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Abstract- We present an expectation-maximization 
method for optimizing Markov process transition proba- 
bilities to increase the mutual information rate achievable 
when the Markov process is transmitted over a noisy finite- 
state machine channel. The method provides a tight lower 
bound on the achievable information rate of a Markov pro- 
cess over a noisy channel and it is conjectured that it actu- 
ally maximizes this information rate. The latter statement 
is supported by empirical evidence (not shown in this pa- 
per) obtained through brute-force optimization methods on 
low-order Markov processes. The proposed expectation- 
maximization procedure can be used to find tight lower 
bounds on the capacities of finite-state machine channels 
(say, partial response channels) or the noisy capacities of 
constrained (say, run-length limited) sequences, with the 
bounds becoming arbitrarily tight as the memory-length of 
the input Markov process approaches infinity. The method 
links the Arimoto-Blah& algorithm to Shannon’s noise-free 
entropy maximization by introducing the noisy a4acency 
matrix. 

a similar stochastic expectation-maximization for Markov 
sources, linking the method to a noisy adjacency matrix, 
whose computation is shown in Section V. Section VI 
gives a numeric example by computing a lower bound on 
the capacity of run-length limited sequences over the bi- 
nary symmetric channel. Section VII concludes the paper. 

Notation: The superscript T denotes matrix and vec- 
tor transposition. Random variables are denoted by up- 
percase letters, while their realizations are denoted by low- 
ercase letters. If a random variable is a member of a ran- 
dom sequence, an index Y?’ is used to denote time, e.g., 
Xt. A vector of random variables [Xi, Xi+i,. . . , XjlT is 
shortly denoted by Xi, while its realization is shortly de- 
noted by z{. The letter H is used to denote the entropy, 
the letter I denotes mutual information, while the letter 
Z denotes the mutual information rate. 

I. INTRODUCTION II. SOURCE/CHANNEL MODEL 

In his landmark paper [l], Shannon computed the max- 
imal entropy rate of a discrete-time Markov process. This 
result is widely used to determine the noise-free capacity of 
constrained sequences (such as the run-length limited se- 
quences) [a], [3]. In the presence of noise, the computation 
of the capacity of a Markov source when transmitted over 
a noisy channel has remained an open problem [a], [3]. A 
related problem is the computation of capacity bounds for 
partial response channels. In [4], Hirt proposed a Monte- 
Carlo method to evaluate lower and upper bounds on the 
i.i.d. rate. Shamai et al. have computed closed-form upper 
bounds on the capacity, upper and lower bounds on the 
i.i.d. rate, and a simple i.i.d. rate lower-bound conjecture, 
which seems to be very tight [5], [6]. Recently, Arnold 
and Loeliger [7], and independently Pfister et al. [8], de- 
vised a Monte-Carlo method to compute the exact value 
of the information rate of any Markov process transmit- 
ted over the channel, which when optimized can deliver a 
tight lower bound on the capacity. Here we introduce an 
iterative Markov process optimization method. 

We assume that the source (channel input) is a sta- 
tionary discrete-time Markov random process X, whose 
realizations xt take values from a finite-size source alpha- 
bet X. It is assumed that the channel input process has 
memory L 2 0, i.e., we have for any integer m 2 0 

Pr (-&+I IX:-,-,) = Pr (-&+~lXj-~) . (1) 

We consider an indecomposable finite-state machine 
channel [ll]. The channel state at time t is denoted by 
the random variable St whose realization is st E S = 
{1,2,. . . , M}. We choose the state alphabet size M to be 
the minimum integer M > 0 such that St forms a Markov 
process of memory 1, i.e., for any integer m 2 0 

Structure: Section II describes the source/channel 
model and the problem to be addressed. In Section III we 
reformulate the well-known Arimoto-Blahut algorithm [9], 
[lo] as a stochastic expectation-maximization procedure. 
Motivated by this development, in Section IV we construct 

This work was supported by the National Science Foundation un- 
der Grant No. CCR-9904458 and by the National Storage Industry 
Consortium. 

Pr (St+ll&J = Pr (&+ll&) . (2) 

For example, if the channel input Xt is a binary Markov 
process of memory 3 and the channel is PR4 (i.e., 1 - 02) 
of memory 2, then M = 2max(3,2) = 8 guarantees that the 
state sequence is a Markov process of memory 1. 

With this choice of the states, it is apparent that the 
input sequence Xt and the state sequence St uniquely de- 
termine each other. Hence, from this point on, the term 
Markov process will be reserved for the state sequence St 
which is a Markov process of memory 1. The state tran- 
sition probabilities of the Markov process are denoted by 

P+j = Pr (St+1 = j]St = i), (3) 
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where 1 5 i 5 M and 1 5 j 5 M. Clearly, we must have 

5 Pij = 1. A transition from state i to state j is consid- 
j=l 

ered to be invalid if the Markov state sequence cannot be 
taken from state i to state j. The transition probability 
for an invalid transition is thus zero. A valid transition is 
a transition that is not invalid. A trellis section, denoted 
by 7, is the set of all valid transitions, that is, a valid 
transition (i, j) satisfies (i, j) E 7. 

The channel output Yt is a hidden Markov sequence in- 
duced by the state sequence St, i.e., for a discrete random 
variable Yt, the probability mass function of Yt satisfies 

Pr (YtlSFm,Yt-,l,Yt~l) = Pr(YtlSt-I,&). (4 

If Yt is a continuous random variable, replace the probabil- 
ity mass functions in (4) by probability density functions. 

For indecomposable channels, the choice of the initial 
state Se does not affect the mutual information rate [ll], 
which may then be expressed as 

Z(Xt;Yt) =Z(St;Yt) = lim J1(SF;YF]Se). 
n+cc n (5) 

Assume the set ‘T of valid state transitions is given and 
fixed, but we have the option of choosing the transition 
probabilities of the valid transitions in (3) to maximize 
the information rate in (5). That is, we can choose Pij for 
all (i, j) E 7 such that we achieve the capacity 

C= rntx ~@l~I(S;;Y~ISo). (6) 
(i,jjkr 

We are interested in evaluating the capacity C and the 
transition probabilities Pij for all (i,j) E 7 that achieve 
C. In the next section we illustrate the solution approach 
by considering a simpler problem (the computation of the 
discrete memoryless channel capacity) for which the solu- 
tion is the Arimoto-Blahut algorithm [9], [lo]. 

III. A STOCHASTIC ARIMOTO-BLAHUT ALGORITHM 

We illustrate the main idea behind the new stochas- 
tic optimization algorithm by considering the well-known 
Arimoto-Blahut algorithm [9], [lo] and turning it into a 
stochastic Arimoto-Blahut algorithm. Assume that we 
have a discrete memoryless channel, with an input al- 
phabet X = {1,2,. . . , M} and an output alphabet Y = 
{1,2,. . . ,N}. The channel is defined by the cross-over 
probabilities pij = Pr (Y = j]X = i). The task is to de- 
termine the channel input probabilities ri = Pr (X = i) 
to maximize the mutual information (i.e., to achieve the 
capacity) and is solved by the Arimoto-Blahut alternating 
maximization algorithm [9], [lo]. We give here its equiv- 
alent expectation-maximization form. 

Algorithm 1 THE EXPECTATION-MAXIMIZATION 
VERSION OF THE ARIMOTO-BLAHUT ALGORITHM 

Initialization: Pick an arbitrary distribution ri, such 

that 0 < ri < 1 and 5 ri = 1. 
i=l 

Repeat until convergence 
Step 1 - Expectation: For ri fixed, compute 

Ti = E 
Pr (X = i]Y) 1ogPr (X = i]Y) 

ri I. 
Step 2 - Maximization: For Ti fixed, find ri to max- 

end 

imize C ri 
i 

log $ + Ti , i.e., set ri = 6. 1 12 

The expectation-maximization formulation is advan- 
tageous when Ti is hard (or impossible) to compute in 
closed form, because an estimate ?i can be easily found 
by Monte Carlo simulation. We create n channel input 
realizations according to the probability mass function ri, 
and transmit them over the channel to collect n channel 
output realizations y(l), ~(~1,. . . , ~(~1. For n large, 

n 
pi+ 

Pr (X = i]Y = ~(“1) 1ogPr (X = i]Y = ~(“1) 

k=l ri 

converges with probability 1 to Ti. If we substitute ?i 
for Ti in the maximization step of Algorithm 1, we get a 
stochastic Arimoto-Blahut algorithm that converges (with 
probability 1) to the deterministic Arimoto-Blahut algo- 
rithm [9], [lo] h w en n + 00, and hence it converges with 
probability 1 to the capacity-achieving input distribution. 

IV. MARKOV PROCESS OPTIMIZATION 

We now revert to the problem posed in Section II. Let 
pi = Pr (St = ‘) z and Pij = Pr (St = j]St-i = i). By the 
stationarity requirement, phi and Pij must satisfy p~j = 
~PiPij. 0 ur oa is to find the transition probabilities g 1 

:i, that achieve the maximization in (6). 
Using the chain rule, the Markov property and station- 

arity, we rewrite the mutual information rate as 

(7) 

t=1 

=~~I(&:Y~~s&) 
t=1 

=$H(St[S-1) -~~H(St~S-1,Y& 
t=1 t=1 
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where C denotes that the sum is taken over those 
i,j:(i,j)FT 

values i,j such that the branch from state i to state j is a 
member of the trellis stage (i.e, the transition from input 
symbol i to input symbol j is valid). Further, express the 
entropy in the second term in (7) as 

-H (St [St-l, Y;“) (8) 

= E [log Pr (St 1%1, Y;“)] 

= E [log Pr (St-l, St ly;“)] - E [log Pr (St-1 ly;“)] 

= c p~iPijE~?l~,~ [logPr (St-1 = i, St = j]Y;“)] 
i,j:(i,j)cT 

- c P&Y; ii [log Pr (St-1 = ily;“)] 

= 2 p~iPijEy~li,j [logPr (St-1 = i, St = j]Y;“)] 
i,j:(i,j)cT 

- c piPijEy;li [logPr (St-1 = i]Y;“)] . 
i,j:(i,j)cT 

Here, Ey?li,j denotes the conditional expectation taken 
over the variable Y;” when the pair (St-i, St) equals (i, j). 
Similarly, EyTli is the conditional expectation taken over 
Y;” when St-1 = i. Define the expectation Tij as 

Tij = ilm A 5 E Y; li,j [log Pr (St-l = i, St = jly;“)] 
t=1 

-Ey;li [log Pr (St-1 = i]Y;“)] . 
I 

(9) 

Using the Bayes rule, the expectation Tij may be alterna- 
tively expressed as 

where Pt (i,j]Yin) is short for Pr (St-1 = i, St = j]Y;“) and 
Pt (i]Yin) is short for Pr (St-1 = i]Yin). The expression 
in (10) is advantageous for numerical evaluations because 
it does not involve the conditional expectation as does (9). 
For now, we assume that we have a method for comput- 
ing Tij (it will be shown in a subsequent section that the 
value Tij can be accurately estimated using the Arnold- 
Loeliger sum-product approach [7]). Combining (5), (7), 
(8) and (9), we may express the mutual information rate 
a!3 

= c puiPij 
i,j:(i,j)cT 

log & + T+j] . (11) 
23 

We now formulate the expectation-maximization proce- 
dure in the spirit of Section III, but for the case that the 
state sequence is a Markov process. 

Algorithm 2 EXPECTATION-MAXIMIZATION FOR OPTI- 
MIZING MARKOV PROCESS TRANSITION PROBABILITIES 

Initialization: Pick an arbitrary distribution Pij that 
satisfies the following two constraints: 
1) if (i,j) E 7 then 0 < Pij < 1, 

otherwise Pij = 0 and 
2) for any i, require that C Pij = 1. 

j 
Repeat until convergence 

Step 1 - Expectation: While keeping all Pij fixed, 
for (i, j) E 7 compute Tij using (9) or (10). 

Step 2 - Maximization: While keeping all Tij fixed, 
find all Pij (and the corresponding values 
Pj = c P&j) t o achieve the maximization 

of (iij, i.e., set 

end 

There is an obvious similarity between Algorithms 1 and 
2. While the convergence of Algorithm 1 to the capacity- 
achieving distribution can be proved by modifying the 
proofs in [9], [lo], it is not clear whether the same strategy 
can be used to prove the convergence of Algorithm 2 to 
the capacity-achieving Markov process transition proba- 
bilities. However, numerical evidence (obtained via com- 
parison to time-consuming brute-force optimization meth- 
ods) seems to suggest that Algorithm 2 does converge to 
the capacity-achieving transition probabilities. 

Assume for now that we have a method to compute 
Tij. (In S t ec ion V, we show that Tij can be accu- 
rately estimated using the Arnold-Loeliger sum-product 
approach [7].) Then the solution to the maximization 
step (12) is given by the following generalization of Shan- 
non’s result for the maximal achievable (noise-free) en- 
tropy rate of a Markov process [l]. Form a noisy adjacency 
matrix A whose elements are defined as 

if (i, j) E 7 
otherwise ’ 

Let wmaz be the maximal real eigenvalue of A, and let 
b = [bl,bZ,... , b~]~ be the corresponding eigenvector. 
Then the the maximization in (12) is achieved by 

and the maximal value of c 
i,j:(i,j)cT 

PUMPS [log & + T,j] is 

C (Tij) = log IN,,, . (15) 

A few comments are in order here. If the channel is 
noiseless, then the matrix A is the standard noise-free 
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adjacency matrix [3]. The logarithm of the maximal real 
eigenvalue of this noise-free adjacency matrix is the maxi- 
mal achievable noise-free entropy rate of a Markov process, 
as was shown by Shannon [l]. If we accept the conjec- 
ture that Algorithm 2 converges to the capacity achiev- 
ing transition probabilities as true, and if Tij is the glob- 
ally optimal expectation (computed after many iterations 
of Algorithm 2), then the channel capacity (the maxi- 
mal mutual information rate) is given by C = log W,,, . 
In [la], Khayrallah and Neuhoff relate the capacity of a 
soft-constrained sequences to the eigenvalue of (what we 
rename here) a soft adjacency matrix B. It is somewhat 
speculative (though likely) that the soft adjacency matrix 
and the noisy adjacency matrix could be unified into a 
soft-noisy adjacency matrix which could be related to the 
capacity of soft-constrained sequences over noisy channels. 

V. COMPUTING THE NOISY ADJACENCY MATRIX 

The noisy adjacency matrix can be computed using the 
sum-product algorithm since in (9) and (10) the proba- 
bilities Pr (St-1 = i, St = j]YF) and Pr (St-1 = i]YF) are 
exactly the outputs of the sum-product (BCJR, Baum- 
Welch) algorithm [13]. Assume that the transition prob- 
abilities Pij are given. For n large, generate a realiza- 
tion st of the state sequence Sz according to these tran- 
sition probabilities Pij. Pass the realization sz of the 
state sequence through the noisy channel to get a real- 
ization yy of the output sequence Y;“. Now run the sum- 
product (BCJR) algorithm [13] and compute the outputs 
Pt (i,j]yT) = Pr (St-1 = i, St = jly?) and Pt (ily?) = 
Pr (St-1 = ilyr) for all 1 5 t 5 n, all 1 5 i 5 M and 
all pairs (i,j) E 7. Next for (i,j) E 7 estimate (10) as 
the empirical expectation 

L&j = ; 5 

Pt(i,ilYp) 

log 
Pt (i,j]yl”) pip;j 

t=1 Pt (ilyl”) T 1 Pt(;lYF) . (16) 

By the ergodicity assumption, invoking the law of large 
numbers, we have (with probability 1) lim Tij = Tij. 

n-00 
Thus, we have a method for implementing Algorithm 2. 

Algorithm 3 A STOCHASTIC METHOD FOR OPTI- 
MIZING MARKOV PROCESS TRANSITION PROBABILITIES 

Initialization: Pick an arbitrary distribution Pij that 
satisfies the following two constraints: 
1) if (i,j) E 7 then 0 < Pij < 1, 

otherwise Pij = 0 and 
2) for any i, require that C Pij = 1. 

Repeat until convergence 
Step 1: For n large, generate st according to the tran- 

sition probabilities Pij and pass them through 
the noisy channel to get y?. 

Step 2: Run the forward-backward sum-product (Baum- 
Welch, BCJR) algorithm [13] and compute 
pij according to (16). 

Step 3: Estimate the noisy adjacency matrix as 

if (i, j) E 7 
otherwise ’ 

Step 4: 

end 

and find its maximal eigenvalue I@,,, and the 

corresponding eigenvector 6 = 
[ 
&,&, . . 6 

T 
‘, M 1 . 

Compute the entries of the new transition prob- 

ability matrix for (i, j) E 7 as Pij = k . e 
2 maz 

At the end of the execution of Algorithm 3, the opti- 
mal information rate can be evaluated using the Arnold- 
Loeliger method [7] or using expression (11). Numerical 
evaluations of Algorithm 3 on low-dimensional Markov 
processes (up to 4 trellis states) show that Algorithm 2 
achieves the same Markov transition probabilities as a 
brute-force information rate maximization. The same nu- 
merical evaluations have shown that at the end of the exe- 
cution of Algorithm 3, the optimized information rate can 
be just as accurately evaluated by & = log I%,,,. This 
supports the conjecture that Algorithm 2 converges to the 
capacity-achieving distribution of the Markov transition 
probabilities and that Algorithm 3 achieves convergence 
to the same transition probabilities with probability 1. 

VI. LOWER BOUNDS ON THE NOISY CAPACITY OF 
RUN-LENGTH LIMITED CODES 

We illustrate the applicability of Algorithm 3 by com- 
puting lower bounds on the capacity of run-length lim- 
ited (RLL) sequences [3] when transmitted over a binary 
symmetric channel (BSC) [ll] (but can easily be gener- 
alized for any finite-state machine channel)‘. The chan- 
nel’s cross-over probability p is allowed to vary between 
0 and 0.5. We present the result of the proposed proce- 
dure for a run-length limited sequence with parameters 
(d, Ic) = (0, l), that is, the source output (channel input) 
is a sequence of 1s and OS, where at least d = 0 and at 
most Ic = 1 consecutive OS can appear in the sequence. We 
consider two cases: 1) the channel input is created by a 
2-state Markov process - Figure la, and 2) the channel in- 
put is created by a 3-state Markov process - Figure lb. In 
Figure 1, the notation Pij/x denotes that the Markov pro- 
cess goes from state i to state j with probability Pij, while 
producing 2 as the source output (channel input). Algo- 
rithm 3 with trellis length n = lo6 was applied to optimize 
the transition probabilities Pij, and the optimized infor- 
mation rates are depicted in Figure 2. The same figure 

‘The algorithm presented here can also be used to lower bound the 
capacity of partial response channels under binary input constraints, 
see [7] for this particular scenario. 
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Optimized information 
rate for the Markov 
process in Figure 1 a. 

0 0.1 0.2 0.3 0.4 0.5 
P 

Fig. 1. Two Markov processes creating run-length limited binary 
Fig. 2. Information rates as functions of the BSC cross-over prob- 

sequences with parameters (d,k) = (0,l). 
ability p. The information rate for the memory 1 process in 
Figure lb is not plotted because it is only marginally higher 
than the optimized information rate for Figure la. 

length limited sequence H,,,(O, 1) = log, (1 + fi) - 1. 
Also shown is the curve H,,, (0,l) . Cb(p), which is nu- 
merically very close to the Zehavi-Wolf lower bound on the 
noisy capacity of the RLL(O,l) sequence over the binary 
symmetric channel [a]). The information rates calculated 
using Algorithm 3 lie above H,,,(O, 1) . Cb(p) and are 
getting tighter as the Markov memory of the run-length 
limited process increases. For the (d, Ic) = (0,l) sequence, 
going from a Markov source of memory 1 (Figure la) to a 
source of memory 2 (Figure lb) only marginally increases 
the information rate. The optimized input Markov pro- 
cess can actually be used to get a tight upper bound, as 
described in [14] (not shown here). 

shows the unconstrained capacity of the binary symmet- 
ric channel Cb(p) = 1 +plogp+ (1 -p) log(1 -p) and the 
maximal entropy rate of a noise-free (d, Ic) = (0,l) run- 
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