dimensional complex vectors representing the received signal, the transmitted

signal, and the noise, respectively; the entries ofw are independent and identically distributed

with distributionCN (0, 1). The constantρ represents the signal-to-noise ratio (SNR), assuming

that the average power of the transmitted signals is normalized such thatE[s†s] = Tc, and

† denotes the Hermitian operator. In the noncoherent scenario, neither the transmitter nor the

receiver knows the exact realization of the channel coefficient h. Given s, the noncoherent

conditional probability density function (pdf) ofy is given by [15]:

p(y|s) =
1

πTc(1 + ρ‖s‖2)
exp

{

− ‖y‖2 +
ρ‖y†s‖2

1 + ρ‖s‖2

}

(2)

Fig. 1 shows a block diagram of the channel coded noncoherentsystem. The transmitter side

consists of a serial concatenation of the channel encoder and the modulation coder, with a symbol

mapper in between that maps a sequence of binary coded bits toa sequence of complex symbols

from a finite constellation of size2Mc through Gray mapping. In this paper we consider a simple

modulation code that maps an input block of (Tc −1) complex symbols to an output block ofTc

symbols by inserting a reference symbolc0 (from the same constellation) in the front of each

input block:(s1, · · · , sTc−1) → s = (s0 = c0, s1, · · · , sTc−1), where eachsi, i = 1, · · · , Tc − 1 is

a complex symbol representingMc bits. The output of the modulation coders is then transmitted

through the block fading channel. Assume that the channel code has a rate ofRc, then the overall

transmission rate of this system is given byR = Tc−1
Tc

RcMc, where the termTc − 1 is due to
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the fact that onlyTc − 1 coded symbols are transmitted out of each block ofTc symbols. At the

receiver end, joint channel decoding and noncoherent detection is performed iteratively through

soft information exchange between the channel decoder and the noncoherent block detector.

After a predetermined number of iterations, decisions are made at the output of the channel

decoder to generate the decoded bit sequence.

Channel
Encoder

Channel
Decoder

Symbol
Gray

Mapping

Block
Fading
Channel

Modulation
Coder

Noncoherent
Block

Detector

Received

 Information

Sequence

SignalSoft
Information

Soft
Information

Decoded
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Fig. 1. A schematic block diagram of the channel coded noncoherent system.

III. I NFORMATION RATE OF MODULATION CODE AND ITS IMPACT ON CODED PERFORMANCE

In this paper, we emphasize two modules of the channel coded system shown in Fig. 1:

the modulation code at the transmitter side, and the noncoherent detector at the receiver side.

From a system perspective, the selection of modulation codeis important because its mutual

information rate determines the maximum information rate that a coded system can achieve for

a given average signal-to-noise power ratioEs/N0. In other words, for a desired transmission

rate R, the information rate of the modulation code determines theminimum Es/N0, denoted

by Es

N0

|min, required to achieveR. Note that this is an information-theoretical limit that can be

achieved only with optimal detection and a powerful channelcode with an arbitrarily long code

length and maximum-likelihood decoding. Hence, it is also the performance limit of any practical

channel coded system with suboptimal detectors and iterative decoding.

In this section, we examine the information rate of the modulation code defined in Section II

for SISO channel and make comparisons with those of certain modulation codes used for DISO

channels. This will explain the performance gap between theproposed SISO system and that of

the DISO systems in [4], shown in Section V.
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A. Information rates of practical modulation codes for SISO channel

We first consider a SISO noncoherent block fading channel with Tc = 6. In Fig. 2, we

plot the channel capacity achieved by the optimum input and the mutual information rates [1]

of the modulation code described in Section II using practical constellations 16QAM, 8QAM,

8PSK, and QPSK (a similar figure forTc = 5 was presented in [1]). From Fig. 2 we make

two observations. First, the mutual information rates of modulation codes provide performance

benchmarks for channel coded systems. For instance, given the 16QAM constellation, from Fig.

2 we see that whenEs

N0

= 8 dB, the mutual information rate of the corresponding modulation

code equalsR = 1.667 . This means that, to achieveR = 1.667, the Es

N0

|min required byany

channel coded system using this modulation code and 16QAM equals 8 dB. This is independent

of the choices of detection algorithms and the channel codes. Second, the information rates of

16QAM are higher than that of the other practical constellations considered here, therefore best

approximate the channel capacity achieved by the optimal input. For instance, whenR = 1.667,

we have Es

N0

|min = 7.5, 8, 8.7 dB, respectively, for the optimal input, 16QAM, and 8QAM.

Hence, 16QAM is better than 8QAM, because theEs

N0

|min required is only0.5 dB away from

that of the optimal input. Interestingly, whenR = 1, even though we have similar values of
Es

N0

|min for 16QAM and 8QAM (4.2 dB and 4.4 dB, respectively), our simulation results show

that actual performance of the coded system is better with 16QAM, due to the use of a lower

rate channel code.

From the study of the information rates of modulation codes,we conclude that, in order to

obtain capacity-approaching performance, it is importantto choose modulation codes whose

information rates are close to the optimal channel capacity.

B. Comparisons of information rates for SISO system and DISO system

For similar target transmission rates, recent work ([3], [4]) consider DISO systems with dual

transmit antennas and single receive antenna. To facilitate low-complexity noncoherent detection,

modulation codes such as USTM are often employed in practical DISO systems. Unfortunately,

these codes suffer from intrinsic information rate loss compared to the optimal channel capacity.

In [16], it is pointed out that the information rates of USTM achieve only a fraction of channel

capacity. In [4] , two modulation codes are considered for a DISO channel withR = 1: the

512-ary USTM and the 256-ary QPSK/Alamouti code. The latteris an orthogonal space-time
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Fig. 2. Comparisons of the optimal capacity with the mutual information rate of a practical modulation code with various

constellations. A SISO noncoherent block fading channel with Tc = 6 is considered.

code based on the Alamouti’s scheme [5] and QPSK modulation.Computation of information

rates reveal thatEs

N0

|min = 8.15 dB and8.45 dB, respectively, for these two codes. These are about

4 dB more than theEs

N0

|min = 4.2 dB required for a SISO channel with 16 QAM modulation

code (see Section III-A). ForR = 1.5, compared toEs

N0

|min = 7.1 dB for a SISO channel with

16QAM, [4] shows that a DISO channel with 8PSK/Alamouti codealso requires about 4 dB

more (Es

N0

|min = 11.76 dB). Simulation results in Section V will verify that, the proposed SISO

system with 16QAM indeed outperforms the DISO systems with the modulation codes above

by about 4 dB.

These comparisons clearly show that the information rates of these modulation codes used for

DISO systems can be much lower than those of the modulation codes used for SISO systems.

Therefore, an important observation is that for such scenarios a SISO system should be chosen

over a DISO system, and one should not waste the resource of a second transmit antenna.

We want to emphasize that, for the special scenarios discussed above, a SISO system outper-

forms a DISO system largely due to the limited information rate of the specific modulation codes

used for DISO systems. This by no means suggest that a DISO channel is intrinsically worse

than a SISO channel. In fact, the capacity of DISO channel should be no less than that of a SISO

channel, because with dual transmit antennas, one can always choose to allocate full power to one
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of the transmit antennas to realize the single antenna performance. However, the capacity of the

DISO channel is achieved only with the optimal input, whose distribution is still unknown. Even

if it were known, practical systems in general can not use theoptimal input as the modulation

code due to prohibitive complexity. Hence, practical DISO systems use modulation codes such

as USTM and PSAM that are amenable for low-complexity detection. However, as we point

out, the intrinsic information rate loss prevents them fromachieving channel capacity. Thus, it

remains an open problem to find good modulation codes that canfully utilize the capacity of

DISO channels and support low-complexity detection at the same time.

IV. NONCOHERENT DETECTION BASED ONMARKOV CHAIN MONTE CARLO (MCMC)

In this section, we propose a novel noncoherent detector based on the MCMC approach. This

detector originates from the coherent MCMC detector in [7],[8], [10] where coherent detection

is employed assuming perfectly known channel fading coefficient. Here, we extend the basic

idea of MCMC detection to the noncoherent scenario where thechannel fading coefficient is

unknown.

The main function of the MCMC detector is to compute extrinsic log-likelihood ratios (LLR)

of the coded bits based on received signal vectory and prior LLRs{λi} provided by the channel

decoder. The MCMC detector operates in two steps. In step 1, it adopts a statistical approach,

i.e., the Gibbs sampler, to identify asmall set of I “important bit vectors”, denoted byA. In

step 2, the detector computes the output extrinsic LLRs{γi} by applying the max-log algorithm

over the set of vectors inA. This greatly reduces the computational complexity compared to

that of optimum detection.

Given a modulation codewords = (c0, s1, · · · , sTc−1), we denote the bit sequence correspond-

ing to {s1, · · · , sTc−1} by b = {b1, b2, · · · , bK}, whereK = (Tc − 1)Mc. In particular, theMc

bits constituting symbolsi are{b(i−1)Mc+1, · · · , biMc
}. Each bitbi equals either0 or 1.

Step 1: Gibbs Sampler

Initialization n = 0;

generate the initial vectorb(0) = {b(0)
1 , · · · , b

(0)
K } according to (3).

Iterationn

for n = 1 to I

for i = 1 to K
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Sample thei-th bit of b(n) according to thea posteriori probability distribution

b
(n)
i ∼ π(·

∣

∣ b
(n)
1 , · · · , b

(n)
i−1, b

(n−1)
i+1 , · · · , b

(n−1)
K , λi).

end i loop

endn loop

Next, we explain details of the above procedure.

First, the initialization step to findb(0) is done as follows. For eachi = 1, · · · , Tc − 1, we

compute the most likely transmitted symbolŝi based on the received signalsy0 andyi by letting

ŝi = argmaxsi
[ln p(y0, yi|c0, si) + ln P (si)], (3)

whereln P (si) =
iMc
∑

j=(i−1)Mc+1

(λj/2)(−1)bj is the logarithm of the prior probability of symbolsi,

andλj is the prior LLR of thej-th bit. Note that the pdfp(y0, yi|c0, si) in (3) is the noncoherent

pdf corresponding toTc = 2 because only two signalsy0 andyi are considered. The symbolŝi

is then used to define the initial bit vectorb(0) by letting (b
(0)
(i−1)Mc+1, · · · ,b

(0)
iMc

) equal to the

bits constituting symbol̂si.

In the step of samplingb(n)
i , we define

a0 = {b(n)
1 , b

(n)
2 , · · · , b

(n)
i−1, 0, b

(n−1)
i+1 , · · · , b

(n−1)
K }

a1 = {b(n)
1 , b

(n)
2 , · · · , b

(n)
i−1, 1, b

(n−1)
i+1 , · · · , b

(n−1)
K }

(4)

Let

x = ln
p(y|c0, a0)

p(y|c0, a1)
+ λi and t = ex/(1 + ex), (5)

where the pdf in (5) is computed based on the noncoherent pdf (2). We then generate a random

numberu ∈ [0, 1]. If u < t, we let b(n)
i = 0, otherwise we letb(n)

i = 1.

Step 2: Compute the output extrinsic LLR{γi}
For each bit vectorb ∈ A, by replacing itsi-th bit by 0 and1, respectively, and leaving other

bits unchanged, we obtain two new bit vectorsbi,0 andbi,1. These vectors are used to compute

the output extrinsic LLRγi for bit i:

γi = maxb∈A [ln p(y|c0,b
i,0) + ln P (bi,0)] − maxb∈A [ln p(y|c0,b

i,1) + ln P (bi,1)] − λi, (6)

whereln P [bi,0] =
∑K

j=1(λj/2)(−1)b
i,0
j andb

i,0
j denotes thej-th bit of bi,0. The termln P [bi,1]

is computed similarly.
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We note that the proposed MCMC detector differs from the MCMCdetectors of [11]–[14]

in both initialization (3) and computation of output LLRs (6). In [11]–[14], bit-counting (use

statistical averaging to estimate the frequency that a particular bit value occurs) is applied to

compute the LLRs. In comparison, we use (6) to compute the LLRs based on thea posteriori

probabilities of the samples generated by the Gibbs sampler. The proposed detector does not

require a burning period and only a small number of samples are needed to achieve satisfactory

performance. Detailed analysis of the proposed noncoherent MCMC detector resembles those of

[8] for coherent MIMO channels.

The main complexity of the MCMC detector comes from thecomputation of the noncoherent

pdf (CNP) in (5) and (6). Hence, the total number of CNP can fairlyaccurately represent

the complexity of the MCMC detector. After we obtainb(0), we perform one CNP to obtain

p(y|c0,b
(0)). Subsequently, in the step of generatingb

(n)
i , according to (5), only one CNP is

needed for eitherp(y|c0, a0), or p(y|c0, a1), because one of them has been computed in the

previous step for generatingb(n)
i−1. Hence, the number of CNPs required to generate theI bit

vectors inA is 1+IK ≈ IK. To computeγi, according to (6), we flip thei-th bit of each vector

in A, and performI CNPs for these new vectors. For a total ofK bits, this leads toIK CNPs.

Hence, the total complexity of the MCMC detector, in terms ofCNPs, equals approximately2IK.

We have also confirmed that the number of CNPs, as a measurement of detection complexity,

agrees well with the actual simulation time of the coded systems.

V. SIMULATION RESULTS

In this section, we first examine the effectiveness of the proposed MCMC detector by compar-

ing it with the noncoherent detector in [4]. The latter detector, which we refer to as the bit-flipping

(BF) detector, is shown to be near optimal for channels with small or moderate coherence lengths

[6]. The complexity of the BF detector, in terms of CNPs, equals QK, whereQ is the number

of phase quantization, andK = (Tc − 1)Mc is the total number of bits transmitted in each

block. From Section IV, we know that the MCMC detector has a complexity of 2IK CNPs. We

show that, forR = 1 ∼ 1.933, small values ofI such asI = 3 give satisfactory performance

for both small values ofTc = 6, for a fast fading scenario, andTc = 30 for a slower fading

scenario. To facilitate fair comparisons, we consider channel coded systems using the same

channel code, which is a commonly used regular (3,6) low-density parity-check (LDPC) code
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with rate Rc = 1/2 and code length104, and the same modulation code described in Section

III with 16QAM. The overall rate of the system, hence, equalsR = Tc−1
Tc

4Rc, corresponding to

R = 1.667 for Tc = 6 andR = 1.933 for Tc = 30, respectively.

Using the same channel coded system as described above, we compare the performance of

the MCMC detector and the BF detector. Fig. 3 shows the bit-error-rate (BER) of the coded

system versus the average energy per information bit to noise ratioEb/N0. It relates toEs/N0 by
Eb

N0

∣

∣

dB
= Es

N0

∣

∣

dB
−10 log10 R. To reduce the overall system complexity, we perform one iteration of

noncoherent detection for every 10 inner iterations of LDPCdecoding. The maximum number of

outer iterations between the detector and the LDPC decoder set to be 60 to ensure the convergence

of the decoding process.

Fig. 3 shows that forTc = 6 (R = 1.667), the MCMC detector withI = 3 performs only

slightly better than the BF detector withQ = 6. Note that the complexity of these two detectors

are roughly the same in terms of CNPs. WhenQ increases to 10, at the cost of higher complexity,

the performance of the BF detector improves slightly and is now virtually the same as the MCMC

detector withI = 3. For the case ofTc = 30 (R = 1.933), the performance curves of the MCMC

detector (I = 3), the BF detector withQ = 10, and the BF detector withQ = 6 are shown

as the three leftmost curves in Fig. 3. Note that with roughlythe same complexity, the MCMC

detector withI = 3 outperforms the BF detector withQ = 6 by about 0.5 dB at BER=10−4.

Even with an increased complexity by settingQ = 10 for the BF detector, the MCMC detector

with I = 3 still performs slightly better.

TABLE I

OPTIMIZED LDPC CODE PARAMETERS FOR A BLOCK FADING CHANNEL WITHTc = 6.

Modulation R Rc optimzied LDPC degree sequence

16QAM 1.667 0.5 dc = 6, dv = [2, 3, 7, 8], uv = [0.5843, 0.2799, 0.0947, 0.0411]

16QAM 1 0.3 dc = 5, dv = [2, 3, 7, 8, 22, 49, 50], uv = [0.5848, 0.2818, 0.0386, 0.0778, 0.009, 0.0042, 0.0038]

8QAM 1 0.4 dc = 6, dv = [2, 3, 6, 7, 21, 22], uv = [0.5562, 0.2760, 0.0085, 0.1252, 0.0170, 0.0170]

In Table I,R is the overall transmission rate of the coded system,Rc is the rate of the LDPC code,dc is the degree

of check node,dv is the degree sequences of variable nodes,uv(i) is the fraction of variables nodes that has degree

dv(i). The code length is3 × 104.

Next, to further approach channel capacity, we optimize thechannel code to best match the
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Fig. 3. Performance comparisons of the same SISO system with the MCMC detector and the BF detector in [4]

characteristics of the MCMC detector. The degree sequence of the LDPC code is optimized by

following the extrinsic information transfer (EXIT) chartapproach in [17] and the optimized

code parameters are given in Table I. Performance of the optimized channel coded system using

MCMC detection is shown in Fig. 4. ForR = 1.667, with 16QAM and an optimized LDPC

code of rateRc = 1/2, the channel coded system achieves within1.8 dB of the capacity limit

of 16QAM (Eb

N0

|min = 5.78 dB) at BER= 10−4, and is2.3 dB away from the capacity limit of

the optimal input. ForR = 1, with 16QAM and an optimized LDPC code of rateRc = 0.3,

we achieve within1.2 dB of the capacity limit of 16QAM (Eb

N0

|min = 4.2 dB), and is1.6 dB

away from the capacity of the optimal input. When compared tothe performance of the DISO

systems [4] atR = 1 andR = 1.5, we note that the proposed SISO system achieves a roughly

4 dB performance gain. This is consistent with our observation in Section III that, at these

transmission rates, theEb

N0

|min required by the 16QAM code here is about 4 dB less than that of

the modulation codes used in [4]. In Section III we also note that the Es

N0

|min for 16QAM and

8QAM have similar values (differ by only0.2 dB). For the 8QAM coded system, an optimized

LDPC code of higher rate ofRc = 0.4 is used to achieveR = 1. Fig. 4 shows that the 8QAM

system performs about 0.6 dB worse than the 16QAM system.
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Fig. 4. Performance of the SISO system with optimized LDPC codes andMCMC detection forTc = 6.

VI. CONCLUSION

In this paper, we examine the performance of noncoherent channel coded systems. We show

that transmit diversity does not necessarily enhance performance when there is a large gap

between the mutual information rates of the modulation codes used in such systems and the

optimal channel capacity. This explains the interesting but somewhat surprising fact that the

proposed SISO systems significantly outperform certain DISO systems by as much as 4 dB. While

in this work we focus on systems with single receive antenna,we note that the basic principles

presented here are applicable to general scenarios with multiple receive antennas. For instance,

our preliminary results show that even with dual receive antennas, systems with one transmit

antenna can still outperform dual transmit antenna systemsemploying similar modulation codes

discussed here for the DISO channel. Hence, an interesting direction for future work is to

design better modulation codes for multiple transmit antenna channels that can fully exploit the

channel capacity and also allow for low-complexity detection. The proposed MCMC detector

achieves excellent performance for the SISO channel without explicit channel amplitude or phase

estimation. We believe that it will be instrumental in facilitating efficient implementation of the

capacity-approaching noncoherent systems for multiple antenna channels.
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