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Abstract— In this work we study joint channel decoding and
noncoherent detection for block fading channels. We propose a
novel, low-complexity noncoherent detection method based on
Markov Chain Monte Carlo (MCMC). The MCMC noncoherent
detector makes it possible to use large constellations such as 16
QAM and transmit at higher rates of 1 or 1.6 bits/channel use. By
employing joint channel decoding and noncoherent detection, the
proposed schemes achieve within 1.2-1.4 dB of the noncoherent
channel capacity. Moreover, for the same transmission rates, the
proposed single transmit antenna system performs 4-6 dB better
than published results of the two transmit antenna systems that
employ unitary space-time codes or orthogonal space-time codes.

I. INTRODUCTION

In this paper, we investigate the design of joint channel
decoding and data detection/demodulation schemes for block
fading channels. We focus on the noncoherent scenario where
neither the transmitter nor the receiver has perfect channel
state information. In order to approach channel capacity, we
consider systems where a powerful channel code is concate-
nated with a modulation code to strengthen the error-correcting
capability. Iterative receivers are employed to allow soft infor-
mation exchange between the decoder and the detector.

In recent work ([1]–[3]), aiming to exploit the capacity
gain promised by multiple-input and multiple-output (MIMO)
channels, performances of channel codes in conjunction with
modulation codes such as unitary space-time codes are in-
vestigated. Motivations for using unitary space-time codes
come from the fact that isotropically distributed unitary signals
achieve the capacity of block fading channels when the coher-
ence length is much larger than the number of transmit antenna
or at high SNR [4]. However, a disadvantage for using unitary
signals lies in the difficulty of developing low-complexity
detectors that can efficiently separate these unitary matrices.
Typically, as in [1]–[3], only a small set (up to 1024) of unitary
matrices are used. This may potentially incur a transmission
rate loss compared to the optimal capacity achieved by the
infinite set of isotropically distributed unitary signals.

In this paper, we develop novel, low-complexity nonco-
herent detectors based on the Markov Chain Monte Carlo
(MCMC) approach. The proposed detectors are capable of
decoding large size modulation codes and achieving high
transmission rates. Applications of the MCMC detectors for
coherent MIMO channels (where the receiver has perfect
channel state information) have been studied in [5]–[8], which
show great performance improvement over traditional MIMO

detectors such as the sphere decoding detectors. In this work,
we extend the application of the MCMC approach to the
noncoherent scenario and show that our coded systems with
single transmit and receive antenna can achieve within 1.2-
1.4 dB of the channel capacity for the transmission rates of 1
and 1.6 bits/channel use. These results have a gain of 4-6 dB
compared to the two transmit antenna / one receive antenna
systems in ([1]–[3]).

To explore the possibility of improving the modulation
codes in ([1]–[3]) for better performance, we apply MCMC
detection to channels with two transmit and two receive
antennas. Two modulation codes are considered. However,
both codes lead to inferior performance compared to that of
the single transmit and two receive antenna system. Thus, even
though it is theoretically possible to find better modulation
codes to realize the potential gain of the two transmit antenna
system, we believe that it is not a trivial task.

In other related work [9], capacity-approaching joint chan-
nel decoding and noncoherent detection strategies are devel-
oped for single antenna block fading channels with a relatively
low spectral efficiency of 1/2 bits/channel use with QPSK
modulation. Because low-complexity noncoherent detector in
[9] requires both amplitude estimation and phase quantization
of the channel fading state, it is difficult to adopt large
constellations with multiple amplitude levels. While a mod-
ified version of this noncoherent detector is studied in [10]
to facilitate 8 QAM modulation, the detector seems to be
less effective partially due to the difficulty with amplitude
estimation. In comparison, the proposed MCMC detector does
not require explicit amplitude estimation or phase quantization,
which makes it highly adaptable to QAM modulation and can
be easily generalized to MIMO channels.

The rest of the paper is organized as follows. Section II
contains the system model. Section III includes a detailed
description of the noncoherent MCMC detector. Simulation
results of the single antenna system are presented in Section
IV. In Section V, we extend MCMC detection to channels with
two transmit antennas and compare their performance with that
of the single transmit antenna system. Conclusions are given
in Section VI.

II. SYSTEM MODEL

We consider a block fading channel with M transmit
and N receive antennas. The channel is assumed to remain
constant for every block of Tc symbols, where Tc is called the
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coherence length of the channel, and is independent between
blocks. We model the channel by :

Y =
√

ρ

M
SH + W, (1)

where S ∈ CTc×M , Y ∈ CTc×N , H ∈ CM×N , and
W ∈ CTc×N , represent the transmitted signal matrix, the
received signal matrix, the channel fading matrix, and the
noise matrix, respectively. We assume that the entries of H
are independently and identically distributed (i.i.d.) random
variables with complex Gaussian distribution CN (0, 1). The
entries of the noise matrix are also i.i.d. with distribution
CN (0, 1). Assume that the average power of the transmitted
signal S is normalized to be 1: E[tr(SS†]/M = 1. The
constant ρ represents the signal to noise power ratio at each
receive antenna. Given the transmitted signal S, the conditional
probability density function (pdf) of the received signal is [4]:

p(Y|S) =
exp

[ − tr(ITc
+ (ρ/M)SS†)−1YY†]

πTcN detN (ITc
+ (ρ/M)SS†)

. (2)

Figure 1 shows a block diagram of the system. The channel
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Fig. 1. A schematic block diagram of the MIMO system.

encoder encodes a sequence of information bits b into a
sequence of coded bits. The resulting coded sequence is inter-
leaved by a random permutation indicated by π and mapped
to a sequence of QAM symbols d using Gray mapping. The
sequence d is then passed to the modulation coder and the
output is sent through the block fading channel. At the receiver
end, for each block of N ·Tc received signal samples, the non-
coherent MCMC detector computes a posteriori probabilities
(APPs) of input QAM symbols. Subsequently, these symbol
APPs are used to compute bit-wise APPs. The “extrinsic”
part of these bit-wise APPs is then de-interleaved and passed
to the channel decoder. The channel decoder performs one
or more decoding iterations and generates bit-wise extrinsic
information. Assuming that the bits which constitute a QAM
symbol are statistically independent, the interleaved bit-wise
extrinsic information {λb} is fed back to the block nonco-
herent detector, which updates the prior symbol probabilities
λs. For the next iteration, the detector computes symbol
APPs using λs. In this manner, the noncoherent detection and
channel decoding proceed iteratively. After a fixed number of
iterations, decisions are made at the output of the channel
decoder to generate the decoded bits b̂.

III. NONCOHERENT DETECTOR BASED ON MCMC / GIBBS

SAMPLER

In this section, we explain how the noncoherent detector
decodes the modulation code and generates extrinsic informa-
tion regarding the transmitted bits based on prior information
from the channel decoder. For simplicity, we consider the
single transmit and receive antenna case with M = N = 1.
The modulation code we choose maps a block of (Tc − 1)
QAM symbols to a block of Tc QAM symbols by inserting
a reference symbol c0 (from the same QAM constellation )
in the front of each input block: (s1, · · · , sTc−1) → S =
(s0 = c0, s1, · · · , sTc−1), where each si, i = 1, · · · , Tc − 1
is an arbitrary 16 QAM symbol. Note that the size of this
modulation code is 16Tc−1 which grows exponentially with
respect to Tc. When Tc = 6, the code size equals 220. Such
a big size renders it infeasible to perform optimum detection.
Hence, we must develop low-complexity detectors to make the
iterative system functional.

The noncoherent detector we study here is based on the
coherent MCMC detector proposed in [5], [6], [8]. For com-
pleteness of the paper, we include a detailed description of the
modified noncoherent detector. The MCMC detector operates
in two steps. In the first step, it adopts a statistical approach
to identify a small subset of “important vectors” in the set of
all possible transmitted vectors S . This is done by running
one or multiple Markov Chains (Gibbs sampler) based on
the received signal samples. In the second step, the detector
computes the output probabilities by averaging over only the
subset of vectors found in step 1, which greatly reduces the
computational complexity.

Given each block of received samples Y =
{y0, y1, · · · , yTc−1} and the symbol priors λs from
the channel decoder, the Gibbs sampler operates as follows:
Gibbs sampler:

n = 0; Generate the initial S(0) vector using the priors λs.
% In the following for-loop sample vector S(n) is generated
% by changing/sampling one symbol at a time.
for n = 1 to I

generate s
(n)
1 using the distribution

P (s1 = a|s0 = c0, s
(n−1)
2 , s

(n−1)
3 , · · · , s

(n−1)
Tc−1 ,Y,λs)

generate s
(n)
2 using the distribution

P (s2 = a|s0 = c0, s
(n)
1 , s

(n−1)
3 , · · · , s

(n−1)
Tc−1 ,Y,λs)

...
generate s

(n)
Tc−1 using the distribution

P (sTc−1 = a|s0 = c0, s
(n)
1 , s

(n)
2 , · · · , s

(n)
Tc−1,Y,λs)

%end for-loop
Note that in the step of generating sample s

(n)
i , only the prior

probability for symbol si is needed. For instance,

P (s1 = a|s0 = c0, s
(n−1)
2 , s

(n−1)
3 , · · · , s

(n−1)
Tc

,Y,λs)

∝ p(Y|s0 = c0, s1 = a, s
(n−1)
2 , · · · , s

(n−1)
Tc

) · λs(s1 = a),
(3)

which involves only λs(s1 = a). The pdf in (3) is the same
as the noncoherent pdf in (2). Following the procedure above,
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the Gibbs sampler runs over all symbols I times to generate a
collection of vectors S(0), · · · ,S(I), which are put into a set C.
In [6], it is noted that obtaining Gibbs samples from a number
of independent/parallel Gibbs samplers results in more robust
detectors. Here, also, we run Q parallel Gibbs sampler to get
more samples and they are all added (except for repetitions)
to the set C.

In step 2, we compute the output symbol prob-
abilities based on the samples in C. let S−i =
[s0 s1 . . . si−1 si+1 · · · sTc−1]t denote the transmitted symbol
vector except for the i-th symbol, where (·)t is the transpose
operator. Since s0 is a fixed reference symbol, there are
a total of 16Tc−2 different S−i. In the following, we let
D−i represent any of such vectors. Using λs, the optimal
noncoherent detector computes updated symbol-wise APPs βs

as follows:

βs(si = a) = P (si = a|Y;λs)

=
∑
D−i

P (si = a,S−i = D−i|Y, λs)

∝
∑
D−i

p(Y|si = a,S−i = D−i)·P (si = a,S−i = D−i

∣∣λs)

=
∑
D−i

p(Y|si = a,S−i = D−i)·λs(si = a)

·λs(S−i = D−i), i = 1, · · · , Tc − 1. (4)

Note that the summation in (4) is over all possible choices of
D−i, therefore the total number of terms in the summation
equals 16Tc−2. In order to reduce complexity, the MCMC
detector approximates the optimal detector (4) by

βs(si = a) ∝
∑

D−i∈Ci

p(Y|si = a,S−i = D−i)

·λs(si = a) · λs(S−i = D−i), (5)

where Ci consists of all sample vectors in C with their i-th
symbol deleted. Since we require that all vectors in Ci are
distinct, the size of Ci is no more than Q · (I + 1). Clearly,
in order for (5) to be a good approximation of the optimal
detector, the samples in Ci should contain a sufficient number
of the “significant” terms in the summation of (4). As seen
from simulations below, using the Gibbs sampler, we are able
to obtain very good performances with a small number of
samples.

IV. PERFORMANCE OF ONE TRANSMIT AND ONE RECEIVE

ANTENNA SYSTEM WITH MCMC DETECTION.

Using the MCMC noncoherent detector described in Section
III, we simulate performance of the one transmit and one
receive antenna system. For an overall transmission rate of
R bits/channel use, the rate of the channel code Rc (when
M = N = 1) should satisfy

R =
Tc − 1

Tc
RcMc, (6)

where Mc is the number of bits in each transmitted symbol.
Here we have Mc = 4 for 16 QAM constellation. The fraction

in (6) is due to the first symbol in each block of Tc symbols
being the reference symbol. Given (6), the average energy per
information bit to noise ratio Eb/N0 can be computed from
the average signal to noise ratio Es/N0 as Eb

N0

∣∣
dB

= Es

N0

∣∣
dB

−
10 log10 R.

We consider a block fading channel with Tc = 6. In order to
achieve the overall transmission rates of R = 1 and R = 1.6,
we use low-density parity check codes (LDPC) of rates Rc =
0.3 and Rc = 0.48 respectively. The code parameters (given
in Table I) are found by following design methods in [11] to
optimize degree sequences of the LDPC code in accordance
with the MCMC detector. In our simulations, we allow the
maximum number of iterations between the LDPC decoder
and the MCMC detector to be 60 and we perform one iteration
of MCMC detection for every 10 decoding iterations inside
the LDPC decoder. The parameters of the MCMC detector is
Q = I = 5. Hence, only Q · (I + 1) = 30 sample vectors are
required by the MCMC detector as opposed to a total of 220

sample vectors required for optimum detection.
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Fig. 2. Performance of the proposed system with M = N = 1.

Based on capacity computations for the single antenna
system [4], we know that with optimal input, the minimum
Eb/N0 required to achieve R = 1 is about 4.2 dB; and the
minimum Eb/N0 required to achieve R = 1.6 is 5.9 dB.
Performance of our coded systems with MCMC detection and
the 16 QAM modulation code are shown in Figure 2. At the
bit error rate of 10−4, our system with R = 1 is only 1.2 dB
away from the capacity achieved by the optimal input. For the
higher transmission rate of R = 1.6, our system is 1.4 dB
away from the capacity.

Next, we compare our results with systems that employ
two transmit antennas and one receive antenna ([1]–[3]). To
achieve R = 1, two modulation codes are considered in
[3]. One consists of 512 unitary space-time matrices and the
other consists of 256 orthogonal space-time matrices based
on the Alamouti’s scheme with QPSK modulation. For the
noncoherent block fading channel with Tc = 6, the authors
in [3] compute the mutual information achieved by these two
modulation codes and determine the minimum Eb/N0 required
to achieve the desired transmission rates. It turns out that the
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minimum Eb/N0 required are 8.15 dB and 8.45 dB, respec-
tively, for the 512 unitary codes and the 256 QPSk/Alamouti
code. In comparison, as stated in the previous paragraph, it
requires only 4.2 dB to achieve the same transmission rate for
the channel with single transmit and receive antenna. Similarly,
for R = 1.5, the 8PSK/Alamouti modulation code in [3]
requires a minimum Eb/N0 of 10 dB, while in the single
antenna system only 5.9 dB is required. The achievable limits
(8.15 dB and 10 dB) of the modulation codes in [3] are shown
in Figure 2, and corresponding simulation curves (not shown
in the figure) are about 1 dB away from the achievable limits.
This translates into an over 4 dB performance gap between
our single antenna system and the two transmit / single receive
antenna system in [3].

We remark that such a dramatic performance difference is
not because the two transmit antenna channel is intrinsically
worse than the one transmit antenna channel. In fact, the
capacity of the two transmit antenna channel should be no
less than that of the one antenna channel because with two
transmit antenna, one can always choose to allocate full power
to one of the transmit antennas to realize the single antenna
performance. Since it is still an open problem to compute the
capacity of the two transmit antenna channel, it is not clear
how much capacity gain one can expect by using two transmit
antennas instead of one. However, in order to exploit the
potential capacity gain promised by the two antenna channel,
one should choose modulation codes that can achieve mutual
information rates that are close to the capacity achieved by
the optimal input. Otherwise, independent of the choices of
channel codes, there will be intrinsic rate loss, as in the case
of [3]. Similar unitary space-time codes (with a size of 1024 or
512) are used in [1], [2] as modulation codes. Consequently,
these systems also underperform our single antenna system
(by more than 6 dB at R = 1) due to the intrinsic rate loss
associated with the modulation code. Limitations of the finite-
size unitary space-time codes are also discussed in [12] which
shows that the mutual information achieved by these codes
may only be a fraction of the optimal capacity.

V. PERFORMANCE OF TWO TRANSMIT AND TWO RECEIVE

ANTENNA SYSTEMS WITH MCMC DETECTION.

As seen from Section IV, when there is only one receive
antenna, the two transmit antenna system with modulation
codes such as the unitary space-time codes [3] may perform
worse than our single transmit antenna system with MCMC
detection. In this section, we examine the scenario with two
receive antennas to see whether it is advantageous to use two
transmit antennas as opposed to one.

With two transmit antennas, we consider the following two
simple modulation codes. Let S = (S1,S2), where Si is the
transmitted signal vector from the i-th transmit antenna.

Modulation code 1. We do not assume S1 and S2 to be
orthogonal. For example, when Tc = 6, we let(

St
1

St
2

)
=

(
c0 × a1 a2 a3 a4

× c0 b1 b2 b3 b4

)
.

During the last four time slots, arbitrary information sym-
bols ai, bi, i = 1, · · · , 4 from the 16 QAM constellation
are transmitted. During the first two time slots, we place
reference symbols to resolve the phase ambiguity associated
with unknown channel phase shift. Transmit antenna 1 sends
a reference symbol c0 during the first time slot and then
sends nothing (labeled by × ) during the second time slot.
Transmit antenna 2 sends nothing during the first time slot
and then sends c0 during the second time slot. This modulation
code has a size of 168 = 232. When it is concatenated with
a LDPC code of rate Rc = 0.3, we have an overall rate
R = Rc · 32/Tc = 1.6 bits/channel use.

Modulation code 2. This modulation code is similar to the
one proposed in [3] where S1 and S2 are made orthogonal
using the Alamouti’s scheme:(

St
1

St
2

)
=

(
c0 × a1 a2 a3 a4

× c0 −a†
2 a†

1 −a†
4 a†

3

)
.

Note that here we use 16 QAM modulation while [3] uses
smaller constellations such as QPSK or 8PSK. This modula-
tion code has a size of 164 = 216. When concatenated with
a LDPC code of rate Rc = 0.6, it gives an overall rate of
R = Rc · 16/Tc = 1.6 bits/channel use. Since S1 and S2

may not be orthogonal (as in modulation code 1), we need to
simplify the pdf in (2) (hence avoiding the matrix inversion
step) to facilitate efficient MCMC detection. First, we apply
the identity det(I + CD) = det(I + DC) to obtain

det[ITc
+

ρ

M
SS†] = det

[
I2 +

ρ

M

(
S†

1S1 S†
1S2

S†
2S1 S†

2S2

)]
=

ρ2A

M2

(7)

with A =
(

M
ρ + ‖S1‖2

)(
M
ρ + ‖S2‖2

) − |S†
1S2|2, and ‖ ·

‖ denotes the norm of a vector. Next, we apply the matrix
inversion lemma to get

[ITc
+

ρ

M
SS†]−1 = [

(
ITc

+
ρ

M
S1S

†
1

)
+

ρ

M
S2S

†
2]

−1

= B − BS2S
†
2B/[M/ρ + S†

2BS2],
(8)

where B = [ITc
+

ρ

M
S1S

†
1]

−1 = IT −S1S
†
1/[M/ρ + ‖S1‖2].

Let the received signal matrix Y = (Y1,Y2), where Yi is
the received signal vector at the i-th receive antenna. Since the
channels seen by the two receive antennas are independent, we
have p(Y|S) = p(Y1|S) · p(Y2|S). Substituting (7) and (8)
into (2) yields

log[p(Yi|S)] = − tr(Y†
i Yi) + |S†

1Yi|2(M/ρ + ‖S2‖2)/A+

|S†
2Yi|2(M/ρ + ‖S1‖2)/A − 2Re[(S†

1S2)(S
†
2Yi)(Y

†
i S1)]/A

− TcN log π − 2N log(ρ/M) − log A.
(9)

In particular, if we set S2 = 0 and let M = N = 1, (9) reduces
to the pdf of the single antenna case. Using (9) we are able to
apply the MCMC detection for the two transmit antenna case
with minor modifications of the detector in Section III. For
instance, the Gibbs sampler should be modified to take into
account the special structures of the modulation codes.
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Simulation results are presented in Figure 3 where we
examine the performance of the two transmit and two receive
antenna systems with the modulation codes above. The perfor-
mance of the single transmit and two receive antenna system
(with the modulation code described in Section III) is also
shown. To ensure the overall transmission rate of R = 1.6,
the LDPC codes of rates Rc = 0.3, 0.6, and 0.48 are used
for systems with modulation code 1, modulation code 2, and
the single transmit antenna system, respectively. The code
parameters are found in Table I. We use the same parameters
Q = I = 5 for the MCMC detection. Interestingly, we see that
the one transmit antenna system still performs the best. The
two transmit antenna system with modulation code 1, where
S1 and S2 are not necessarily orthogonal, outperforms the
two transmit antenna system with modulation code 2, where
S1 and S2 are orthogonal.
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Fig. 3. Performance comparisons between the M = 1, N = 2 system
and the M = N = 2 systems with two different modulation codes.

VI. CONCLUSION

In this paper, we study low-complexity noncoherent detec-
tors based on the MCMC approach. Compared to other nonco-
herent detectors in the literature, the MCMC detector does not
require explicit amplitude estimation or phase quantization. It
supports large modulation codes with 16 QAM constellation
and therefore can transmit at high spectral efficiency. With
joint channel decoding and MCMC detection, the proposed
single antenna system achieves within 1.2-1.4 dB of the chan-
nel capacity at the transmission rates of 1 and 1.6 bits/channel
use. These results significantly outperform the two transmit
antenna / one receive antenna systems that employ either
unitary space-time code or orthogonal space-time codes as
modulation codes ([1]–[3]). An interesting observation is that
even with two receive antennas, the single transmit antenna
system still outperforms the two transmit antenna systems for
the modulation codes considered in the paper. The inferior
performance of the two transmit antenna system is partly due
to the use of modulation codes (such as the small size unitary
space-time codes) whose achievable mutual information rates
are well below the channel capacity. Hence, in order to exploit
the potential gain of transmit diversity, it is crucial to develop

new modulation codes that can strike a good balance between
the achievable rates and the decoding complexity. We believe
that the effectiveness of the MCMC detection methods will
prove to be instrumental to realize such capacity gain.

TABLE I

LDPC CODE PARAMETERS

1/1 Rc =0.3 L = 28810 dc = 5 dv = [1, 3, 5, 7, 8, 27, 39]
uv = [0.59, 0.266, 0.03, 0.098, 0.005, 0.01]

1/1 Rc =0.48 L = 18000 dc = 8 dv = [2, 3, 7, 8, 33, 34]
uv = [0.524, 0.2825, 0.1073, 0.056, 0.0132, 0.0186]

1/2 Rc =0.48 L = 18000 dc = 6 dv = [2, 3, 7, 8]
uv = [0.5748, 0.2832, 0.0152, 0.1268]

2/2 Rc =0.3 L = 28810 dc = 5 dv = [2, 3, 7, 8, 22, 23, 69, 70]
uv = [0.6319, 0.2528, 0.0011, 0.0983, 0.0019, 0.007, 0.0053, 0.0017]

2/2 Rc =0.6 L = 14405 dc = 7 dv = [2, 3, 5]
uv = [0.587, 0.2194, 0.1935]

In Table I, the first column is M/N which denotes M transmit and
N receive antenna, L is code length, dc is the degree of check node,
dv is the degree sequences of variable nodes, uv(i) is the fraction
of variables nodes that has degree dv(i). The number of information
bits in each LDPC code is approximately the same (either 8640 or
8643 to ensure that the code length is an integer).
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