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Capacity of a Mobile Multiple-Antenna
Communication Link in Rayleigh Flat Fading

Thomas L. MarzettaSenior Member, IEEEand Bertrand M. Hochwaldylember, IEEE

Abstract—We analyze a mobile wireless link comprisingd  such wide antenna separations, the traditional adaptive array
transmitter and [V receiver antennas operating in a Rayleigh flat-  concepts of beam pattern and directivity do not directly apply.
fading environment. The propagation coefficients between pairs ¢ tha time petween signal fades is sufficiently long—often a
of transmitter and receiver antennas are statistically independent . . . .
and unknown; they remain constant for a coherence interval of reasonablg assumption for _a T'Xed_w'reless env'ronmem_t_hen
T symbol periods, after which they change to new independent the transmitter can send training signals that allow the receiver
values which they maintain for another’Z’ symbol periods, and so to estimate the propagation coefficients accurately, and the
on. Computing the link capacity, associated with channel coding results of [3], [7] are applicable. With a mobile receiver, how-
over multiple fading intervals, requires an optimization over the ever, the time between fades may be too short to permit reliable

joint density of T'- M complex transmitted signals. We prove that . . . . . .
there is no point in making the number of transmitter antennas €Stimation of the coefficients. A 60-mi/h mobile operating at

greater than the length of the coherence interval: the capacity for 1.9 GHz has a fading interval of about 3 ms, which for a
M > T is equal to the capacity for M/ = T'. Capacity is achieved symbol rate of 30 kHz, corresponds to only about 100 symbol
when theT x M transmitted signal matrix is equal to the product periods. We approach the problem of determining the capacity

of two statistically independent matrices: al” x T isotropically . - - LS
distributed unitary matrix times a certain T x M random matrix of a time-varying multiple-antenna communication channel,

that is diagonal, real, and nonnegative. This result enables us to usi_ng the tools of i_nformation theory, and without aaxy hoc
determine capacity for many interesting cases. We conclude that, training schemes in mind.
for a fixed number of antennas, as the length of the coherence  The propagation coefficients, which neither the transmitter
interval increases, the capacity approaches the capacity obtained hor the receiver knows. are assumed to be constantlfor
as if the receiver knew the propagation coefficients. . " .
symbol periods, after which they change to new independent
Index Terms—Multielement antenna arrays, space—time mod- random values which they maintain for anottErsymbol

ulation, wireless communications. periods, and so on. This piecewise-constant fading process
approximates, in a tractable manner, the behavior of a con-
I. INTRODUCTION tinuously fading process such as Jakes’ [5]. Furthermore, it

is a very accurate representation of many time-division multi-

T is likely that future breakthroughs in wireless commum—Ie access (TDMA), frequency-hopping, or block-interleaved
cation will be driven largely by high data rate applications[.) » 1Teq y-hopping, or
stems. The random propagation coefficients are modeled

Sending video rather than speech, for example, increases R ) . 2 .

. ing e independent, identically distributed, zero-mean, circularly
data rate by two or three orders of magnitude. Increasing tS emmetric complex Gaussian random variables. Thus there
link or channel bandwidth is a simple but costly—and ultisy P '

mately unsatisfactory—remedy. A more economical solutigH© tvyotsgurc_?hs t%f ncF\))lseI "’?t ;’]V cf)rl;:_ muItlpIéc?rtllve n0|s|e tggtt.'s
is to exploit propagation diversity through multiple—elemen?SSOCIae Wi € Rayleigh fading, an € usual addrtive

transmitter and receiver antenna arrays. recSe|ver n0|tshe.t th afd t it 4V . ;
It has been shown [3], [7] that, in a Rayleigh flat-fadin uppose that there ransmitter andy receiver anten-

environment, a link comprising multiple-element antennas h St') Tb*_‘l?” (tjhe I|.nk ";’ Ec;n?\lfetely dlescrlbec_i bg the c?nd.monal
a theoretical capacity that increases linearly with the small jobability density of thel"- V complex received signals given

of the number of transmitter and receiver antennas, provided r-M cqmplex transmitted S|gnals. Although_ this con-
that the complex-valued propagation coefficients between ﬂﬁlonal density is cqr_nplex Gau§S|an, the transmitted signals
pairs of transmitter and receiver antennas are statistically ficCt only the conditional covariance (rather than the mean)
dependent and known to the receiver (but not the transmitte?).{he received signals—a source of difficulty in the problem.
The independence of the coefficients provides diversity, andll ©n€ Performs channel coding over multiple independent
is often achieved by physically separating the antennas at {8INg intervals, information theory tells us that it is theo-

transmitter and receiver by a few carrier wavelengths. Wifffically possible to transmit information reliably at a rate
that is bounded by the channel capacity [4]. Computing the

M ot ved June 1 1997 revised Aol 2. 1998. Th . capacity involves finding the joint probability density function
anuscript receive une 1, , revise pri , . e materi h . . . . .
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Fig. 1. Wireless link comprisingy/ transmitter andV receiver antennas. Every receiver antenna is connected to every transmitter antenna through an
independent, random, unknown propagation coefficient having Rayleigh distributed magnitude and uniformly distributed phase. Normalizaichatnsu
the total expected transmitted power is independenf\bffor a fixed p.

on the nonnegative real axis. The maximization appears, ifiim,,_,.. @,/b, = 0. The sequencé,,,, for integerm andn

general, to be computationally intractable fdr > 1 or 7" > 1.

is defined to be one when = n and zero otherwise, arz)

Nevertheless, we show that the dimensionality of the mai& Dirac’s §-function, which, whern: is complex, is defined as
imization can be reduced frord - M to min (M,T), and def

that the capacity can therefore be easily computed for many

6(z) = 6(Rz)-6(32).

nontrivial cases. In the process, we determine the signal pratiwo complex vectorsg and b, are orthogonalif afb = 0.
ability densities that achieve capacity and find the asymptotithere the superscript denotes “conjugate transpose.” The
dependences of the capacity @h The signaling structures mean-zero, unit-variance, circularly
turn out to be surprisingly simple and provide practical insigl@aussian distribution is denot&iV'(0, 1).
into communicating over a multielement link. Although we ap-
proach this communication problem with no training schemes II. MULTIPLE-ANTENNA LINK
in mind, as a by-product of our analysis we are able to provide

an asymptotic upper bound on the number of channel uses thatSignal Model

one could devote to training and still achieve capacity.

symmetric, complex

Fig. 1 displays a communication link or channel comprising

There are four main theorems proven in the paper thgf yransmitter antennas arid receiver antennas that operates
can be summarized as follows. Theorem 1 states that thg{&y Rayleigh flat-fading environment. Each receiver antenna
is no point in making the number of transmitter antennagsponds to each transmitter antenna through a statistically
greater tharil. Theorem 2 gives the general structure of thidependent fading coefficient that is constant fosymbol
signals that achieves capacity. Theorem 3 derives the capaqgigfriods. The fading coefficients are not known by either the
asymptotically inT’, for M = N = 1. Theorem 4 gives the transmitter or the receiver. The received signals are corrupted

signal density that achieves capacity, asymptoticall§ jrfor

M = N = 1. Various implications and generalizations of theV receivers and th& symbol periods.

theorems are mentioned as well.

by additive noise that is statistically independent among the

The complex-valued signal;,, that is measured at receiver

The following notation is used throughout the padeg = antennan, and discrete time, is given
is the base-two logarithm af, while In z is basee. Given M
a sequencey, by, - - -, of positive real numbers, we say thaty,, = \/p/M Z PomnStm + Wens
a, = O(b,) asn — oo if |a,|/b, is bounded by some po- m=1

sitive constant for sufficiently large; we say that,, = o(b,,) t=1,---T

by

1...N. (1)

, n
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Here h,,, is the complex-valued fading coefficient between The channel is completely described by this conditional
the mth transmitter antenna and th¢h receiver antenna. The probability density. Note that the propagation coefficients do
fading coefficients are constant for= 1, -- -7, and they are not appear in this expression. Although the received signals are

independent and (0, 1) distributed, with density conditionally Gaussian, the transmitted signals only affect the
(o) = (1/7) (= Ihon[2} covariance of the received signals, in contrast to the classical
PUmn) =3/ 7] €XP mnl additive Gaussian noise channel where the transmitted signals

The complex-valued signal that is fed at timiato transmitter affect the mean of the received signals.
antennam is denoteds;,,, and its average (over thé/
antennas) expected power is equal to one. This may be writtén Special Properties of the Conditional Probability

;M The conditional probability density of the received signals
Y Z Elsim|* =1, t=1,---,T. (2) given the transmitted signals (4) has a number of special
1 properties that are easy to verify.

m=

The additive noise at timeand receiver antennais denoted Property 1: TheT x T matrix X X1 is a sufficient statistic.
wen, and is independent (with respect to botandr), identi- ) )

cally distributedCA’(0, 1). The quantities in the signal model When the number of receiver antennas is greater than the
(1) are normalized so thatrepresents the expected signal-toduration of the fading intervalV > T'), then this sufficient
noise ratio (SNR) at each receiver antenna, independentlyséﬁtiStiC is a more economical representation of the received
M. (It is easy to show that the channel capacity is unchangéi@nals than the’ x N matrix X.

if we replace the equality constraint in (2) with an upper Property 2: The conditional probability density(X|S)

bound constraint.) We later show that the constraint (2) can §8pends on the transmitted signal®nly through thel’ x T
strengthened or weakened in certain convenient ways WithQghtrix 55+,

changing the channel capacity. _ _
Property 3: For anyM x M unitary matrix &
B. Conditional Probability Density p(X|STT) = p(X|S).

Both the fading coefficients and the receiver noise are . .
complex Gaussian distributed. As a result, conditioned on theProperty 4. For any7 x 1" unitary matrix &
transm_ltted signals, the received signals are jointly complex p(OX|8S) = p(X|S).
Gaussian. Let

5 St SIM v o MmN Il. CHANNEL CODING OVER MULTIPLE FADING INTERVALS
B Tl We assume that the fading coefficients change to new inde-
SSTL t STM Sere ot ATN pendent realizations evef§y symbol periods. By performing
hip o han wir ot WIN channel coding over multiple fading intervals, as in Fig. 2, the
H=1": W=1: intervals of favorable fading compensate for the intervals of
LAvie - huw lwr1 o+ wrN unfavorable fading.

Each channel use (consisting of a blockBftransmitted
symbols) is independent of every other, and (4) is the condi-
tional probability density of the outpuX, given the inputsS.

Thus data can theoretically be transmitted reliably at any rate
less than the channel capacity, where the capacity is the least

whereS is theT' x M matrix of transmitted signalsX is the
T x N matrix of received signalsH is the M x N matrix
of propagation coefficients, and’ is the I" x N matrix of
additive noise components. Then

¥ = /ﬁ SH 4+ W, 3) upper bound on the mutual information betwe¥rand S, or
C =sup I(X;5)
It is clear that p(S)
E{X|S} =0 subject to the average power constraint (2), and where
and p(X]5)
I(X;S5)=E log -
o (X;5) & (X
E xllnlxznz St= 671/1”2 ) 61112 +{ =7 Sllmszm M
{z: tans |5} 1t (M)ng:l t t ] :/dSp(S)/pr(X|S)10g & .
, . . N Jds p(S)p(X1]9)
Thus the conditional probability density of the received signals )
given the transmitted signals is
exp (—trd[Ir + (p/M)SST L X XT Thus C' is measured in bits per block @f symbols. We will
p(X|S) = xp (il + (p/M)SS] 1) (4) often find it convenient to normaliz€ by dividing by 7.

TN JetY
wtNdet” [ + (p/M)S5T] The next section uses (5) and the special properties of
wherelr denotes thd” x T identity matrix and tr” denotes the conditional density (4) to derive some properties of the
“trace.” transmitted signals that achieve capacity.
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Fig. 2. Propagation coefficients change randomly e#rgymbol periods. Channel coding is performed over multiple independent fading intervals.

IV. PROPERTIES OFTRANSMITTED Lemma 1 implies that we can interchange rows or columns
SIGNALS THAT ACHIEVE CAPACITY of S—since this is equivalent to pre- or post-multiplying

Direct analytical or numerical maximization of the mutuaf’ PY @ permutation matrix—without changing the mutual
information in (5) is hopelessly difficult whenever- M, the Information.

number of components of the transmitted signal maffix ~ |_emma 2 (Symmetrization of Signaling Densitfor any

is much greater than one. This section shows that the m@gnsmitted signal probability densityo(S), there is a
imization effort can be reduced to a problemuitin (M,T)  probability densityp;(S) that generates at least as much
dimensions, making it possible to compute capacity easily fifutual information and is unchanged by rearrangements of
many significant cases. the rows and columns of.

Lemma 1 (Invariance of(X; ) to Rotations ofS): Sup- Proof: There arel’! distinct permutations of the rows of

pose thaiS has a probability density,(S) that generates some > @nd ! distinct permutations of the columns. We jg{(.5)
mutual informationZ,. Then, for anyM x M unitary matrix¥ be a mixture density involving all distinct permutations of the

and for anyT’ x T unitary matrix®, the “rotated” probability "0WS and columns, namely,

density,p, (S) = po(®TSV), also generates. 1 ! M!
I_Droof: We_ prove this result by substltutlng the ro@ated p1(S) = TN Z Z pO(P}kSPMé) (6)
density p;(S) into (5); let I; be the mutual information k=1 (=1

thereby generated. Changing the variables of integration from . .
§ i . wherePri, k =1,---,T! are thel' x T permutation matrices,
S to ¢1S¥, and from X to "X (note that the Jacobian NdPagef = 1,---, M1 are theM x M permutation matrices.

determinant of any unitary transformation is equal to one; . . )
. ’ . lainly, p; (S) is unchanged by rearrangements of its rows and
and using Properties 3 and 4, we obtain . . . .
columns. The concavity of mutual information as a functional
of p(5), Lemma 1, and Jensen’s inequality imply that

L :/ dS po(®TST) / dX p(X|S) TRl
( L2 > I(X; P}, SPy)
k=1 ¢=1
o p(X|S) TRl
) . . . = Iy = Io. O
/dSpo(<I>TS\I/)p(X|S) M ; ;::1 070
= / dS po(S) / dX p(®X|SUT) Lemma 2 is consistent with one’s intuition that all trans-
. mission paths are, on average, equally good. With respect to
P(BX[DSTY) the mixture densﬂwl(S) of (6), the expected power of the
-log (tm)th component ofS' is
[ 4 su(Sip@x|05w) oo
‘ ds po(PfiSPate) - st
= [ asmis) [ axpxis) ] g 22
. 1 Tt M!
_ . ¥ 2
. SXS) = run 2 2 [ 48 o) PSPl )

L / 48 po(S)p(X15) where we have substituteB}kSPMg for S as the variable
=I. O of integration. Over all possible permutatiofi&;riSP},Jm
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takes on the value of every componentl!M!/(TM) times. This result, for which we have no simple physical inter-

Consequently, the expected power (7) becomes pretation, contrasts sharply with the capacity obtained when
the receiver knows the propagation coefficients, which grows
/ dS pi(S) - |sem|? linearly _With min (M, N), independently off’; see [7] and
Appendix C.
T M
1 In what follows we assume tha/ < T.
=737 2 2 / dS po(S) - swel* = 1

k=1 =1
B. Structure of Signal That Achieves Capacity
for all ¢ andm: where thg second equality follows from (2).' In this section, we will be concerned with proving the
The constraint (2) requires that the expected power, Spa“aﬂgflowing theorem
averaged over all antennas, be one at all times. As we have |
just seen, Lemma 2 implies that the same capacity is obtainedheorem 2 (Structure of Signal That Achieves Capacity)
by enforcing the stronger constraint that the expected poweFhe signal matrix that achieves capacity can be written as
for each transmit element be one at all times. We obtain ti¥e= ®V, whered is an7’ x T isotropically distributed unitary
following corollary. matrix, andV is an independerif’ x A real, nonnegative, di-
agonal matrix. Furthermore, we can choose the joint density of
the diagonal elements &f to be unchanged by rearrangements
of its arguments.
In calling the oblong matrixV’ diagonal, we mean that
only the elements along its main diagonal may be nonzero.
An isotropically distributedunitary matrix has a probability

Corollary 1: The following power constraints all yield the
same channel capacity.

a) Elsim|? =1, m=1,---.M, t=1,---,T.

b) & % Elsim|? = 1, t=1,---,T. density that is unchanged when the matrix is multiplied by any
m=l deterministic unitary matrix. In a natural way, an isotropically
- distributed unitary matrix is th& x 7" counterpart of a com-

c) % S Elsil? =1, m=1,---,M. plex scalar having unit magnitude and uniformly distributed
t=1 phase. More details, including the probability density of these

s u matrices, may be found in Appendix A. The theorem relies on
d 2 3 E|sin? = 1. the following lemma, which is proven first.
1

=1 m=1

Lemma 3 (Singular Value Decomposition 8f: Suppose

The last condition is the weakest and says that, withotitats, with singular value decompositiofi = V' ¥'¥, has an-
changing capacity, one could impose the constraint that tAgitrary dlstrlbutlon that_ generates some mL_JtuaI information
expected power, averaged over both space and time, be dneThen the signal matrix formed from the first two factors,

This can equivalently be expressed(ag7TM)Etr SSt =1. 51 = @V, also generates,.
Proof: The singular value decomposition (SVD) says

that theT x M signal matrix can always be decomposed
into the product of three jointly distributed random matrices,
) S =0Vt whered is a7 x T unitary matrix,V is a7’ x M

We observe in Property 2 that the effect of the transmitteghnnegative real matrix whose only nonzero elements are on
signals on the conditional probability density of the receive@ia main diagonal, and is an M x M unitary matrix.
signals is through th” x 7" matrix SST. It is, therefore, e write the mutual informatior, in terms of the three

reasonable to expect that any possible joint probability densify;p factors and then apply Property 3 to obtain
of the elements o5'S* can be realized with at most/ = T

transmitter antennas.

Theorem 1 (Capacity fod > T Equals Capacity for Io :/ d® dV d¥ p(®,V, V) / dX p(X|eV )
M = T): For any coherence intervall and any number i
of receiver antennas, the capacity obtained with > T° . { I ?(XJ(I)‘//\I{) I }
transmitter antennas is the same as the capacity obtained with [ d® aVv d¥ p(®,V, U)p(X|PV i)
M = T transmitter antennas. Y

Proof: Suppose that a particular joint probability density = / de dV d¥ p(®, V. ¥) /d‘}‘ p(X|2V)

of the elements ofSST achieves capacity with\/ > T Y|V
antennas. We can perform the Cholesky factorizafiéfi = o { — ,p( | ~ ), — }
LLY, whereL is aT x T lower triangular matrix. Usingl’ Jdedv dl p(®,V, U)p(X|2V)
transmitter antennas, with a signal matrix that has the same Y
joint probability density as the joint probability density bf - / d® dV p(®,V) / X p(X|eV)
we may therefore also achieve the same probability density on p(X|0V)
SSt.If S satisfies power condition d) of Corollary 1, then so g { ————— — }
does”. 0 [ d® dV p(®,V)p(X|2V)

A. Increasing Number of Transmitter Antennas
BeyondI’ Does Not Increase Capacity
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where the last expression is immediately recognized as tm@bability density. Now, as in the proof of Lemma 2, using
mutual information generated bg; = ®V. Finally, if S an equally weighted mixture density féf, involving all A!
satisfies power constraint d) of Corollary 1, then so d8e&1 arrangements, and exploiting the concavityI¢f(; S) as a
fynctional of p(V'), we conclude that the mutual information
Gor the mixture density is at least as large as the mutual
Winformation for the original density. But, clearly, this mixture
gensity is invariant to rearrangements of its argumentsl]

Ostensibly, maximizing the mutual information with respe
to the joint probability density of and V' is even more
difficult than the problem that it replaces. However, as
now show, capacity can be achieved by makihgand V'
independent, withp isotropically distributed. We remark that the mixture density in the above proof
symmetrizes the probability density f6t Hence E|s;,,|? = 1
for all t andm. Let vy, ---, vy, denote the diagonal elements
of V (recall thatM < T). Then

Proof of Theorem 2:Using Lemma 3, we write the trans-
mitted signal matrix as = ¢V, where® andV are jointly
distributed,® is unitary, andV’ is diagonal, nonnegative, and
real. SupposeS has probability density(S) and generates
mutual informationiy. Let ©® be an isotropically distributed
unitary matrix that is statistically independent &f and V,
and define a new signal matri; = ©.5, generating mutual
information I;. It follows from Lemma 1 that, conditioned
on ©, the mutual information generated by equalsiy. The

concavity of mutual information as a functional pfS), and S reduces to the simpler problem of maximizifgy; S) with

Jensen’s inequality, then imply that > 1. . S . .
From the definition of an isotropically distributed unitaryreSpeCt to the joint probability density of ti nonnegative

: : o . “real diagonal elements oF. This joint probability can be
matrl_x (see Appenc_jlx A)' the prpdué@, cond|.t|.oned ore, 'S constrained to be invariant to rearrangements of its arguments,
also isotropically distributed. Since the conditional probablht};/md thus the marginal densities op, - - -, vy, can be made
density does not depend dhr it follows that the product is identical. WithE v2 — -+ — E 2, — 1’1 Bl;t J\Ze do not know
independent of® and V. Consequently,S; is equal to the i are 1inde endentM '
product of an isotropically distributed unitary matrix aid UL, e, UM P i

with the two matrices statistically independent.Slfsatisfies The mth golumn ofS, repre_sentmg the c_omplex signals
o that are fed into the:th transmitter antenna, is equal to the real
power condition d) of Corollary 1, then so doSs.

The expression for mutual information (5) becomes nonnegative scalav,, times an independerif-dimensional
isotropically distributed complex unit vectar,,. Sinceg,, is
the mth column of theZ” x 1" isotropically distributed unitary
1(X; ) :/ av p(V) / e p(P) / dX p(X|2V) matrix ¢, the M signal vectorsi ¢y, - - -, vpr¢pps are mutually
{ p(X|DV) } orthogonal. Fig. 3 shows the signal vectors associated with the
-log — — — M transmitter antennas. Each signal vector i&-dimensional
Jdvp(V) [ d® p(@)p(X|eV) complex vector (comprisingZ” real components). The solid
(8) sphere demarcates the root-mean-square values of the vector
) » ) ) lengths; that iSE »2, = T'. Later we argue that, fof’ > M,
wherep(V) is the prpbab|l|ty.den3|ty'of t_he d|a}gonal elementg, o magnitudes of the signal vectors are approximatély
of V. The.pro'bablllty denS|typ(<I?) is given in (A5), and ith very high probability.
the maximization of the mutual informatiaRi(X'; S) needed
to calculate capacity now takes place only with respect to
p(V). The mutual information is a concave functionalpgi’),
because it is concave inS) andp(S) is linear inp(V). The simplification provided by Theorem 2 allows us to
The conclusion that there exists a capacity-achieving joiobmpute capacity easily for many cases of interest. The
density onV that is unchanged by rearrangements of its argmutual information expression (8) requires integrations with
ments does not follow automatically from Lemma 2, becausespect tod, X, and the diagonal elements Bf Although the
the symmetry of the signal that achieves capacity in Lemnmmaaximization of (8) is only over thé/ diagonal elements of
2 does not obviously survive the above dropping of the righ¥, the dimensionality of integration is still high. We reduce
hand SVD factor and premultiplication by an isotropicallyhis dimensionality in Appendix B, resulting in the expression
distributed unitary matrix. Nevertheless, we follow some B.10). Integration over th& N complex components ok
the same techniques presented in the proof of Lemma 2. is reduced to integration ovenin (N,T) real eigenvalues,
There areM! ways of arranging the diagonal elements of A, - - -, Auin (v,7) }, @nd integration over th&d? complex
V, each corresponding to pre- and post-multiplyifgby elements of® is reduced ta\f - min(N, T) complex elements.
appropriate permutation matrices, s#y; and P,k = In fact, as we show in Appendix B, closed-form expressions
1,---,M!" The permutation does not change the mutual iier the integral overd can sometimes be obtained.
formation; this can be verified by plugging the reordeféd In this section, we calculate the capacity in some simple but
into (8), substitutingP}kVPMk for V, and @ Pr; for ®, as nontrivial cases that sometimes require optimization of a scalar
variables of integration, and then using Property 3 and the fabbability density. Where needed, any numerical optimiza-
that multiplying® by a permutation matrix does not change itson was performed using the Blahut—Arimoto algorithm [1].

1
1= E|3tm|2 = E|[(I)V]tm|2 = E|¢tm|2 ‘B UrQn = T B UrQn

where the last equality is a consequence of (A.1); therefore,
Ev, =Tform=1,---, M.

Thus the problem of maximizing(X;S) with respect to
the joint probability density of th& - A/ complex elements of

V. CAPACITY AND CAPACITY BOUNDS
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12
T-dimensional complex sphere with radius T

Fig. 3. The transmitted signals that achieve capacity are mutually orthogonal with respect to time. The constituent orthonormal unit vediasicatlyiso
distributed (see Appendix A), and independent of the signal magnitudes, which have mean-squa¥e Faleesolid sphere of radius'/2 demarcates the
root-mean-square. FAF >> M, the vectors all lie approximately on the surface of this sphere. The shell of thickiiéé2 is discussed in Section V.

Where instructive, we also include upper and lower bounttecome approximately independefv’(0,1). We reconcile
on capacity. this intuition with the structure that is demanded in Theorem 2

A. Capacity Upper Bound S=0V=[vidr vz -+ vmPm]

An upper bound is obtained if we assume that the receivghere {¢,,1Y_, are the column vectors @b, by observing
is provided with a noise-free measurement of the propagatigyt, for fixed M, as T grows large two interesting things
coefficientsH. This perfect-knowledgepper bound, obtained happen. First, théZ complex random orthogonal unit vectors
under power constraint a) of Corollary 1, is that comprises become virtually independent. Second, for any
e > 0, the magnitude of a vector &f independent A/ (0, 1)
random variables is contained in a shell of radi® and

width ev/T" with probability that approaches one &s— oo

Cu=T-F log det [IN + ﬁ HTH] 9)

and is derived in Appendix C. Equation (9) gives the uppeL. . . i i .
bound per block off’ symbols. The normalized bour@, /7 ?Irilg. 3 displays this so-called sphere-hardening phenomenon).

is independent of. When H is known to the receiver, the . Hence, thebV’ andC/\/(p, 1).structures.f_or5‘ are reconciled

; . ) . ~if w1 = --- = vy = /T with high probability asl” — oo (see
perfect-knowledge capacity bound is achieved with transmntggso Appendix A for a method to generatefrom a matrix
signalsS that are independeidtN' (0, 1) (see also [7]). bp 9

In our model, E is unknown to the receiver, but Weof CN(0, 1) random variables). This intuition is formalized in

intuitively expect C to approachC, as T" becomes large Section V-C.
because a small portion of the coherence interval can
reserved for sending training data from which the receiv
can estimate the propagation coefficients. Therefore, wiien By substituting an arbitrary density fas(}') in (B.10),

is unknown and! is large, we also expect the joint probabilityone obtains a lower bound on capacity. The arguments of
density of the capacity-achieving transmitted signélsto Section V-A suggest that by assigning unit probability mass

be
8 Capacity Lower Bound
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to vy = --- = vpy = VT, one should obtain a lower boundis theexponential integralHence, forM = N = 1, we expect
that becomes tight & — oo. The result is C/T — (log e)e!/PEi(1/p) asT — oo. This intuition is

ot T made precise in the following theorem.
C; ¥ TN log e — NM log <1+ p—)

M Theorem 3 (Capacity, Asymptoticallym): Let M = N

= 1. Then
_ / - p(N) - (V)

log T
min(N,T") (10g C)Gl/pEl(l/p) — O< O? )
clog i) —(og ). > A (10)
=1 =C/T < OJT < C,/T = (log e)et/PEL(1/p)
where p()\) is given by (B.8), andf;(A) is obtained by as7 — oo.
evaluating (B.6) withv; = --- = vy, = VT, yielding Proof: It remains to show tha€; /T approache<, /T
7\ ~NM at the indicated rate, and this is proven in Appendix D.
i) = <1 + %) / d® p(®) The remainder tern® (/(log T)/T’) can be viewed as a
_ penalty for having to leark; at the receiver. One possible
min(N.T) - M way to learnh;; is to have the transmitter send, saytraining
iz 2 .
- ExXp Z Z An - [l symbols per block that are known to the receiver. Clearly,
M+ pT . _
n=l m=l when the transmitter sends a training symbol, no message

(11) information is sent. Even if;; is thereby learned perfectly at
Bv th . f Section V-A. this | bound should bthe receiver, the remainirif—~ symbols cannot communicate
y the reasoning of Section V-A, this lower bound should bg, .o than(7 — 7)(log ¢)et/?E;(1/p) bits. We therefore have
most useful wher¥" > M, and least useful whei =~ 7' In .
g L ; the following corollary.
fact, whenM = T, it is easy to show that assigning unit mass
tov, = --- = vy = VT implies thats ST = 7-®d" = T I, Corollary 2: Let M = N = 1. Of the T symbols trans-
sop(X|S) = p(X) and C; = 0. mitted over the link per block, one cannot devote more
When M = N = 1, the integration ove® in (11) can be than O (y/T'log T) to training and still achieve capacity, as
performed analytically as shown in Appendix B.1, and (10’ — co.

becomes Since we have shown that, for lar@é the capacity of our
Cy =—T log ¢ —log(1 + pT’) gomrzunicatioln link approsch_e; the pgrfte)_cl{t-kr:jowlgdge fupkf)er
B ound, we also expect the joint probability density of the
= (T'—1)e A/(HPT)’V(T_ 1 1/:LT/7AT> elements ofS = ®V to become approximately indepen-
_/0 (TY(1 + pT) [L} -1 dentC_N(O,_l) as part of the s_ph_ere-hardening phenomenon
1+pT described in Section V-A. This is the content of the next
(T — 1)e=N 47T (T —1, 1,::}) theorem.
-log =1 dA Theorem 4 (Distribution That Achieves Capacity, Asymptot-
(1+ pT) [l’fpﬂ ically in T): Let M = N = 1. For the signal that achieves
(12) capacity,v; /v/T' converges in distribution to a unit mass at
1, asT — oo.
where Proof. See Appendix E.
(T, 2) def /k " lem1dg When M > 1, it is reasonable to expect that the joint
0 distribution of vy, - --, vy, becomes a unit mass at = v =
is the incomplete gammdunction (see also (B.3)). We now" "~ =¥M = VT (see Fig. 3) ad” — oo, but we do notinclude
justify the use of (10) for largd” by proving that (12) is a 2 formal proof. Consequently, whefi > M the diagonal
tight lower bound as” — oc. components of” that yield capacity should all be/7’, and

C; given by (10) should be a tight bound. Furthermore, as
T — o0,C; and, hence, the capacity, should approach the

C. Capacity, Asymptotically ifl"
) perfect-knowledge upper bound.
For M = N = 1 the perfect-knowledge capacity upper

bound (9) is D. Capacity and Capacity Bounds f&f = N =1and7 > 1
— . 2
Cu=T - Elog (1+plhul) There is a single transmitter antenna, and the transmitted
_7 du e loe (1 — Tllox Yrg, (1 signal iss; = vy - ¢y1,t = 1,---, T, whereg,; is thetth ele-
/0 y e log (14 py) (log c)e H(1/p) ment of the isotropically distributed unit vectgr. Figs. 4—6
display the capacity, along with the perfect-knowledge upper
bound (9), and lower bound (12) (all normalized BY, as

Ei(z) = /Oo e’ dy (13) funct?ons of T for_three SNR’s. The optimum probapility
@ Y density of v, obtained from the Blahut—Arimoto algorithm

where
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Fig. 4. Normalized capacity, and upper and lower bounds, versus coherence ifitgfSBIR = 0 dB, one transmitter antenna, one receiver antenna). The
lower bound and capacity meet &t= 12. As per Theorem 3, the capacity approaches the perfect-knowledge upper bolineraso.

1.2r SNR=6dB N
= M=1
21 .
o N=1
0.8 :
0.6 .I — — Perfect—knowledge upper bound B
!
i —Capacity
041 - -Lower bound 1
]
0.2 1
!
0 1 1 i 1 I i 1
5 10 15 20 25 30 35 40
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Fig. 5. Normalized capacity, and upper and lower bounds, versus coherence iftg{SBIR = 6 dB, one transmitter antenna, one receiver antenna). The
lower bound and capacity meet at = 4. The capacity approaches the perfect-knowledge upper boudd as co.

and yielding the solid capacity curve, turns out to be discretagcelerate the convergence of the capacity with its upper and
asT becomes sufficiently large, the discrete points becomdaaver bounds.

single mass at/7", and the lower bound and capacity coincide When7 = 1, all of the transmitted information is contained
exactly. For still greatef’, the capacity approaches the perfecin the magnitude of the signal, which ig. WhenT' is large
knowledge upper bound. This observed behavior is consistenbugh so that’ = C;, then all of the information is contained
with Theorems 3 and 4. The effect of increasing SNR is ia ¢, which is, of course, completely specified by its direction.
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SNR=12dB
2 M=1 :
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1.5 .
1 — — Perfect-knowledge upper bound b
! —~Capacity
: -— -Lower bound
0.5H i
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Fig. 6. Normalized capacity, and upper and lower bounds, versus coherence ifit§&8R = 12 dB, one transmitter antenna, one receiver antenna). The
lower bound and capacity meet At = 3. The capacity approaches the perfect-knowledge upper boudd as co.

9 T T T T T T T T 3
— — Perfect-knowledge upper bound (M=1) 11248
8 —— Capacity (Any M) ’,,—4””’ .
7t T -7 1
- - - -~ 76dB

Fig. 7. Capacity and perfect-knowledge upper bound versus number of receiver amef8aER = 0, 6, 12 dB, arbitrary number of transmitter antennas,
coherence interval equal to one). The gap between capacity and upper bound only wid€ns-asc.

E. Capacity and Capacity Bounds for uniformly distributed phase and a magnitude that has a discrete
M>1,N>1andT =1 probability density. All of the transmitted information is

In this case, there are multiple transmitter and receivePntained in the magnitude. Becaus¢ = T', the capacity
antennas and the coherence interval’is= 1, corresponding lower bound is trivially zero. The receiver cannot estimate the
to a very rapidly changing channel. Theorem 1 implies th@fopagation coefficients reliably, so the capacity is far less
the capacity forA > T is the same as foM/ = 7, than the perfect-knowledge upper bound.
so we assume, for computational purposes, that= 1. Fig. 7 displays the capacity as a function/éffor arbitrary
The transmitted signal is then a complex scalar having M. In the rapidly fading channel the difference between the
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Fig. 8. Normalized capacity lower bounds and perfect-knowledge upper bounds versus number of transmitter aht€BN&—= 20 dB, one receiver
antenna, coherence interval equal to 100). The actual channel capacity lies in the shaded region. Lower boundifeaks3athis peak is a valid
lower bound forM > 3, giving us the modified lower bound.

capacity and the perfect-knowledge upper bound beconesery real sense, the ultimate capacity of a multiple-antenna
especially dramatic ag/ and N both increase since, aswireless link is determined by the number of symbol periods
shown in Appendix C (see also [7]), the upper bound grovisetween fades. This is somewhat disappointing since it se-
approximately linearly with the minimum a¥/ and vV, while verely limits the ultimate capacity of a rapidly fading channel.
in Fig. 7 the growth of capacity witiv (recall that the capacity For example, in the extreme case where a fresh fade occurs
in this example does not grow with/) is very moderate and every symbol period, only one transmitter antenna can be use-

appears to be logarithmic. fully employed. Strictly speaking, one could increase capacity
) indefinitely by employing a large number of receiver antennas,
F. Capacity Bounds fof/ < 20, N' = 1, andT" = 100 but the capacity appears to increase only logarithmically in this

In this case there are multiple transmitter antennas, a singlémber—not a very effective way to boost capacity.
receiver antenna, and the coherence intervall’is= 100 Second, the transmitted signals that achieve capacity are
symbols. Fig. 8 illustrates the utility of the upper and lowemutually orthogonal with respect to time among the trans-
capacity bounds”,, andC;, since it becomes cumbersome tanitter antennas. The constituent orthonormal unit vectors are
compute capacity directly for large values &f. isotropically distributed and statistically independent of the

We argue in Section V-B thaf; in (10) is most useful signal magnitudes. This result provides insight for the design
whenT > M sinceC; = 0 when M = T. We see in Fig. 8 of efficient signaling schemes, and it greatly simplifies the
that C; /T peaks atM = 3. Nevertheless, the peak value otask of determining capacity, since the dimensionality of
the lower bound, approximately 6.1 bifs/remains a valid the optimization problem is equal only to the number of
lower bound on capacity for al/ > 3. (One could always transmitter antennas.
ignore all but three of the transmitter antennas.) This givesThird, when the coherence interval becomes large com-
us the modified lower bound also displayed in the figure. Thrared with the number of transmitter antennas, the normalized
uppermost dashed line is the limit of the perfect-knowledgmpacity approaches the capacity obtained as if the receiver

upper bound as¥i — oo. knew the propagation coefficients. The magnitudes of the time-
orthogonal signal vectors become constants that are equal for
VI. CONCLUSIONS all transmitter antennas. In this regime, all of the signaling

We have taken a fresh look at the problem of communicatifmgformation is contained in the directions of the random
over a flat-fading channel using multiple-antenna arrays. Nothogonal vectors, the receiver could learn the propagation
knowledge about the propagation coefficients andaddhoc coefficients, and the channel becomes similar to the classical
training schemes were assumed. Three key findings emer@lissian channel.
from our research. We have computed capacity and upper and lower bounds for

First, there is no point in making the number of transmittesome nontrivial cases of interest. Clearly, our methods can be
antennas greater than the length of the coherence intervalektended to many others. The methods require an optimization
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on the order of the number of transmitter antennas. Hence, weMultiplying any deterministic unit vector by an i.d. unitary
are still hard pressed to compute the capacity, for exampheatrix results in an i.d. unit vector. To see this, {etbe an
when there are fifty transmitter and receiver antennas and the unitary matrix, and let: be a deterministic unit vector.
coherence interval is fifty symbols. Further work in simplifyingfThen b = ®« is a random unit vector. Multiplying by a

such a computation is a possible next step. deterministic unitary matri® gives®fb = 0T®a = $a. But,
by definition, & has the same probability density &sso©7bs
APPENDIX A has the same probability density asTherefore,b is an i.d.
ISOTROPICALLY DISTRIBUTED UNIT unit vector.
VECTORS AND UNITARY MATRICES The column vectors oft are themselves i.d. unit vectors.

However, because they are orthogonal they are statistically
g'ependent. The joint probability density of the first two
SOlumns isp(g1, ¢2) = p(¢1)-p(2lb1), and (A.2) implies that
p(OFp2|OT¢1) = p(eha|¢y) for all unitary ©. Now condition

on ¢1, and let the first column of be equal top;; then

Random unit vectors and unitary matrices figure exte
sively in this research. This appendix summarizes their k
properties.

A.1. Isotropically Distributed Unit Vectors

The intuitive idea of an isotropically distributed (i.d.) com- p(d2ld1) =p(OTp2|O7T¢1)
plex unit vector is that it is equally likely to point in any =p(OF |y = [1,0,---,0]). (A.3)
direction in complex space. Equivalently, multiplying such a
vector by any deterministic unitary matrix results in a randorhhe lastZ’— 1 columns of® can be chosen arbitrarily with
unit vector that has exactly the same probability densitpe constraint that they are orthogonal to the first column and
function. We define al-dimensional complex random unitt0 each other. This imparts an arbitrary direction to the vector
vector ¢ to be i.d. if its probability density is invariant to all consisting of the last’ — 1 elements of©%¢,. Therefore,

unitary transformations; that is, the product: = ©f¢, is a random unit vector, which, when
conditioned onyp,, has first component equal to zero and last
p(¢) =p©T¢), Vve:6'e=1I T—1 components comprising(d'—1)-dimensional i.d. vector.
This property implies that the probability density depends Ol—rllence
the magnitude but not the directiongfsop(¢) = f(¢'¢), for plzlpr =[1,0,---,0])
some nonnegative functiofi(-). The fact that the magnitude T(T — 1) )
of ¢ must equal one leads directly to the required probability =6(z1) - —T-1 6(2T 2 — | ” - 1)
density 0T — 1
=68(z1) - ( ). 8(2F2z—1) (A.4)

p(¢) = f(1) - 6(¢7¢ — 1). mr
The constantf(1) is such that the integral gi(¢) over 7- wherez; is the first component of. Substituting®’ ¢, for z in

dimensional complex space is unity. Thjigl) = I'(T)/x 7, (A.4)_and using (A.3) give the desired conditional probability
and density

INUA r-1
p(#) = 3 - 5(ste - 1) plaltn) = "D gl - 1) - s(6ln)
Successively integrating the probability density gives th@ontinuing in this fashion we obtain the probability density
joint probability density of anyL of the elements ofp; of & in nested form
denoting theL-dimensional vector by(™), we obtain

D) o }
o) = [ s(gip — 1
p(@) = — ig) oy 4 AR R P [ e o)
T - T -1
L=1,---,T-1. (A1) ' [% '5(¢$¢2—1)~5(¢1¢2)}
An i.d. unit vector¢ can be conveniently generated by [@5 T — 1) 8(1 e ST }
letting ~ be a7-dimensional vector of independefitv’(0, 1) v O0rdr = 1) 8(@igr) oo dr)
random variables, ang = z/v/z7z. (A.5)

If ® is an i.d. unitary matrix then the transpose is also
i.d., that is, the formula for the probability density &f is
We define a'xT Unitary matrix® to be i.d. if its probablllty unchanged if® is postmump“ed by a unitary matrix. To
density is unchanged when premultiplied by a determinisifemonstrate this, le = &Y, where T is a deterministic
unitary matrix, or unitary matrix. Then¥ is clearly unitary, and we need to show
_ ¥ L afo that it is i.d. Premultiplying®¥ by still another deterministic
p(®) =p(07¢),  VO: 016 =1. A2) unitary matrix® gives @' = ©1¢Y = 7. Both & and ®
The real-valued counterpart to this distribution is sometimese i.d., s00Tw = &7 has the same probability density as
called “random orthogonal” or “Haar measure” [6]. v = &1, soV is i.d.

A.2. Isotropically Distributed Unitary Matrices
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A straightforward way to generate an i.d. unitary matriwhere A is min (N,7T) x min (N, T), diagonal, real, and
is first to generate & x 1" random matrix}Y" whose ele- nonnegative.
ments are independedV(0, 1), and then perform the QR Using (B.1), we have
(Gram—-Schmidt) factorization™ = ®R, where® is unitary
and R is upper triangular, yielding = Y R~*. The triangular p AL ;
matrix is a function off” and, in fact, depends only on the innef* { (ITJFM -55 ) XX }
products between the columns Bf We denote this explicit
dependence ol with a subscriptRy = R. To show that® —tr XXT—tr
is i.d., we premultiply by an arbitrary unitary matrix to get
0'e = 0'YR' =0'YR !, = ZR,} _ _ _
.. We may now compute one of the innermost integrals in (8)
where Z = ©TY. But becauseZ has the same probab|I|tyto obtain

density asY it follows that ©T® has the same probability
density as®, and therefored is i.d.

—o\ 1
L= (Iu+4 V%) 0
0 0

@TXXT<1>}.

APPENDIX B
SIMPLIFIED EXPRESSION FORI(X; S)

1

[ p@pxiey)
- TN det™ (ij-i- ﬁ . V2>

The representation of the transmitted signal maffix=

®V in Theorem 2 does not automatically lead to an eas- / dq;p(q))exp{_tr[(ITJrﬁ ~VVT)_1<I>T\IJA\I/T‘1>H
ily computed expression for mutual information; one must M

still integrate with respect to bot® and X in (8). Some  _ 1
e . - - —
simplification is both necessary and possible. TN det™ (IMJFﬁ v )
B.1. Integrating with Respect / d<1>p(<1>)exp{—tr [(IT—l—ﬁ ~VVT>_1<I>TA‘I’}}
Consider first the conditional covariance matrix appearing
p p wTNdetN (Iy+ 4 -V
Ip+ = .8ST =1+ = . oVViot (M M
T+ i T+ i
_ Pooyvvhet . / d® p(®)
_<1>(IT+M 1%8% )<I> .
We represent’, which has dimension$’ x M, in partitioned min(N,T) M ov2
form expg > Y Ans <Wzlv?> Nbnml® ¢ (B.2)
n=1 m=1 m

ity
. _ S ~ where p(®) is given in (A.5), and{\,}™ =™ denote
whereV is anM x M real diagonal matrix. With this notation, i diagonal elements k. In the above. we change the

the determinant and the inverse of the conditional covariangge gration variable fron® to wid, and use the fact that'®

become 0 has the same probability density é&s
det (IT+ M-SST) There is, at present, no general expression available for
M ) the expectation with respect () that appears in (B.2).
= det (I]W + ﬁ .72) = H <1 + p]\;"’f) However, a closed-form expression can be obtained for the
m=1 special cases where eithdéf = 1 or N =1or7 = 1. In
(IT I SST)_I any of thes_e cases, the argument of é!ﬁ@{-} is a function
of only a single column or row ob, taking the form

- (1y+2.7) " o
:IT_(I) M—(M‘i‘M' ) (I)T T
0 Or s 2
ag - ¢l

&) 2

wherewvy, - -+, vy are the diagonal elements bf.
The X-dependence ip(X|®V) appears only a&¥ X*. We for some real{a,};_,, where¢ is an i.d. unit vector. Three
use the eigenvector-eigenvalue decomposition possible forms for the integral are as follows.
xxt — wAwt 1) Whenay,---,ar are all positive and distinct, then

where WV is T" x 7" and unitary, and\ has the structure T ) T % _ e
E {exp E ag - || =INT) - E e S—
A= |§ 8:| =1 i=1 Hj#i (@i —a;)

ai >as > --- >ar > 0.
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2) When0O < L < T of the a,’'s are positive and distinct, The densityp(®) is given in (A.5). Using (B.5), we have
and the remainder zero, then (—tr XX

L E log p(X) = dX-eXp#-f()\)
E {exp <Z ag - |</)4|2> } / 4l

—tr i
=1 log [M V. (B.7)
L ™
(D) 1
(T -1L) 'i=1 1z (ai —a;) Observe that the expressidi/77")exp(—tr XX ) takes

the form of the joint probability density function oX, as if the
components ofC were independerd (0, 1). Consequently,

. [ AT = Lyai) e AT — L,alq

a; 8 ai 8 the expression (B.7) is equivalent to an expectation with
ap > -+ >ar>apy1=---=ar =0 respect toX, as if the components ok were independent
where CN(0,1). With the components having this distribution, the
det [? joint probability density of the ordered eigenvalugs> A, >
(T, 2) = /0 q" et dg (B3) > Auinvry IS [2]
is the incomplete gamméunction. _ <§T> M) pinvzy TN
3) WhenL < 7" of the a,'s are positive and equal and the e =1 . < 1T z) TI Ou=)))?
remainder zero, we have =1 i<y
p()\) - min(N,T") ’
II D(T—¢+1)-I'(N—¢+1)
{exp< Z |¢é|2>} =t (B.8)
Therefore (B.7) becomes
B ta (T —L+i,a)
- oD Z S, E log p(X) = [ d\-p()- 7OV
a=a1 =---=a a = ... =qr = 0. min(N,T
1 L > any: T oxp <_ (E ))\[>
Finally, we note that when eithéf < 7" or N < T, the M -log Té]\jl - f)]-
column vectors of® (in the former case) or tha row vectors 4
of @ (in the latter case) that are in the argument ofdke{-}
in (B.2) are approximately independent. In this case, the (B.9)
expectation is approximately equal to a product of expectations
involving the individual column or row vectors . Finally, subtracting (B.9) from (B.4) gives a simplified

expression for mutual information
B.2. Integrating with Respect t&

M
From (4) and Theorem 2, the expectation of the logarithm I(X;$) = ~TN log ¢~ N - Y _ E log <1 +2 m)
of the numerator that appears in (8) reduces to an expectation m=1 M

with respect toV _ / dr-p(A) - FO)
E log p(X|®V) = —TN(log ¢ +log =)

M 9 min(N,T)
_N-E {Z log <1+ %)} - |log f(A) — (log ¢) - éz Ae| (B.10)
m=1 =1

(B.4) wherep()) is given by (B.8) andf()) is given by (B.6). Thus
The marginal probability density ok, obtained by taking computation of the mutual information requires integrations
the expectation of (B.2) with respect 16, depends only the over the A real components ofl, the min(N,T) real

eigenvalues oft Xt and can be written in the form components of\, and M - min (N, 7") complex components
of ®; as shown in Appendix B.1, the integration over these
exp(—tr XXT) ; ;
pX) = ———="—2f(N) (B.5) components ofb can be performed analytically in some cases.
TN
where X is the vector ofimin(N,T") eigenvalues, and APPENDIX C
p(V) PERFECTFKNOWLEDGE UPPERBOUND ON CAPACITY
f)= [ dv - - — d® p(d) . .
det™ (_,MJFL v ) If the receiver somehow knew the random propagation
M coefficients, the capacity would be greater than for the case
min(N,T) M of interest where the receiver does not know the propagation
Z Z < M+ UQ ) lpnm|® - coefficients. Telatar [7] computes the perfect-knowledge ca-
m=1 P pacity for the casd” = 1; it is straightforward to extend his

(B.6) analysis to7” > 1.
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To obtain the perfect-knowledge upper bound for the signebnverges, a®v — ~o, to the identity matrix, and therefore
model (3), we suppose that the receiver observes the propa- oN
gation matrixH through a separate noise-free channel. This Cy~T-M-log <1 + ﬁ)
perfect-knowledge fading link is completely described by the

conditional probability density hIn effect, one had/ independent nonfading subchannels, each

having signal-to-noise ratip/N/M.
p(X, H|S) = p(X|H,5) - p(H).
APPENDIX D
The perfect-knowledge capacity is obtained by maximizing ASYMPTOTIC BEHAVIOR OF Cj AS T — oo
the mutual information betwegiX, H) and .S with respect to

p(S). The mutual information is We start with (12), which can be written

I(X,H;S) = P%%Z}Ej Cr=(loge)- |-T'-In (T—p1;A .
b P +E{<T_1> i () o (1o 22
ol (SN

The inner expectation, conditioned &, is simply the mutual where the expectat|0n is with respect to the probability density

information for the classical additive Gaussian noise case and (T — 1)e—A/<1+/’T>7( -1, lferpAT)
is maximized by making the components gfindependent g(\) = = , A>0.
CN(0, 1). (In performing the maximization, the expected D(TY(1+ pT) [HPT}

power of each component &f is constrained to be equal,
since the transmitter does not knal#/ and therefore cannot
allocate power among its antennas in accordance Hi)hiThe
resulting perfect-knowledge capacity is

Lemma A, which is now presented, helps simplify these ex-
pectations. It turns out that the second expectation is negligible
when compared with the first.

Lemma A: For any functiong(A
Cw=T-E log det [IN + ﬁ HTH]

E g(\) =[¢¥? + O(T1)] / due™™ o
This expression is the capacity associated with a blocK’ of 0o )'
symbols, wheré!l’ is the coherence interval. The normalized / d\ e *g((1+ pT)N)
capacityC, /T is independent off. T
The N x N matrix H' H/M is equal to the average éff as7 — oc.
statistically independent outer products. For fixBdand N, Proof: (See the bottom of this page).

when M grows large, this matrix converges to the identity Defin
matrix. Therefore, ne
def
dhx e g((1+ pT)A
lim C,=T7-N- log(l+ p). / PN,

M—oo
Then the two expectations in (D.1) involve integrals of the
Although the total power that is radiated is unchanged&s fgorm

increases, it appears that one ultimately achieves the equivalent

of IV independent nonfading subchannels, each with $NR /Oo du e~ u~? fr(u) (D.2)
When the number of receiver antennas is large, we use the Tr-2)
identity p p for different functions fr(-). For the second expectation,
4+ HIH| = L . A) = M/(1 + pT’), and hence
det [Ty + L H'H| = des [y + L 1] 9(N) = ML+ D),
For fixedZ and M, the M x M matrix HH' /N is equal to fr(w) = / dh e M\ =e¢7oT (1 + _T)
the average oiV statistically independent outer products. This 7T P

0o 1 -1 0 6—)\/(1+PT) PTN/(1+pT) ulr=2
= |14+ — —_— e
/0 g(Ng(A) dA [ + pT} /0 N 9V /0 due T
¥ R oTA uT2
p — —u
—r o] [ e <<1+pT>A>/ due

= [t +O(T ]/ du e T %) / dhe™ g((1+ pT)N). O
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The integral (D.2) can be explicitly evaluated in this case, th¥e proceed by breaking the range of integration in (D.4) into

result being the four disjoint intervals]—1, —ayr], (—ar,ar], (ar,1],
and (1, c0). Define
due“if() VP (1+1/p) +O(TTH)
/ (T =2t or &\ [T/ (2meer/61))

and hence, from Lemma A, we obtain

1
1+pT

for the first interval, (D.5) implies that
1,1/ -1 -1/ —1 —ar
EX=[""+0O(T e (14 1/p)+ O(T)] or / v gr(v)
=141/p+0(T7). !

<er max {7V +0)T}
LE[ 1 —aT

The first expectation in (D.1) is not so easy to evaluate, and

requires a lemma to help approximate it for laffe /_aT V| fr ()| + | fr(T(1+v))]]
Lemma B: Let fr(uw),T = 1,2,---, be any sequence of 0
functions that are continuous om € (0,00), and where <0 < ) / dv [r(T) + | fr(T(1+v))]]
sup,~7 |fr(u)| is bounded by some polynomia(7’), as () B 1 T
T — oo. Then, for any positivep =0 < Tr ) + 0O <TP+1> /0 du | fr(w)|. (D.6)

For the second interval, we obtain

or T gr(v)
) L.

ar
<er / dv e V(1 +0)T

/0 du e o fr(u)
— Jr(T) + 0( max | fr(T(1+0)) — fo(T)

w2 < (2P+;—? InT

r(7) 1y [
O < v ) O\ o / dulfr(uw)  (D.3) - max |fr(T(1+v)) = fr(T)
asT — oo. < max |fr(T(L+v)) = fr(D)] - er
Proof: Since
- / dve (1 + )T
—u, T I —
[, et = max (T +v) = fr(T) @)
we have that where the indicated maximum exists because of the continuity
o of fr(-).
du e~ % — fT( ) — fT(T)‘ In the third interval, an expansion similar to (D.5) shows
that ¢=797(1 + ar)? = O(T-P~*/2), and, from the same

reasoning that leads to (D.6),

/ = 2 felw) — F(D)

oo 1 (T 2T
o [t ©0 o [ =0 ($2)eo gks) [ s

where =0 <T(T1;) ) . (D.8)

def

gr(v) = A+ )T fr(TA +v) = fr(T)]

For the fourth interval, note thatl + v)? < T(v+1/2)/2
and, by Stirling’s approximatiorf) < 67 < 1. The function for v > 1. Therefore,

e~ Tv(1 + v)T has its maximum value one at = 0, and
decreases monotonically asincreases or decreases. Define e
or dv gr(v)
1

ar € /((2p + 1) InT)/T; then

¢ (1= ag)” = CT/l dve PCTVDR | fr(T(1 4 0)) — fr(T)]

— Cp+1)T InT T In(1—+/((2p4+1)InT)/T) =]

eV e iy < L T / du =2 [| fy(u + 20) | + [fr (T)]
_ e\/(2p+1)T InT T

- T1V/(@p+1) In T)/T—((2p+1) In T)/(2T)+0(1/T)] <2 )T/ / P
— o~ (P+1/2)In THo(1) T

—4Z (e 14, D.9

= O(Tr=1/?2). (D.5) 7 "De (0-9)
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This term is negligible compared with th@(»(7")/17) term where the second equality is a consequence of Stirling’s
in (D.8) for sufficiently large7. Combining (D.6)—(D.9) approximation ofl'(7" — 1). Furthermore,
completes the proof. O

o0 -2
(14 L), Y
We are now in a position to evaluate the first expectation / dy e Ty —(T T
in (D.1) for largeZ’. Here T
/ dye” (1+ﬂT)y T—2

9\ = (T=1)n(pTA/(1+pT))~lny(T =1, pTA/(1+pT)). (T - 1T)

1 e ,
Integration by parts yields < T —1,T) /0 dy vyt
= =0(1)
frlu) = [ AN (T = 1) (LN ~In 5T~ 16T
7T asT — oo. Therefore, foru = T and largel’, the integral in
(D.10) (D.11) is negligible in comparison with the other three terms,

o0 N and it is dropped from further consideration. We now apply
= /L dAe T = 1)n(pTA) Lemma B tofr(u) as given in (D.11). The hypotheses of the
o . lemma are satisfied because, by (D.12),
/7
—v, T—2
- /o e ] fr(@) =(T= 1) [/ n T+ E1(1/p)]
oo o N — e YP[TIn T —T]+ O (In T)
c
=(T-1) [—G‘A In(pTA)|  + / dA T] =TE (1/p)+ T V7 +0(nT) (D.13)
N o and, by (D.10)lim, o, fr(u) = 0.
+e " In (71, pTA) W Equation (D.13) is the first term in (D.3) of Lemma B. The
o second term in (D.3) requires an estimate of
d\ e
/ - 1, 3T =1,pTX) max | fr(T(L+v)) = fr(T)]
.e—f’“(pTA)T 2T e
—(T - 1) [e_ﬁ Inu+E, (i)} for _Which we use Lemma 3 and assume that> 0 is
T arbitrary. Forv? = O ((In T)/T), we have thatl'(1 + v) =
— 77T Iny (T —1,u) T+ O(VTIlnT), and thereforex = 1+ O (\/(ln T)/T)
o0 Caaagy A2 and (VT = O(v/In T). Furthermore(1/2)erfc (O (v/In T)))
—/ dhe e ST=T,0 (D.11) either goes to one, or goes to zero with rate at most propor-

tional to 1/(7TVIn T), depending on whether th@ (v/In T')
where E; (z) is the exponential integral defined in (13). Wderm is negative or positive. Thus by Lemma C and (D.12)
are interested in studying the behavior faf(x) for  in the
neighborhood of’. The following lemma, which is proven in 1n ¥(7'—= 1,7+ O(VT In T))

[8], aids us. =1In (T — 1) 4+ In {(1/2)erfc ((VT — 1)
Lemma C: Uniformly for « in any finite positive interval +o(erfc ({(VT — 1))}
AT, al) 1 =ThT-T4+O0(InT)+In{(1/2)erfc({(VT —1)
Trr) = g e (VT oferte ((VT) + o (erfe ((VT=T))}

asT — oo, where =ThT-T+0(nT)

erfc (y) &« (2/+/7) /00 e du

We also have

WT+O0WTInT)=nT+0O(/(InT)/T)
is the complementary error functigrand and

e e v Bv(1/p) + O (vl T)/T)) = B1(1/p) + O (Vb T)/T).
Combining all these facts, we obtain

The positive sign is taken when < 1, and the negative when

a> 1 _ max [fr(T(1 +v)) = fr(T)]
Employing Lemma C withae = 7/(7 — 1), we see that v*<((2p+1)In T/T)
(VT = O(1/VT), and =OWTIT)=0(\/Tlog T). (D.14)
hy(T-1,7)=In I(T"-1)+0(1) The bound given in (D.14) holds for arbitrapy> 0. There-

=TI T-T+0(nT) (D.12) fore,p may be chosen large enough so that the remaining terms
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in (D.3) are negligible in comparison to (D.14). Lemmas A andghere
B in conjunction with (D.13) and (D.14) consequently yield

(T _ 1)6_)\/(1+paT)’}/( -1 paTA )

2T pTA g\ = In | pa et
E{(T_l)lnH T_h”(T_l’m” (1+paT)[1’f,z;ﬂ
0@ [ duet A e el Cha72)
= TP (1/p) + T+ 0 (y/Tlog T). @+
Thus (D.1) becomes Omitting tedious details that are essentially the same as in

Appendix D, we obtain

C; = T(log ¢)e*/PEL(1/p) — O (\/Tlog T).  (D.15) I = (log T <p A E1< 1 ) e E1< 1 ))
= . ;

APPENDIX E +O(vT log T) (E.1)

SIGNALING SCHEME THAT ACHIEVES CAPACITY AS T — o0 asT — oo, whereE, (z) is the exponential integral defined

For M = N =1 andT sufficiently large, we show that thein (13). But the function:'/# E(1/p) is strictly concave irp,
mutual information forp(vy) = §(vy — VT), given in (12), and therefore, by Jensen’s inequality
exceeds the mutual information for any oth€r;). Suppose
that p(v1) = pab(vs — vVaT) + p6(v1 — VT), wherea and pact E1< 1 ) +pbep"E1< 1 )
b are contained in a positive finite interval #5— oc. Since pa pb
Ev? = T, it must hold thatap, + bp, = 1, and we assume L 1
that p, andp, both remain positive a4’ — oc. It is then a S erteriin iy <m>
simple matter to parallel the derivation 6f in (9) to obtain _ ¢
the mutual information = e /"Ei(1/p)

with equality if and only ifa = b = 1. If a = b = 1, the
I=(log ¢) - [_ T — po In(1 + paT) — py In(1 + pbT) two masses i(v;) collapse into a single mass at = /7.
Hence, by (D.15)(; > I for sufficiently largel’, with equality
_ V1 VLT /AT d if and only if the two masses ip(v1) approach a single mass
[ amaoreE ax f and only it the o
We now outline how to generalize the above argument

where to show that any(wv;) asymptotically generates less mutual
information thanp(v,) = (v, — v/T). The expansion (E.1)
_ a oTA can be generalized ta masses

aer L= De i T)’Y( - L lle-PaT) ’

Q()\) = Pa - T—1 n

P(T) (14 paT) | 1222 p(o) =3 pidon = Vo, T)
j=1
(T = D)e= N+ (T - 1, 15

+ Db T—1 . to obtain

P(T) (14 b)) [ 225

=(log )T Z pje”aﬂ El(pa ) +O0(/Tlog T).
j

The same analysis as in Appendix D now vyields

- (E.2)
T-—1
/o 2N In(gIIT) /A7) dA Provided thatay,---,a, are taken from some finite posi-
- tive interval, the asymptotic expansion (E.2) is uniform, and
=Pa {1+—} / due™ — ) hence remains valid even if we let become unbounded
' (say, for example, as a function &f). As T — oo, the
dX e g((1 4 paT)N) mutual information (E.2) is therefore maximized by having
T a1, -,a, — 1, which reduces the multiple masses to a
1 171 pee _, uf? single mass at; = /7. On a finite interval, we can
+ P { bT} /0 du e ’(T o) ur_1iform|y approximate any coptinuous density faw, /v/T)
oo with masses, and the preceding argument therefore tells us
/ d\ e g((1 + pbT)N) that we are asymptotically better off replacing the continuous

T density on this finite interval with a mass at/\/T =1.
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