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Abstract

It is well-known that independent and identically distributed Gaussian inputs, scaled
appropriately based on the Signal-to-Noise Ratio (SNR), achieve capacity on the Additive
White Gaussian Noise (AWGN) channel at all values of SNR. In this correspondence, we
consider the question of whether such good input distributions exist for frequency non-
selective Rayleigh fading channels, assuming that neither the transmitter nor the receiver
has a priori knowledge of the fading coefficients. In this noncoherent regime, for a Gauss-
Markov model of the fading channel, we obtain explicit mutual information bounds for
the Gaussian input distribution. The fact that Gaussian input generates bounded mutual
information motivates the search for better choices of fixed input distributions for high-rate
transmission over rapidly varying channels. Necessary and sufficient conditions are derived
for characterizing such distributions for the worst-case scenario of memoryless fading, using
the criterion that the mutual information is unbounded as the SNR gets large. Examples of
both discrete and continuous distributions that satisfy these conditions are given. A family of
fixed input distributions with mutual information growth rate of O((loglog SNR)!~%),u > 0
are constructed. It is also proved that there does not exist a single fixed input distribution
that achieves the optimal mutual information growth rate of loglog SNR.

keywords Channel capacity, fading channels, high signal-to-noise ratio (SNR), noncoher-
ent communication, Rayleigh fading

1 Introduction

In this correspondence, we provide an information-theoretic perspective on the choice of input
distributions for high-rate data transmission over rapidly fading, frequency non-selective, wire-
less channels. The standard practice of tracking the channel based on known pilot symbols is
expensive in this setting. Instead, we consider the paradigm of noncoherent communication, in
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which the receiver does not have a priori knowledge or estimates of the channel. Pilot-aided
channel estimation is a suboptimal receiver strategy that falls within this framework.

For the classical AWGN channel, it is well-known that independent and identically distributed
(i.i.d.) Gaussian inputs, when appropriately scaled according to SNR, achieve capacity over the
entire range of SNR.. This motivates us to investigate whether such good fixed input distributions
exist for the noncoherent Rayleigh fading channel. Our focus is on the high SNR regime, in order
to explore the feasibility of high-rate transmission under rapid channel time variations.

We first study the Gauss-Markov channel and derive the mutual information bounds generated
by the Gaussian input. Our results show that the mutual information achieved by the Gaussian
input remains bounded at high SNR. This is in contrast to the block fading channel model,
studied in detail in [1, 2] for finite SNR: for this model, Gaussian input results in unbounded
mutual information in the high SNR limit [3], as long as the channel is constant over a block
of at least two symbols. The block fading model, and other blockwise constant channel models,
are also attractive from the point of view of design of practical turbo coded modulation schemes
using conventional signal constellations, and iterative channel estimation, demodulation, and
decoding [4, 2, 5, 6]. However, our results suggest that, even though the block fading channel
model is considered to be a good approximation for a continuously varying fading channel with
block interleaving (or frequency hopping), the accuracy of the approximation breaks down as
the SNR gets large. The boundness of mutual information generated by Gaussian input is also
obtained by Lapidoth and Moser [7] for more general fading processes.

The suboptimality of Gaussian input motivates us to consider alternative input distributions.
We look for good input distributions that generate unbounded mutual information in the high
SNR limit and study the mutual information growth rate as a function of SNR. Necessary
and sufficient conditions are derived to characterize such distributions for memoryless fading.
Examples of both discrete and continuous distributions that satisfy these conditions are given. In
particular, we identify input distributions that are not suitable for high-rate communication due
to the boundness of mutual information at high SNR. Such distributions include any continuous
distribution that is bounded around 0 (such as the Gaussian distribution) and any constant
amplitude distributions (such as the PSK signaling).

For memoryless fading, Taricco and Elia [8] and Lapidoth and Moser [7] proved that the non-
coherent channel capacity grows double logarithmically (loglog(SNR)) as a function of SNR. It
is shown in [7] that this rate of growth also applies to more general ergodic fading processes.
In this correspondence, we propose a special class of discrete input distributions that, when
scaled appropriately with SNR, has a mutual information growth rate approaching this optimal
capacity growth rate. It is shown by Abou-Faycal et al. [9] that the optimal input distribution
for memoryless fading is discrete and has finite mass points. However, the exact number and
the location of these mass points vary significantly with SNR and have to be computed numeri-
cally. In this correspondence, we concentrate on input distributions with closed-form analytical
expressions.

This correspondence is organized as follows. Section 2 contains basic definitions. Section 3 con-
tains bounds on the mutual information for i.i.d. Gaussian input on a Gauss-Markov channel.
The remainder of the correspondence focuses on characterizing input distributions that gener-
ate unbounded mutual information in the high-SNR limit. We restrict attention to memoryless
fading for this purpose. Section 4 contains necessary and sufficient conditions for an input distri-



bution to generate unbounded mutual information. Section 5 focuses on discrete distributions,
and provides an example of a class of distributions that generates unbounded mutual informa-
tion, with a rate of growth of SNR approaching the optimal capacity. Concluding remarks are
given in Section 6.

2 Entropy, Differential Entropy, and Mutual Information

We first review the basic concepts of entropy, differential entropy, and mutual information. When
X is a discrete random variable with a probability distribution p; = P(X = x;),i = 1,2,-- -, the
entropy of X, denoted by H(X), is defined as H(X) = — >, p;logp;. The logarithm is taken
to the base e unless otherwise stated. Note that when X is discrete, we have H(X) € [0, 4+o00].
When X is a continuous random variable, the differential entropy of X is defined as

W) == [ p(o) logpla) do

- |- /{ P oEn () s +

[ - /{ oy P 0ER(E) dx] .

The last equality is well defined except when the first term is equal to —oo and the second term
is equal to +0o. When X is a continuous random variable, we have h(X) € [—oo, +00].

For a general measure theoretic definition of the mutual information I(X; Z) between two ran-
dom variables X and Z, we refer to Pinsker [10]. According to this definition, I(X; Z) take
values in [0,4+o00]. When X is discrete, we have I(X;Z) = H(X) — H(X|Z), provided that
H(X) and H(X|Z) are not both equal to +00. When X is a continuous random variable, we
have I(X;Z) = h(X) — h(X|Z), assuming that the two terms h(X) and h(X|Z) are not both
equal to +o00 or both equal to —oo.

3 Mutual Information Bounds for Gaussian Inputs

Consider a Gauss-Markov fading channel model as follows:

Sn+1 = OlSn + vV 1-— OZQUn

(1)
Yy = SuXn + oW,

For each time instant n, S,, X,, and Y,, represent the fading coefficient, the channel input, and
the channel output, respectively. The sequences of random variables {U,} and {W,} are i.i.d.
complex Gaussian, CN (0, 1) distributed. The fading process {S,} is generated by a first-order
Markov process with a parameter 0 < o < 1. The constant o equals to the square root of the
noise variance. We assume that noncoherent reception is employed; namely, the receiver has no
explicit information about the channel fading coefficients {Sy,}.

Denote the sequence {Y1,---,Y,} by Y]" and the sequence {X1,---, X} by XJ". Let
1 1
In = ~I(X75 Y1) = —[h(Y") = R(YT'|XT)]

n



be the average mutual information achieved by the input signals X{* through n channel uses.

When X7 is i.i.d. Gaussian, the following theorem gives upper and lower bounds on I,,.

Theorem 3.1 Consider the Gauss-Markov channel model defined in Equation (1). Suppose that
the channel input X7 is i.i.d. complex Gaussian CN(0,1) distributed. We have the following
estimates:

(1) Upper bound:

I, <log (1+ 02) — /OOO e "log [z(1— aZ) +U2] dzx.
In particular, we have
I, <—log(1—a®)+v, aso®—0, (2)
where v = — fooo e Tlogx dr = 0.5772--- is Euler’s constant.

Lower bound:
InZ/ e "log (x+02) dx——log‘a 1n+An‘, (3)
0 n
where 1, is the n X n identity matriz; A, is the n X n covariance matriz of the vector ST.

The latter is a Toeplitz matriz with entries a;; = ali=il, Moreover,

lim [,, > /000 e "log (z + 0?) dz — f(a), (4)

n—00

where

f(a)ZIOg[ kl(a)'k22(a)+k3(a) |

with k(@) = o?(1+a)? +1—a? ks (a) = 0?(1—a)?+1—a? and k3(a) = o?(1+a?)+1—a?.

In particular, we have

lim I, > —log (1 —a®) —v, as o —0. (5)

n—0o0

As seen from Equation (2), for any fixed 0 < a < 1, the average mutual information achieved
by the Gaussian input is bounded above by a constant at high SNR. The same result was also
obtained by Lapidoth and Shamai [11] in the case of & = 0. As @ — 1, both the upper bound
(2) and the lower bound (5) in the high SNR limit approach infinity and differ by a constant
27. The lower bound, however, becomes trivial for small values of «.

Proof.

(1)

Proof of the upper bound.

By definition,
1 n n n
I, = E[h(n ) — h(Y{"|XT)]. (6)



For the first term, we have
1 1 —
hY) <= A(Y;) = k() <1 log (1 + 02). 7
SO < DR = MY < log(e) +1og (1+ ) ™)

For the second term, we have

1 1 — -
Sh(YP'XT) =~ S Ay XT)
1=1

1 — .
Ezh(YilYf’l,X?,Sifl)

=1

AV

1 n
== > hYilXi, Si1) = h(Y2|Xo, 51).
i=1

Since Y5 = XoSo+oWsy = X5 [aSl +v1— aZUl] + oWy, the distribution of Y5, conditioned
on X5 and S7, is Gaussian with variance |X2|2(1 — a2) + 02, It follows that

Lhr1xp) = b1l 51)
= Ey, log [me(|X,]* (1 - o?) + 07)] (8)
= log(me) + /000 e “log [z(1 — o?) + ¢?] da.
Equations (7) and (8) combine to give the upper bound.
(2) Proof of the lower bound.

Again, we start from Equation (6). First, we find a lower bound on 1/ (Y{"):

1 1 « . 1 « .
Eh(yfl) = Zh(my1 > - Zh(my1 ', Si)
i=1 i=1

1 n
- E;h(mé‘i) = h(Y1]S1) (9)

= Eg, log [7re(|51|2 + 02)]

o0
= log(me) + / e “log (7 + 0?) dz.
0
Next, we derive an upper bound on 1h(Y"|XT). To simplify notation, denote X7 by X.

Conditioned on X, Y{" is Gaussian with the covariance matrix Q(X) = 0?1, + Ax A, A%,
where A x denotes a diagonal square matrix with diagonal elements X1,--- , X,;. We have

C(VIXT) = - B log meQ(X)
< %log Ex|meQ(X)| (Jensen’s inequality)
= log(me) + %log Ex‘O'Z]_n + AXAnAg‘ (10)
= log(me) + %log Ex‘O'Z].n + An(A)}gAx)‘

1
= log(me) + " log ‘O'Zln + Ay



Substituting equations (9) and (10) into Equation (6), we get Equation (3).

Let us define ®, = 021, + A,. The matrix ®, is a Toeplitz matrix. Denote the
eigenvalues of ®, by {A},k = 1,---,n} and the k-th diagonal element by ¢;. Let
P(z) = D2 brz™I?mF j = /=1. We then apply the Toeplitz distribution theorem [12]
to obtain

1 1
lim —log 0?1, + Ap| = lim —logIT}_, A}
n—oo N n—oo n

1/2

1"7,
= lim — log)\”:/ log[®(x)] dx = f(«).
fim 53 og Xt = [ togfw(o)]d = f(c)

Remark: When the input is i.i.d. and has constant amplitude: |X;|> = 1, we have the
following upper bound:

I, <log(1 4 0?%) —log(1l — o? + ¢?). (11)

The proof for this upper bound is similar to the proof for the upper bound given in
Theorem 3.1 for the Gaussian input. The only difference is that one should replace the
last equality in Equation (8) by log(me) + log(1 — a? + ¢?). By letting o — 0, Equation
(11) implies that the mutual information generated by PSK input is also bounded from
above by —log(1 — ). This suggests that in the high SNR regime, it is power-inefficient
to use large PSK constellations.

4 Input Distributions that Generate Unbounded Mutual Infor-

mation at High SNR

In the remainder of this correspondence, we study the worst-case i.i.d. memoryless fading

channel, and characterize input distributions that generate unbounded mutual information in
the high-SNR limit.

4.1

S JLJW
X Y Y,

U

Y, =8SX+cW=Y+cW

Figure 1: The i.i.d. fading channel.

The i.i.d. fading channel model

The i.i.d. fading channel model can be obtained by setting o = 0 in the Gauss-Markov channel
model defined by Equation (1). To simplify notations, we drop the time index n and model the
channel as shown in Figure 1, where Y represents the output signal when the noise vanishes, Y,



represents the output signal corresponding to a given noise variance 0. Note that the input X
satisfies the power constraint F(|X|?) = 1.

A useful property of this channel model can be seen from its channel transition probability:

]. 2 2 2

_ —lyl*/(|z|*+0?)

r) = € )

ng|X(y| ) 'IT(|III|2 +0_2)

which depends only on the amplitudes of the input and output signals. This implies that the

mutual information between X and Y, is the same as the mutual information between | X| and
Yo |:

I(X;YO') :I(|X|;|Y0'|)' (12)

Hence, I(X;Y,) is completely determined by the amplitude distribution of the input signal.
This property is used in later sections.

A necessary condition for an input distribution to generate unbounded mutual information at
high SNR is given by Lapidoth and Moser (Theorem 4.3, [7]). Using this necessary condition, one
can show that any continuous input distribution with a finite density function that is bounded

around 0 (including the Gaussian distribution) generates bounded mutual information at high
SNR.

Next, we derive necessary and sufficient conditions on the input distribution of X such that

lim I(X;Y,) = +oo. (13)

o—0

4.2 Necessary and sufficient conditions

We derive necessary and sufficient conditions to characterize input distributions that satisfy
Equation (13). To simplify this problem, we prove that the limit of the mutual information
generated by a fixed input distribution, as ¢ — 0, is equal to the mutual information it generates
when the noise vanishes (o = 0). In other words, the mutual information, as a function of o, is
continuous at o = 0.

Theorem 4.1 For any discrete or continuous distribution of X, we have
(}_E)I%)I(X;YU) =I1(X;Y).

In particular,
lim I(X;Y,) = o0 <= I(X;Y) = +o00.

o—0

Theorem 4.1 can be proved by first demonstrating convergence in variation: for any A C C?, we
have lim,_,o Pxy, (A) = Px,y(A), and then apply Pinsker’s results [10] (page 13).

Theorem 4.1 states that whether a fixed input distribution leads to unbounded mutual infor-
mation at high SNR is determined by whether it generates infinite mutual information when
the noise vanishes. Hence, it suffices to focus on I(X;Y) with Y = SX. As shown in Figure
2, this particular channel model can be reduced to a simple additive noise channel model by



transforming the original input and output signals into signals on the logarithm domain. This
transformation leads to some useful necessary and sufficient conditions for input distributions
that generate unbounded mutual information at high SNR. We summarize these conditions in

the following theorem.
S| g’
RY Y] X' Y’
=

U

Y] =1X]-15] Y| = X"+ 5]

Figure 2: Transformation to the logarithm domain.

Theorem 4.2 Define X' = log|X| and Y' = log|Y|. Let log(0) = —oc. For any discrete or
continuous distribution of X, the following assertions hold:
(1) I(X;Y) = I(X";Y"). In particular, I(X;Y) = 400 <= I[(X";Y') = +00.
(2) If Y' is a continuous random variable with a finite density function, then
I(X";Y") = 400 & h(Y') = +0.
(8) If X is a continuous random variable with a finite density function, then
h(X') = 400 = I(X";Y') = +00.
Part (2) of this theorem gives a necessary and sufficient condition applicable to any continuous or
discrete input distribution. However, it is usually difficult to verify whether or not A(Y"') = +o0.

Part (3) of this theorem gives a sufficient condition for a continuous distribution to generate
unbounded mutual information, which is much easier to use.

Proof. From Equation (12), we know that I(X;Y) = I(|X|[;|Y]). Since the mapping between
(|X1],]Y]) and (X',Y") is one-to-one, we also have I(|X|;|Y|) = I(X';Y’). Part (1) of the
theorem follows.

Taking the logarithm of both sides of the Equation |Y| = |S||X]|, we get
log |Y| = log|S| + log | X]|. (14)
Let S" =log|S|. We can rewrite Equation (14) as
YVi=5+X"

Simple calculations show that h(S’) = h(|S|) — E'log|S| is finite, therefore h(Y’'|X’) = h(Y' —
X'1X") = h(S'"|X") = h(S’) is also finite. Since I(X';Y’) = h(Y') — h(Y'|X'), we see that
I(X";Y'") = 400 <= h(Y') = +0o0. This proves part (2).

Next, we prove part (3). If X is a continuous random variable, so is X’. Therefore,
I(XhY)=h(X") - h(X'|Y") =X - (X =Y'|Y")
=h(X") = h(=8"Y") > h(X") — h(-=5").

Since h(—S") is finite, part (3) of the theorem follows immediately. W



4.3 An example of a “good” continuous input distribution

We can apply part (3) of Theorem 4.2 to obtain continuous input distributions that generate
unbounded mutual information at high SNR. An example of such a distribution is given by

C1

i a<e 3
pix|(a) = alog(1/(caa))[loglog(1/(caa))]? fo<a< /e2,
0

else,

where ¢; = log3 and ¢; = 0.0164 are chosen such that [° pjy|(a)da =1 and [;* a’p|x(a) da =
1. A plot of this density function is given in Figure 3. Simple calculations show that h(X') =
h(log(] X)) = +oo. From part (3) of Theorem 4.2, it follows that I(X;Y) = I(X";Y') = +oo0.

3

0.5f

Figure 3: An example of continuous input distributions.

5 Discrete Input Distributions

It is difficult to apply directly the necessary and sufficient conditions for unbounded mutual
information in Theorem 4.2 to discrete input distributions, which are of more interest in practice.
Instead, we provide in this section an example of a class of discrete distributions that provides
unbounded mutual information, and analyze a simple receiver to show that the rate of growth
of mutual information with SNR is Q([loglog SNR]*), where 0 < u < 1 ranges over the members
of the class. As u — 1, this approaches the O(loglog SNR) rate of growth of capacity for the
memoryless channel.

Since I(X;Y,) = I(|X|; |Ys|), in this section, we drop the magnitude notation and denote | X|
by X and |Y;| by Y;, respectively.

5.1 Signal constructions

Consider a discrete input distribution of X having mass points at z; = SL*, each with proba-
bility p;,7 = 2,3,--- . Here L > 1 is a fixed constant, 3 is a scalar constant such that the energy



constraint is satisfied: > "2, pimlz = 1. In addition, we assume that
o0
H(X)=—Y pilogp; = +oc.
i=2

An example of such a distribution with L = 2, p; = W, where ¢ is a normalization constant,
is plotted in Figure 4. Note that if one approximates this discrete distribution by a continuous
distribution, the density function of the approximation looks like the one in Figure 3.

0.35
0.3f
0.251
02}

o

0.15f

0.1p

0.051

Figure 4: An example of discrete input distributions.

Similar signal constructions were first studied by Taricco and Elia [8], where the number of mass
points was finite and only the uniform distribution was used. In [8], the parameter L approaches
infinity as the SNR grows, while in this work, we fix L and let the number of mass points equal
infinity.

For any L > 1, the signals constructed above lead to unbounded mutual information. For
brevity, we prove it only for a particular choice of L that satisfies

P(|S| ¢ [L71%, L) < ¢/2 (15)

for a fixed 0 < € < 1. Similar proofs also work for other values of L.

5.2 A lower bound for I(X;Y,) based on a simple receiver

We derive a lower bound for I(X;Y,) based on a simple receiver structure. Given a fixed noise
level o, the receiver chooses a positive integer N, which can be interpreted as the resolution
parameter, and pretends that one of the input signals from the set {z9,--- ,zx} was sent.

In other words, define

X ifXE{:EQ,"',ZEN},
Xy =
0 else.

Based on the received signal Y, the receiver tries to estimate of X according to some decision
rule which we describe later. Since Y, — X — Xy forms a Markov chain, from the data

10



processing inequality [42, p. 32], it follows that I(X;Y,) > I(Xn;Ys). As the receiver improves
its resolution N, I(Xy;Y,) becomes a tighter lower bound for I(X;Y,). The main result is
summarized in the theorem below.

Theorem 5.1 For arbitrarily fized €, L, and o, let Nyax(o) be the largest N such that
P(|0W| > yL’N> <e/2, (16)
where v = B(L?3 — L'/3)/2. Then for any N < Nmax(0), we have:
I(X;Y5) > I(Xn; Yo) > (1 — ) H(Xy) — 1. (17)
In particular, for any e < 1,

lim I(X;Y,) = +o0.
o—0

Proof. First, we introduce some notation. For each integer 2 < 7 < N, define a decision interval
A; that contains z; as A; = [:L“Z L=1/3 — yL™N, z; LY3 4+ 4L~V |. An illustration of decision

intervals is given in Figure 5.

: At L A; . A1 |
o o L0 o o—! | O_,‘IJU_. | Lo o o
0 zn Tipl g 7Y3 mi g [13 T

Figure 5: Illustration of decision intervals.

Define a random variable E as

gL iflS|E [L=Y3,L'3] and [oW| < yL~N,
B 0, else.

Note that for any N < Npax(0),
P(E=0) < P(IS| ¢ (L7, L) + P(joW| > yL7V)
<e€/2+€/2=¢
First, we have

H(Xy|Y,) < H(Xy,E|Y,) = H(E|Y,) + HXy | E,Y,)
<1+ H(Xy|E,Y,)
=1+ P(E=1)H(Xy|E=1,Y,)

+P(E=0)H(Xy|E=0,Y,) (18)
<14+ H(Xy|E=1,Y,)+P(E=0)H(Xy|E=0,Y,)

<14+ H(Xy|E=1Y,)+eH(Xy|E=0)

=1+ H(Xy|E=1,Y,) +¢ H(Xy).

11



It is important to realize that under the assumption that ¥ = 1, for any possible transmitted
signal Xy = z;, i = 2,--- , N, we must have Y, € A;. Since the decision intervals {A;,i =
2,---, N} are nonoverlapping, it follows that when conditioned on Y, and E = 1, Xy is uniquely
determined. Hence, H(Xy | E = 1,Y,) = 0. Substituting this into the last equality of Equation
(18), we get

H(Xy|Y,) <14 €eH(Xy). (19)

Finally, we obtain

I(Xn;Ys) = H(Xn) — H(Xn | Y5)
ZH(XN)—GH(XN) —1
— (1— ) H(Xy) - 1.

This proves the second inequality in Equation (17). As 0 — 0, we have Nyax(0) — 0o. There-

fore, by letting N — oo, the right side of Equation (17) converges to (1 —¢€) H(X) — 1 = 400,
assuming that e <1. H

5.3 Growth rate of I(X;Y,) as a function of o

For some particular choices of the distribution {p;,i = 2,---}, we study how fast the mutual
information I(X;Y,) grows as a function of o. Here we fix ¢, L, and o.

Lemma 5.1 Nyyeu(0) grows in the order of O(log (1/5?)).

Proof. By solving

o.¢]
P(loW| >~L™N) = / 2ae % da=e VLTV < €/2,
YL~V [o

we obtain

log(1/0?) _ loglog(2/e) — 2log'y
N O(log(1 |
< 2log L 2log L O(log(1/0%)).

Theorem 5.2 Let p; = W, where 0 < w < 1 and t is a constant such that > °,p; = 1.
The mutual information 1(X;Y,) grows in the order of Q([loglog (1/0?)] 17“).

Proof. First, we compute H(Xy):

N

1
Zpl logpl - Z (log’l)
il loglog 4 il 1
t(1 — (tlogt) —
+u) ;zlgz T — VOB ;zlogz)H“

12



Since the last two terms in the last equality both converge as N — oo, the growth rate of H(Xy)
is determined by the growth rate of the first term.

Because
/N b gt (log )t — ! (log 2)t—*
5 x(logz)® T 1- & ’
we have
H(Xy) = (log N)'"*+0(1), as N — oo. (20)

1—u
From Theorem 5.1 and Lemma 5.1, it follows that
I(X7 YU') Z I(XNmax(U); YU) Z (]‘ - E)‘E[()(]Vmax(o')) —1

= (1= 9 (log Nast)) =] + 001

= O([loglog (1/02)]17u), aso—0. A

From Theorem 5.2 we see that the growth rate of loglog(1/0?) (corresponding to u = 0) is
not achieved because {p; = t/(ilogi)} is not a valid probability distribution. Furthermore, the
following theorem (due to A. Lapidoth) shows that no fixed input distribution can achieve the
optimal growth rate of loglog(1/0?). This theorem is valid for general fading processes.

Theorem 5.3 (Lapidoth) Let the fading process {Si}, be stationary, of finite differential en-
tropy rate; and of unit second moment. Let the input process { Xy} be such that the law of Xy,
does not depend on the time index k and has unit second-moment. Then

limsup,,_,, I(X1, -, Xp; Y7, Y2, ,Yy)/n

li =0. 21
Jim ogTog(1/07) )
Proof: By Lemma 4.5 in Lapidoth-Moser [7] it suffices to prove
I(Xl; Yl) -
im ——— =
720 loglog(1/0?)
Consequently, we shall drop indices and prove
I(X; 58X
lim LESX W) _
o250 loglog(l/0?)
Define for any a > 0 such that P(|X| > a) >0
0 ifX=0
E={1 if0<|X|<a (22)
2 if|X|>a

Let Yy = SX + oW. We can now expand I(X;SX + oW) = I(X;Y,) as

I(X;YO') = I(XvE;YU)
=I1(E;Y,) + [(X; Y5 |E) (23)
<log3 +I(X;Y,|E=1)P(E=1)+I(X;Y,|E =2)P(E =2)
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where we have used the fact that I(X;Y,|E = 0) = 0, because conditioned on E = 0 the input
X is deterministic.

We next study the term I(X;Y,|E = 2) and show that it is bounded in the noise variance. That
is, we shall show that

I(X;SX + oW|E =2) < I(X;SX|E = 2) < oo. (24)

Note that since X is of unit second moment, it follows that, conditioned on |X| > a, the second
moment of X is at most 1/Pr(|X| > a). Consequently we have

I(X;SX|E =2) = h(SX|E = 2) — h(SX|X,E = 2)

< log (reE[|SX|*|E = 2]) — Ex|ps[log | X|* + h(S)] (25)

< log (meE[|S|*] —log |a]* — h(S) < .

Br(X] > a))
Hence, we obtain equation (24).

We next consider the term I(X;Y,|E = 1). We note that, conditioned on F = 1, the input X
is upper bounded by a. In particular, the input’s conditional second moment is upper bounded
by a? and hence finite. Consequently (see Lapidoth-Moser [7] Theorem 4.2) it follows that

T I(X;Y,|E=1)
imsu

o0 loglog(1/0?)
We thus conclude that

. I(X;8X +o0W)
| <P(E=1)=P X| <a).
2530 loglog(1/02) — ( ) (0<IX]<a)

The theorem now follows because a can be chosen as close to zero as we wish and in this way
guaranteeing that P(0 < |X| < a) is as close to zero as desired.

6 Conclusions

In this correspondence, we derive explicit bounds of mutual information with i.i.d. Gaussian
input for Gauss-Markov fading channels. Our results imply that it may not be appropriate to
apply standard code designs for the AWGN channel to fading channels. Intuitively, however, we
would still expect Gaussian input to work well at moderate SNR and/or slow fading. The regime
where this would happen can be roughly characterized based on our bounds, which show that
the high-SNR limit of mutual information for Gaussian input is —log(1 — a?), up to an additive
constant independent of @ or SNR. This implies that log(SNR) growth in mutual information
can occur if @ — 1 as SNR gets large, with  ~ 1 — k/SNR for some k£ > 0. This is also the
regime in which the block fading channel model [1], for which conventional signal constellations
are known to work well [2, 5, 6], is a good approximation for the continuously varying channel.

We propose a family of fixed input distributions with mutual information growth rate of
O((loglog SNR)! %), 4 > 0 at high SNR for memoryless fading (o = 0). These input distri-
butions have the attractive feature that a fixed constellation, when scaled appropriately, can

14



be employed for a wide range of SNR. Clearly, these constellations also give unbounded mu-
tual information at high SNR for the Gauss-Markov model with memory (o > 0) as well, since
the use of channel memory at the receiver can only increase the mutual information. We also
show that no fixed input distribution can achieve the optimal mutual information growth rate
of loglog SNR. Further investigation is needed on optimizing the choice of constellation for
channels with memory (and on determining the rate of growth of capacity for such channels) in
the high-SNR limit. In particular, while information can only be conveyed via amplitude for the
noncoherent memoryless fading channel, information can be carried by the phase as well when
the channel has memory.
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