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Capacity of a Mobile Multiple-Antenna
Communication Link in Rayleigh Flat Fading

Thomas L. Marzetta,Senior Member, IEEE, and Bertrand M. Hochwald,Member, IEEE

Abstract—We analyze a mobile wireless link comprisingM
transmitter and N receiver antennas operating in a Rayleigh flat-
fading environment. The propagation coefficients between pairs
of transmitter and receiver antennas are statistically independent
and unknown; they remain constant for a coherence interval of
T symbol periods, after which they change to new independent
values which they maintain for anotherT symbol periods, and so
on. Computing the link capacity, associated with channel coding
over multiple fading intervals, requires an optimization over the
joint density of T �M complex transmitted signals. We prove that
there is no point in making the number of transmitter antennas
greater than the length of the coherence interval: the capacity for
M > T is equal to the capacity forM = T . Capacity is achieved
when theT�M transmitted signal matrix is equal to the product
of two statistically independent matrices: aT � T isotropically
distributed unitary matrix times a certain T �M random matrix
that is diagonal, real, and nonnegative. This result enables us to
determine capacity for many interesting cases. We conclude that,
for a fixed number of antennas, as the length of the coherence
interval increases, the capacity approaches the capacity obtained
as if the receiver knew the propagation coefficients.

Index Terms—Multielement antenna arrays, space–time mod-
ulation, wireless communications.

I. INTRODUCTION

I T is likely that future breakthroughs in wireless communi-
cation will be driven largely by high data rate applications.

Sending video rather than speech, for example, increases the
data rate by two or three orders of magnitude. Increasing the
link or channel bandwidth is a simple but costly—and ulti-
mately unsatisfactory—remedy. A more economical solution
is to exploit propagation diversity through multiple-element
transmitter and receiver antenna arrays.

It has been shown [3], [7] that, in a Rayleigh flat-fading
environment, a link comprising multiple-element antennas has
a theoretical capacity that increases linearly with the smaller
of the number of transmitter and receiver antennas, provided
that the complex-valued propagation coefficients between all
pairs of transmitter and receiver antennas are statistically in-
dependent and known to the receiver (but not the transmitter).
The independence of the coefficients provides diversity, and
is often achieved by physically separating the antennas at the
transmitter and receiver by a few carrier wavelengths. With
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such wide antenna separations, the traditional adaptive array
concepts of beam pattern and directivity do not directly apply.

If the time between signal fades is sufficiently long—often a
reasonable assumption for a fixed wireless environment—then
the transmitter can send training signals that allow the receiver
to estimate the propagation coefficients accurately, and the
results of [3], [7] are applicable. With a mobile receiver, how-
ever, the time between fades may be too short to permit reliable
estimation of the coefficients. A 60-mi/h mobile operating at
1.9 GHz has a fading interval of about 3 ms, which for a
symbol rate of 30 kHz, corresponds to only about 100 symbol
periods. We approach the problem of determining the capacity
of a time-varying multiple-antenna communication channel,
using the tools of information theory, and without anyad hoc
training schemes in mind.

The propagation coefficients, which neither the transmitter
nor the receiver knows, are assumed to be constant for
symbol periods, after which they change to new independent
random values which they maintain for anothersymbol
periods, and so on. This piecewise-constant fading process
approximates, in a tractable manner, the behavior of a con-
tinuously fading process such as Jakes’ [5]. Furthermore, it
is a very accurate representation of many time-division multi-
ple access (TDMA), frequency-hopping, or block-interleaved
systems. The random propagation coefficients are modeled
as independent, identically distributed, zero-mean, circularly
symmetric complex Gaussian random variables. Thus there
are two sources of noise at work: multiplicative noise that is
associated with the Rayleigh fading, and the usual additive
receiver noise.

Suppose that there are transmitter and receiver anten-
nas. Then the link is completely described by the conditional
probability density of the complex received signals given
the complex transmitted signals. Although this con-
ditional density is complex Gaussian, the transmitted signals
affect only the conditional covariance (rather than the mean)
of the received signals—a source of difficulty in the problem.

If one performs channel coding over multiple independent
fading intervals, information theory tells us that it is theo-
retically possible to transmit information reliably at a rate
that is bounded by the channel capacity [4]. Computing the
capacity involves finding the joint probability density function
of the -dimensional transmitted signal that maximizes
the mutual information between it and the -dimensional
received signal. The special case is
addressed in [9], where it is shown that the maximizing
transmitted signal density is discrete and has support only
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Fig. 1. Wireless link comprisingM transmitter andN receiver antennas. Every receiver antenna is connected to every transmitter antenna through an
independent, random, unknown propagation coefficient having Rayleigh distributed magnitude and uniformly distributed phase. Normalization ensures that
the total expected transmitted power is independent ofM for a fixed �:

on the nonnegative real axis. The maximization appears, in
general, to be computationally intractable for or

Nevertheless, we show that the dimensionality of the max-
imization can be reduced from to , and
that the capacity can therefore be easily computed for many
nontrivial cases. In the process, we determine the signal prob-
ability densities that achieve capacity and find the asymptotic
dependences of the capacity on The signaling structures
turn out to be surprisingly simple and provide practical insight
into communicating over a multielement link. Although we ap-
proach this communication problem with no training schemes
in mind, as a by-product of our analysis we are able to provide
an asymptotic upper bound on the number of channel uses that
one could devote to training and still achieve capacity.

There are four main theorems proven in the paper that
can be summarized as follows. Theorem 1 states that there
is no point in making the number of transmitter antennas
greater than Theorem 2 gives the general structure of the
signals that achieves capacity. Theorem 3 derives the capacity,
asymptotically in , for Theorem 4 gives the
signal density that achieves capacity, asymptotically in, for

Various implications and generalizations of the
theorems are mentioned as well.

The following notation is used throughout the paper:
is the base-two logarithm of, while is base Given
a sequence of positive real numbers, we say that

as if is bounded by some po-
sitive constant for sufficiently large; we say that

if The sequence for integer and
is defined to be one when and zero otherwise, and
is Dirac’s -function, which, when is complex, is defined as

Two complex vectors, and , are orthogonal if
where the superscript denotes “conjugate transpose.” The
mean-zero, unit-variance, circularly symmetric, complex
Gaussian distribution is denoted

II. M ULTIPLE-ANTENNA LINK

A. Signal Model

Fig. 1 displays a communication link or channel comprising
transmitter antennas and receiver antennas that operates

in a Rayleigh flat-fading environment. Each receiver antenna
responds to each transmitter antenna through a statistically
independent fading coefficient that is constant forsymbol
periods. The fading coefficients are not known by either the
transmitter or the receiver. The received signals are corrupted
by additive noise that is statistically independent among the

receivers and the symbol periods.
The complex-valued signal that is measured at receiver

antenna , and discrete time, is given by

(1)
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Here is the complex-valued fading coefficient between
the th transmitter antenna and theth receiver antenna. The
fading coefficients are constant for and they are
independent and distributed, with density

The complex-valued signal that is fed at timeinto transmitter
antenna is denoted , and its average (over the
antennas) expected power is equal to one. This may be written

(2)

The additive noise at timeand receiver antenna is denoted
, and is independent (with respect to bothand ), identi-

cally distributed The quantities in the signal model
(1) are normalized so that represents the expected signal-to-
noise ratio (SNR) at each receiver antenna, independently of

(It is easy to show that the channel capacity is unchanged
if we replace the equality constraint in (2) with an upper
bound constraint.) We later show that the constraint (2) can be
strengthened or weakened in certain convenient ways without
changing the channel capacity.

B. Conditional Probability Density

Both the fading coefficients and the receiver noise are
complex Gaussian distributed. As a result, conditioned on the
transmitted signals, the received signals are jointly complex
Gaussian. Let

...
...

...
...

where is the matrix of transmitted signals, is the
matrix of received signals, is the matrix

of propagation coefficients, and is the matrix of
additive noise components. Then

(3)

It is clear that

and

Thus the conditional probability density of the received signals
given the transmitted signals is

(4)

where denotes the identity matrix and “ ” denotes
“trace.”

The channel is completely described by this conditional
probability density. Note that the propagation coefficients do
not appear in this expression. Although the received signals are
conditionally Gaussian, the transmitted signals only affect the
covariance of the received signals, in contrast to the classical
additive Gaussian noise channel where the transmitted signals
affect the mean of the received signals.

C. Special Properties of the Conditional Probability

The conditional probability density of the received signals
given the transmitted signals (4) has a number of special
properties that are easy to verify.

Property 1: The matrix is a sufficient statistic.

When the number of receiver antennas is greater than the
duration of the fading interval , then this sufficient
statistic is a more economical representation of the received
signals than the matrix

Property 2: The conditional probability density
depends on the transmitted signalsonly through the
matrix

Property 3: For any unitary matrix

Property 4: For any unitary matrix

III. CHANNEL CODING OVER MULTIPLE FADING INTERVALS

We assume that the fading coefficients change to new inde-
pendent realizations every symbol periods. By performing
channel coding over multiple fading intervals, as in Fig. 2, the
intervals of favorable fading compensate for the intervals of
unfavorable fading.

Each channel use (consisting of a block oftransmitted
symbols) is independent of every other, and (4) is the condi-
tional probability density of the output , given the input
Thus data can theoretically be transmitted reliably at any rate
less than the channel capacity, where the capacity is the least
upper bound on the mutual information betweenand , or

subject to the average power constraint (2), and where

(5)

Thus is measured in bits per block of symbols. We will
often find it convenient to normalize by dividing by

The next section uses (5) and the special properties of
the conditional density (4) to derive some properties of the
transmitted signals that achieve capacity.
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Fig. 2. Propagation coefficients change randomly everyT symbol periods. Channel coding is performed over multiple independent fading intervals.

IV. PROPERTIES OFTRANSMITTED

SIGNALS THAT ACHIEVE CAPACITY

Direct analytical or numerical maximization of the mutual
information in (5) is hopelessly difficult whenever , the
number of components of the transmitted signal matrix,
is much greater than one. This section shows that the max-
imization effort can be reduced to a problem in
dimensions, making it possible to compute capacity easily for
many significant cases.

Lemma 1 (Invariance of to Rotations of ): Sup-
pose that has a probability density that generates some
mutual information Then, for any unitary matrix
and for any unitary matrix , the “rotated” probability
density, also generates

Proof: We prove this result by substituting the rotated
density into (5); let be the mutual information
thereby generated. Changing the variables of integration from

to , and from to (note that the Jacobian
determinant of any unitary transformation is equal to one),
and using Properties 3 and 4, we obtain

Lemma 1 implies that we can interchange rows or columns
of —since this is equivalent to pre- or post-multiplying

by a permutation matrix—without changing the mutual
information.

Lemma 2 (Symmetrization of Signaling Density):For any
transmitted signal probability density , there is a
probability density that generates at least as much
mutual information and is unchanged by rearrangements of
the rows and columns of .

Proof: There are distinct permutations of the rows of
, and distinct permutations of the columns. We let

be a mixture density involving all distinct permutations of the
rows and columns, namely,

(6)

where are the permutation matrices,
and are the permutation matrices.
Plainly, is unchanged by rearrangements of its rows and
columns. The concavity of mutual information as a functional
of , Lemma 1, and Jensen’s inequality imply that

Lemma 2 is consistent with one’s intuition that all trans-
mission paths are, on average, equally good. With respect to
the mixture density of (6), the expected power of the

th component of is

(7)

where we have substituted for as the variable
of integration. Over all possible permutations,
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takes on the value of every component times.
Consequently, the expected power (7) becomes

for all and , where the second equality follows from (2).
The constraint (2) requires that the expected power, spatially

averaged over all antennas, be one at all times. As we have
just seen, Lemma 2 implies that the same capacity is obtained
by enforcing the stronger constraint that the expected power
for each transmit element be one at all times. We obtain the
following corollary.

Corollary 1: The following power constraints all yield the
same channel capacity.

a)

b)

c)

d)

The last condition is the weakest and says that, without
changing capacity, one could impose the constraint that the
expected power, averaged over both space and time, be one.
This can equivalently be expressed as

A. Increasing Number of Transmitter Antennas
Beyond Does Not Increase Capacity

We observe in Property 2 that the effect of the transmitted
signals on the conditional probability density of the received
signals is through the matrix It is, therefore,
reasonable to expect that any possible joint probability density
of the elements of can be realized with at most
transmitter antennas.

Theorem 1 (Capacity for Equals Capacity for
): For any coherence interval and any number

of receiver antennas, the capacity obtained with
transmitter antennas is the same as the capacity obtained with

transmitter antennas.
Proof: Suppose that a particular joint probability density

of the elements of achieves capacity with
antennas. We can perform the Cholesky factorization

, where is a lower triangular matrix. Using
transmitter antennas, with a signal matrix that has the same
joint probability density as the joint probability density of,
we may therefore also achieve the same probability density on

If satisfies power condition d) of Corollary 1, then so
does

This result, for which we have no simple physical inter-
pretation, contrasts sharply with the capacity obtained when
the receiver knows the propagation coefficients, which grows
linearly with , independently of see [7] and
Appendix C.

In what follows we assume that

B. Structure of Signal That Achieves Capacity

In this section, we will be concerned with proving the
following theorem.

Theorem 2 (Structure of Signal That Achieves Capacity)
: The signal matrix that achieves capacity can be written as

, where is an isotropically distributed unitary
matrix, and is an independent real, nonnegative, di-
agonal matrix. Furthermore, we can choose the joint density of
the diagonal elements of to be unchanged by rearrangements
of its arguments.

In calling the oblong matrix diagonal, we mean that
only the elements along its main diagonal may be nonzero.
An isotropically distributedunitary matrix has a probability
density that is unchanged when the matrix is multiplied by any
deterministic unitary matrix. In a natural way, an isotropically
distributed unitary matrix is the counterpart of a com-
plex scalar having unit magnitude and uniformly distributed
phase. More details, including the probability density of these
matrices, may be found in Appendix A. The theorem relies on
the following lemma, which is proven first.

Lemma 3 (Singular Value Decomposition of): Suppose
that , with singular value decomposition , has an
arbitrary distribution that generates some mutual information

Then the signal matrix formed from the first two factors,
, also generates

Proof: The singular value decomposition (SVD) says
that the signal matrix can always be decomposed
into the product of three jointly distributed random matrices,

, where is a unitary matrix, is a
nonnegative real matrix whose only nonzero elements are on
the main diagonal, and is an unitary matrix.

We write the mutual information in terms of the three
SVD factors and then apply Property 3 to obtain
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where the last expression is immediately recognized as the
mutual information generated by Finally, if
satisfies power constraint d) of Corollary 1, then so does

Ostensibly, maximizing the mutual information with respect
to the joint probability density of and is even more
difficult than the problem that it replaces. However, as we
now show, capacity can be achieved by makingand
independent, with isotropically distributed.

Proof of Theorem 2:Using Lemma 3, we write the trans-
mitted signal matrix as , where and are jointly
distributed, is unitary, and is diagonal, nonnegative, and
real. Suppose has probability density and generates
mutual information Let be an isotropically distributed
unitary matrix that is statistically independent of and ,
and define a new signal matrix, , generating mutual
information It follows from Lemma 1 that, conditioned
on , the mutual information generated by equals The
concavity of mutual information as a functional of , and
Jensen’s inequality, then imply that

From the definition of an isotropically distributed unitary
matrix (see Appendix A), the product , conditioned on , is
also isotropically distributed. Since the conditional probability
density does not depend on, it follows that the product is
independent of and Consequently, is equal to the
product of an isotropically distributed unitary matrix and,
with the two matrices statistically independent. Ifsatisfies
power condition d) of Corollary 1, then so does

The expression for mutual information (5) becomes

(8)

where is the probability density of the diagonal elements
of The probability density is given in (A.5), and
the maximization of the mutual information needed
to calculate capacity now takes place only with respect to

The mutual information is a concave functional of ,
because it is concave in and is linear in

The conclusion that there exists a capacity-achieving joint
density on that is unchanged by rearrangements of its argu-
ments does not follow automatically from Lemma 2, because
the symmetry of the signal that achieves capacity in Lemma
2 does not obviously survive the above dropping of the right-
hand SVD factor and premultiplication by an isotropically
distributed unitary matrix. Nevertheless, we follow some of
the same techniques presented in the proof of Lemma 2.

There are ways of arranging the diagonal elements of
, each corresponding to pre- and post-multiplying by

appropriate permutation matrices, say and
The permutation does not change the mutual in-

formation; this can be verified by plugging the reordered
into (8), substituting for , and for , as
variables of integration, and then using Property 3 and the fact
that multiplying by a permutation matrix does not change its

probability density. Now, as in the proof of Lemma 2, using
an equally weighted mixture density for, involving all
arrangements, and exploiting the concavity of as a
functional of , we conclude that the mutual information
for the mixture density is at least as large as the mutual
information for the original density. But, clearly, this mixture
density is invariant to rearrangements of its arguments.

We remark that the mixture density in the above proof
symmetrizes the probability density for Hence,
for all and Let denote the diagonal elements
of (recall that ). Then

where the last equality is a consequence of (A.1); therefore,
for

Thus the problem of maximizing with respect to
the joint probability density of the complex elements of

reduces to the simpler problem of maximizing with
respect to the joint probability density of the nonnegative
real diagonal elements of This joint probability can be
constrained to be invariant to rearrangements of its arguments,
and thus the marginal densities on can be made
identical, with But we do not know
if are independent.

The th column of , representing the complex signals
that are fed into the th transmitter antenna, is equal to the real
nonnegative scalar times an independent -dimensional
isotropically distributed complex unit vector Since is
the th column of the isotropically distributed unitary
matrix , the signal vectors are mutually
orthogonal. Fig. 3 shows the signal vectors associated with the

transmitter antennas. Each signal vector is a-dimensional
complex vector (comprising real components). The solid
sphere demarcates the root-mean-square values of the vector
lengths; that is, Later we argue that, for ,
the magnitudes of the signal vectors are approximately
with very high probability.

V. CAPACITY AND CAPACITY BOUNDS

The simplification provided by Theorem 2 allows us to
compute capacity easily for many cases of interest. The
mutual information expression (8) requires integrations with
respect to and the diagonal elements of Although the
maximization of (8) is only over the diagonal elements of

, the dimensionality of integration is still high. We reduce
this dimensionality in Appendix B, resulting in the expression
(B.10). Integration over the complex components of
is reduced to integration over real eigenvalues,

and integration over the complex
elements of is reduced to complex elements.
In fact, as we show in Appendix B, closed-form expressions
for the integral over can sometimes be obtained.

In this section, we calculate the capacity in some simple but
nontrivial cases that sometimes require optimization of a scalar
probability density. Where needed, any numerical optimiza-
tion was performed using the Blahut–Arimoto algorithm [1].
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Fig. 3. The transmitted signals that achieve capacity are mutually orthogonal with respect to time. The constituent orthonormal unit vectors are isotropically
distributed (see Appendix A), and independent of the signal magnitudes, which have mean-square valueT: The solid sphere of radiusT 1=2 demarcates the
root-mean-square. ForT �M , the vectors all lie approximately on the surface of this sphere. The shell of thickness"T 1=2 is discussed in Section V.

Where instructive, we also include upper and lower bounds
on capacity.

A. Capacity Upper Bound

An upper bound is obtained if we assume that the receiver
is provided with a noise-free measurement of the propagation
coefficients This perfect-knowledgeupper bound, obtained
under power constraint a) of Corollary 1, is

(9)

and is derived in Appendix C. Equation (9) gives the upper
bound per block of symbols. The normalized bound
is independent of When is known to the receiver, the
perfect-knowledge capacity bound is achieved with transmitted
signals that are independent (see also [7]).

In our model, is unknown to the receiver, but we
intuitively expect to approach as becomes large
because a small portion of the coherence interval can be
reserved for sending training data from which the receiver
can estimate the propagation coefficients. Therefore, when
is unknown and is large, we also expect the joint probability
density of the capacity-achieving transmitted signalsto

become approximately independent We reconcile
this intuition with the structure that is demanded in Theorem 2

where are the column vectors of , by observing
that, for fixed , as grows large two interesting things
happen. First, the complex random orthogonal unit vectors
that comprise become virtually independent. Second, for any

, the magnitude of a vector of independent
random variables is contained in a shell of radius and
width with probability that approaches one as
(Fig. 3 displays this so-called sphere-hardening phenomenon).

Hence, the and structures for are reconciled
if with high probability as (see
also Appendix A for a method to generatefrom a matrix
of random variables). This intuition is formalized in
Section V-C.

B. Capacity Lower Bound

By substituting an arbitrary density for in (B.10),
one obtains a lower bound on capacity. The arguments of
Section V-A suggest that by assigning unit probability mass
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to , one should obtain a lower bound
that becomes tight as The result is

(10)

where is given by (B.8), and is obtained by
evaluating (B.6) with , yielding

(11)

By the reasoning of Section V-A, this lower bound should be
most useful when , and least useful when In
fact, when , it is easy to show that assigning unit mass
to implies that ,
so and

When , the integration over in (11) can be
performed analytically as shown in Appendix B.1, and (10)
becomes

(12)

where

is the incomplete gammafunction (see also (B.3)). We now
justify the use of (10) for large by proving that (12) is a
tight lower bound as

C. Capacity, Asymptotically in

For the perfect-knowledge capacity upper
bound (9) is

where

(13)

is theexponential integral. Hence, for , we expect
as This intuition is

made precise in the following theorem.

Theorem 3 (Capacity, Asymptotically in): Let
Then

as
Proof: It remains to show that approaches

at the indicated rate, and this is proven in Appendix D.
The remainder term can be viewed as a

penalty for having to learn at the receiver. One possible
way to learn is to have the transmitter send, say,training
symbols per block that are known to the receiver. Clearly,
when the transmitter sends a training symbol, no message
information is sent. Even if is thereby learned perfectly at
the receiver, the remaining symbols cannot communicate
more than bits. We therefore have
the following corollary.

Corollary 2: Let Of the symbols trans-
mitted over the link per block, one cannot devote more
than to training and still achieve capacity, as

Since we have shown that, for large, the capacity of our
communication link approaches the perfect-knowledge upper
bound, we also expect the joint probability density of the
elements of to become approximately indepen-
dent as part of the sphere-hardening phenomenon
described in Section V-A. This is the content of the next
theorem.

Theorem 4 (Distribution That Achieves Capacity, Asymptot-
ically in ): Let For the signal that achieves
capacity, converges in distribution to a unit mass at

, as
Proof: See Appendix E.

When , it is reasonable to expect that the joint
distribution of becomes a unit mass at

(see Fig. 3) as , but we do not include
a formal proof. Consequently, when the diagonal
components of that yield capacity should all be , and

given by (10) should be a tight bound. Furthermore, as
and, hence, the capacity, should approach the

perfect-knowledge upper bound.

D. Capacity and Capacity Bounds for and

There is a single transmitter antenna, and the transmitted
signal is where is the th ele-
ment of the isotropically distributed unit vector Figs. 4–6
display the capacity, along with the perfect-knowledge upper
bound (9), and lower bound (12) (all normalized by), as
functions of for three SNR’s. The optimum probability
density of , obtained from the Blahut–Arimoto algorithm
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Fig. 4. Normalized capacity, and upper and lower bounds, versus coherence intervalT (SNR= 0 dB, one transmitter antenna, one receiver antenna). The
lower bound and capacity meet atT = 12: As per Theorem 3, the capacity approaches the perfect-knowledge upper bound asT ! 1:

Fig. 5. Normalized capacity, and upper and lower bounds, versus coherence intervalT (SNR= 6 dB, one transmitter antenna, one receiver antenna). The
lower bound and capacity meet atT = 4: The capacity approaches the perfect-knowledge upper bound asT ! 1:

and yielding the solid capacity curve, turns out to be discrete;
as becomes sufficiently large, the discrete points become a
single mass at , and the lower bound and capacity coincide
exactly. For still greater , the capacity approaches the perfect-
knowledge upper bound. This observed behavior is consistent
with Theorems 3 and 4. The effect of increasing SNR is to

accelerate the convergence of the capacity with its upper and
lower bounds.

When , all of the transmitted information is contained
in the magnitude of the signal, which is When is large
enough so that , then all of the information is contained
in , which is, of course, completely specified by its direction.
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Fig. 6. Normalized capacity, and upper and lower bounds, versus coherence intervalT (SNR= 12 dB, one transmitter antenna, one receiver antenna). The
lower bound and capacity meet atT = 3: The capacity approaches the perfect-knowledge upper bound asT ! 1:

Fig. 7. Capacity and perfect-knowledge upper bound versus number of receiver antennasN (SNR= 0, 6, 12 dB, arbitrary number of transmitter antennas,
coherence interval equal to one). The gap between capacity and upper bound only widens asN ! 1:

E. Capacity and Capacity Bounds for
and

In this case, there are multiple transmitter and receiver
antennas and the coherence interval is , corresponding
to a very rapidly changing channel. Theorem 1 implies that
the capacity for is the same as for ,
so we assume, for computational purposes, that
The transmitted signal is then a complex scalar having a

uniformly distributed phase and a magnitude that has a discrete
probability density. All of the transmitted information is
contained in the magnitude. Because , the capacity
lower bound is trivially zero. The receiver cannot estimate the
propagation coefficients reliably, so the capacity is far less
than the perfect-knowledge upper bound.

Fig. 7 displays the capacity as a function offor arbitrary
In the rapidly fading channel the difference between the



MARZETTA AND HOCHWALD: CAPACITY OF A MOBILE COMMUNICATION LINK IN RAYLEIGH FLAT FADING 149

Fig. 8. Normalized capacity lower bounds and perfect-knowledge upper bounds versus number of transmitter antennasM (SNR = 20 dB, one receiver
antenna, coherence interval equal to 100). The actual channel capacity lies in the shaded region. Lower bound peaks atM = 3; this peak is a valid
lower bound forM � 3, giving us the modified lower bound.

capacity and the perfect-knowledge upper bound becomes
especially dramatic as and both increase since, as
shown in Appendix C (see also [7]), the upper bound grows
approximately linearly with the minimum of and , while
in Fig. 7 the growth of capacity with (recall that the capacity
in this example does not grow with ) is very moderate and
appears to be logarithmic.

F. Capacity Bounds for and

In this case there are multiple transmitter antennas, a single
receiver antenna, and the coherence interval is
symbols. Fig. 8 illustrates the utility of the upper and lower
capacity bounds, and , since it becomes cumbersome to
compute capacity directly for large values of

We argue in Section V-B that in (10) is most useful
when since when We see in Fig. 8
that peaks at Nevertheless, the peak value of
the lower bound, approximately 6.1 bits/, remains a valid
lower bound on capacity for all (One could always
ignore all but three of the transmitter antennas.) This gives
us the modified lower bound also displayed in the figure. The
uppermost dashed line is the limit of the perfect-knowledge
upper bound as

VI. CONCLUSIONS

We have taken a fresh look at the problem of communicating
over a flat-fading channel using multiple-antenna arrays. No
knowledge about the propagation coefficients and noad hoc
training schemes were assumed. Three key findings emerged
from our research.

First, there is no point in making the number of transmitter
antennas greater than the length of the coherence interval. In

a very real sense, the ultimate capacity of a multiple-antenna
wireless link is determined by the number of symbol periods
between fades. This is somewhat disappointing since it se-
verely limits the ultimate capacity of a rapidly fading channel.
For example, in the extreme case where a fresh fade occurs
every symbol period, only one transmitter antenna can be use-
fully employed. Strictly speaking, one could increase capacity
indefinitely by employing a large number of receiver antennas,
but the capacity appears to increase only logarithmically in this
number—not a very effective way to boost capacity.

Second, the transmitted signals that achieve capacity are
mutually orthogonal with respect to time among the trans-
mitter antennas. The constituent orthonormal unit vectors are
isotropically distributed and statistically independent of the
signal magnitudes. This result provides insight for the design
of efficient signaling schemes, and it greatly simplifies the
task of determining capacity, since the dimensionality of
the optimization problem is equal only to the number of
transmitter antennas.

Third, when the coherence interval becomes large com-
pared with the number of transmitter antennas, the normalized
capacity approaches the capacity obtained as if the receiver
knew the propagation coefficients. The magnitudes of the time-
orthogonal signal vectors become constants that are equal for
all transmitter antennas. In this regime, all of the signaling
information is contained in the directions of the random
orthogonal vectors, the receiver could learn the propagation
coefficients, and the channel becomes similar to the classical
Gaussian channel.

We have computed capacity and upper and lower bounds for
some nontrivial cases of interest. Clearly, our methods can be
extended to many others. The methods require an optimization
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on the order of the number of transmitter antennas. Hence, we
are still hard pressed to compute the capacity, for example,
when there are fifty transmitter and receiver antennas and the
coherence interval is fifty symbols. Further work in simplifying
such a computation is a possible next step.

APPENDIX A
ISOTROPICALLY DISTRIBUTED UNIT

VECTORS AND UNITARY MATRICES

Random unit vectors and unitary matrices figure exten-
sively in this research. This appendix summarizes their key
properties.

A.1. Isotropically Distributed Unit Vectors

The intuitive idea of an isotropically distributed (i.d.) com-
plex unit vector is that it is equally likely to point in any
direction in complex space. Equivalently, multiplying such a
vector by any deterministic unitary matrix results in a random
unit vector that has exactly the same probability density
function. We define a -dimensional complex random unit
vector to be i.d. if its probability density is invariant to all
unitary transformations; that is,

This property implies that the probability density depends on
the magnitude but not the direction of, so , for
some nonnegative function The fact that the magnitude
of must equal one leads directly to the required probability
density

The constant is such that the integral of over -
dimensional complex space is unity. Thus ,
and

Successively integrating the probability density gives the
joint probability density of any of the elements of ;
denoting the -dimensional vector by , we obtain

(A.1)

An i.d. unit vector can be conveniently generated by
letting be a -dimensional vector of independent
random variables, and

A.2. Isotropically Distributed Unitary Matrices

We define a unitary matrix to be i.d. if its probability
density is unchanged when premultiplied by a deterministic
unitary matrix, or

(A.2)

The real-valued counterpart to this distribution is sometimes
called “random orthogonal” or “Haar measure” [6].

Multiplying any deterministic unit vector by an i.d. unitary
matrix results in an i.d. unit vector. To see this, letbe an
i.d. unitary matrix, and let be a deterministic unit vector.
Then is a random unit vector. Multiplying by a
deterministic unitary matrix gives But,
by definition, has the same probability density as, so
has the same probability density asTherefore, is an i.d.
unit vector.

The column vectors of are themselves i.d. unit vectors.
However, because they are orthogonal they are statistically
dependent. The joint probability density of the first two
columns is and (A.2) implies that

for all unitary Now condition
on , and let the first column of be equal to ; then

(A.3)

The last columns of can be chosen arbitrarily with
the constraint that they are orthogonal to the first column and
to each other. This imparts an arbitrary direction to the vector
consisting of the last elements of Therefore,
the product is a random unit vector, which, when
conditioned on , has first component equal to zero and last

components comprising a -dimensional i.d. vector.
Hence

(A.4)

where is the first component of Substituting for in
(A.4) and using (A.3) give the desired conditional probability
density

Continuing in this fashion we obtain the probability density
of in nested form

(A.5)

If is an i.d. unitary matrix then the transpose is also
i.d., that is, the formula for the probability density of is
unchanged if is postmultiplied by a unitary matrix. To
demonstrate this, let , where is a deterministic
unitary matrix. Then is clearly unitary, and we need to show
that it is i.d. Premultiplying by still another deterministic
unitary matrix gives Both and
are i.d., so has the same probability density as

so is i.d.
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A straightforward way to generate an i.d. unitary matrix
is first to generate a random matrix whose ele-
ments are independent , and then perform the QR
(Gram–Schmidt) factorization , where is unitary
and is upper triangular, yielding The triangular
matrix is a function of and, in fact, depends only on the inner
products between the columns of We denote this explicit
dependence on with a subscript To show that
is i.d., we premultiply by an arbitrary unitary matrix to get

where But because has the same probability
density as it follows that has the same probability
density as , and therefore is i.d.

APPENDIX B
SIMPLIFIED EXPRESSION FOR

The representation of the transmitted signal matrix
in Theorem 2 does not automatically lead to an eas-

ily computed expression for mutual information; one must
still integrate with respect to both and in (8). Some
simplification is both necessary and possible.

B.1. Integrating with Respect to

Consider first the conditional covariance matrix appearing
in (4)

We represent , which has dimensions , in partitioned
form

where is an real diagonal matrix. With this notation,
the determinant and the inverse of the conditional covariance
become

(B.1)

where are the diagonal elements of
The -dependence in appears only as We

use the eigenvector-eigenvalue decomposition

where is and unitary, and has the structure

where is , diagonal, real, and
nonnegative.

Using (B.1), we have

We may now compute one of the innermost integrals in (8)
to obtain

(B.2)

where is given in (A.5), and denote
the diagonal elements of In the above, we change the
integration variable from to , and use the fact that
has the same probability density as

There is, at present, no general expression available for
the expectation with respect to that appears in (B.2).
However, a closed-form expression can be obtained for the
special cases where either or or In
any of these cases, the argument of the is a function
of only a single column or row of , taking the form

for some real , where is an i.d. unit vector. Three
possible forms for the integral are as follows.

1) When are all positive and distinct, then
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2) When of the ’s are positive and distinct,
and the remainder zero, then

where

(B.3)

is the incomplete gammafunction.
3) When of the ’s are positive and equal and the

remainder zero, we have

Finally, we note that when either or the
column vectors of (in the former case) or the row vectors
of (in the latter case) that are in the argument of the
in (B.2) are approximately independent. In this case, the
expectation is approximately equal to a product of expectations
involving the individual column or row vectors of

B.2. Integrating with Respect to

From (4) and Theorem 2, the expectation of the logarithm
of the numerator that appears in (8) reduces to an expectation
with respect to

(B.4)

The marginal probability density of , obtained by taking
the expectation of (B.2) with respect to, depends only the
eigenvalues of and can be written in the form

(B.5)

where is the vector of eigenvalues, and

(B.6)

The density is given in (A.5). Using (B.5), we have

(B.7)

Observe that the expression takes
the form of the joint probability density function on, as if the
components of were independent Consequently,
the expression (B.7) is equivalent to an expectation with
respect to , as if the components of were independent

With the components having this distribution, the
joint probability density of the ordered eigenvalues

is [2]

(B.8)
Therefore (B.7) becomes

(B.9)

Finally, subtracting (B.9) from (B.4) gives a simplified
expression for mutual information

(B.10)

where is given by (B.8) and is given by (B.6). Thus
computation of the mutual information requires integrations
over the real components of , the real
components of , and complex components
of ; as shown in Appendix B.1, the integration over these
components of can be performed analytically in some cases.

APPENDIX C
PERFECT-KNOWLEDGE UPPERBOUND ON CAPACITY

If the receiver somehow knew the random propagation
coefficients, the capacity would be greater than for the case
of interest where the receiver does not know the propagation
coefficients. Telatar [7] computes the perfect-knowledge ca-
pacity for the case ; it is straightforward to extend his
analysis to
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To obtain the perfect-knowledge upper bound for the signal
model (3), we suppose that the receiver observes the propa-
gation matrix through a separate noise-free channel. This
perfect-knowledge fading link is completely described by the
conditional probability density

The perfect-knowledge capacity is obtained by maximizing
the mutual information between and with respect to

The mutual information is

The inner expectation, conditioned on, is simply the mutual
information for the classical additive Gaussian noise case and
is maximized by making the components of independent

(In performing the maximization, the expected
power of each component of is constrained to be equal,
since the transmitter does not know and therefore cannot
allocate power among its antennas in accordance with.) The
resulting perfect-knowledge capacity is

This expression is the capacity associated with a block of
symbols, where is the coherence interval. The normalized
capacity is independent of

The matrix is equal to the average of
statistically independent outer products. For fixedand ,
when grows large, this matrix converges to the identity
matrix. Therefore,

Although the total power that is radiated is unchanged as
increases, it appears that one ultimately achieves the equivalent
of independent nonfading subchannels, each with SNR

When the number of receiver antennas is large, we use the
identity

For fixed and , the matrix is equal to
the average of statistically independent outer products. This

converges, as , to the identity matrix, and therefore

In effect, one has independent nonfading subchannels, each
having signal-to-noise ratio

APPENDIX D
ASYMPTOTIC BEHAVIOR OF AS

We start with (12), which can be written

(D.1)

where the expectation is with respect to the probability density

Lemma A, which is now presented, helps simplify these ex-
pectations. It turns out that the second expectation is negligible
when compared with the first.

Lemma A: For any function

as
Proof: (See the bottom of this page).

Define

Then the two expectations in (D.1) involve integrals of the
form

(D.2)

for different functions For the second expectation,
, and hence
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The integral (D.2) can be explicitly evaluated in this case, the
result being

and hence, from Lemma A, we obtain

The first expectation in (D.1) is not so easy to evaluate, and
requires a lemma to help approximate it for large

Lemma B: Let be any sequence of
functions that are continuous on and where

is bounded by some polynomial , as
Then, for any positive

(D.3)

as
Proof: Since

we have that

(D.4)

where

and, by Stirling’s approximation, The function
has its maximum value one at , and

decreases monotonically asincreases or decreases. Define

; then

(D.5)

We proceed by breaking the range of integration in (D.4) into
the four disjoint intervals,
and Define

for the first interval, (D.5) implies that

(D.6)

For the second interval, we obtain

(D.7)

where the indicated maximum exists because of the continuity
of

In the third interval, an expansion similar to (D.5) shows
that , and, from the same
reasoning that leads to (D.6),

(D.8)

For the fourth interval, note that
for Therefore,

(D.9)
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This term is negligible compared with the term
in (D.8) for sufficiently large Combining (D.6)–(D.9)
completes the proof.

We are now in a position to evaluate the first expectation
in (D.1) for large Here

Integration by parts yields

(D.10)

(D.11)

where is the exponential integral defined in (13). We
are interested in studying the behavior of for in the
neighborhood of The following lemma, which is proven in
[8], aids us.

Lemma C: Uniformly for in any finite positive interval

as , where

is the complementary error function, and

The positive sign is taken when , and the negative when

Employing Lemma C with , we see that
and

(D.12)

where the second equality is a consequence of Stirling’s
approximation of Furthermore,

as Therefore, for and large , the integral in
(D.11) is negligible in comparison with the other three terms,
and it is dropped from further consideration. We now apply
Lemma B to as given in (D.11). The hypotheses of the
lemma are satisfied because, by (D.12),

(D.13)

and, by (D.10),
Equation (D.13) is the first term in (D.3) of Lemma B. The

second term in (D.3) requires an estimate of

for which we use Lemma 3 and assume that is
arbitrary. For , we have that

, and therefore
and Furthermore,
either goes to one, or goes to zero with rate at most propor-
tional to , depending on whether the
term is negative or positive. Thus by Lemma C and (D.12)

We also have

and

Combining all these facts, we obtain

(D.14)

The bound given in (D.14) holds for arbitrary There-
fore, may be chosen large enough so that the remaining terms
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in (D.3) are negligible in comparison to (D.14). Lemmas A and
B in conjunction with (D.13) and (D.14) consequently yield

Thus (D.1) becomes

(D.15)

APPENDIX E
SIGNALING SCHEME THAT ACHIEVES CAPACITY AS

For and sufficiently large, we show that the
mutual information for , given in (12),
exceeds the mutual information for any other Suppose
that , where and

are contained in a positive finite interval as Since
, it must hold that , and we assume

that and both remain positive as It is then a
simple matter to parallel the derivation of in (9) to obtain
the mutual information

where

The same analysis as in Appendix D now yields

where

Omitting tedious details that are essentially the same as in
Appendix D, we obtain

(E.1)

as , where is the exponential integral defined
in (13). But the function is strictly concave in ,
and therefore, by Jensen’s inequality

with equality if and only if If , the
two masses in collapse into a single mass at
Hence, by (D.15), for sufficiently large , with equality
if and only if the two masses in approach a single mass
at , as

We now outline how to generalize the above argument
to show that any asymptotically generates less mutual
information than The expansion (E.1)
can be generalized to masses

to obtain

(E.2)

Provided that are taken from some finite posi-
tive interval, the asymptotic expansion (E.2) is uniform, and
hence remains valid even if we let become unbounded
(say, for example, as a function of). As , the
mutual information (E.2) is therefore maximized by having

which reduces the multiple masses to a
single mass at On a finite interval, we can
uniformly approximate any continuous density for
with masses, and the preceding argument therefore tells us
that we are asymptotically better off replacing the continuous
density on this finite interval with a mass at
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