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Abstract. This paper is devoted to studying an extended class of time-continuous branching

processes, motivated by the study of stochastic control theory and interacting particle systems.

The uniqueness, extinction, recurrence and positive recurrence criteria for the processes are pre-

sented. The main new point in our proofs is the use of several different comparison methods.
The resulting picture shows that the methods are effective and hence should also be meaningful

in other situations.

1. Introduction

Branching processes (or the Galton-Watson processes) form one of the classical fields of
probability theory and have a very wide range of applications. There are several specialized
books devoted to the subject (See [2], [3] and [7], for instance). As is well-known, a branching
process can be described as follows. Let α > 0 and let (pj : j ≥ 0) be a probability distribution.
Then the process has death rate αip0 : i → i−1 (i ≥ 1) and growth rate αipj−i+1 : i → j (j >

i ≥ 0). Note that the process absorbs at state 0. Yamazato (1975)[10] considered a modified
model, called a return branching process, in which the process starting from 0 can still jump to
j ≥ 1 with rate q0j , q0 :=

∑
j≥1 q0j < ∞. The last model was then analyzed and improved by

Pakes and Tavaré (1981)[9]. For the reader’s convenience and also for later use, we summarize
the related previous results[7],[9],[10] as follows.

Theorem 1.1. The branching process is unique iff one of the following conditions holds.

(1) M1 :=
∑∞

k=1 kpk < ∞.
(2) M1 = ∞ and

∫ 1

ε
1

p(s)−s ds = −∞ for some (equivalently, for all) 0 < ε < 1, where
p(s) =

∑∞
i=0 pis

i.
Moreover, when p0 > 0 and pj > 0 for some j ≥ 2, the extinction probability of the
process is equal to 1 iff M1 ≤ 1.

Next, for the return branching process, the conditions for the uniqueness are the same as
above. Finally, assume that the process is unique and irreducible and set hj = q0j/q0.

(4) Then the process is recurrent iff M1 ≤ 1.
(5) It is positive recurrent iff either M1 < 1 and

∑∞
i=1 hi log i < ∞ or M1 = 1 but still

∫ 1

0

1 − h(s)
p(s) − s

ds < ∞, (1.1)

where h(s) =
∑∞

i=1 his
i.
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We remark that the conditions (1) and (2) can be unified into a single condition. That is,
the integration given in (2) diverges for ε sufficiently close to 1. But the above presentation
is more suitable for our purposes.

The present study is motivated by two sources. The first is the stochastic control theory.
Recently, Gao (1992)[6] has studied a time-discrete linear controlled branching process. In our
context, the model simply replaces the above coefficients αi with αi + β for some β ≥ 0 and
to take q0j = pj or pj+1, j ≥ 1. Here, the appearance of the constant β is due to the control.
The second source is the interacting particle systems. The dual of a measure-valued process
often leads to a modified model of the branching processes. For instance, the following model
comes from a typical measure-valued process (the Fleming-Viot process). It was introduced
to us by D. A. Dawson: q0j = pj (j ≥ 1) and the coefficient αi is replaced by i2 (i ≥ 1).
The above background leads us to consider an extended class of branching processes with
Q-matrix:

qij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ripj−i+1, j ≥ i − 1 ≥ 0 and j �= i

−ri(1 − p1), j = i ≥ 1
q0j , j > i = 0
−q0, j = i = 0
0, else, i, j ∈ Z+.

(1.2)

where ri ≥ 0 for all i ≥ 1. Of course, the typical case we are interested in is where q0j = pj

or pj+1 (j ≥ 1) and ri is a polynomial with degree θ ≥ 1.
Before moving further, let us compare our model with the classical (or the return) branching

processes. The Q-processes we are considering differ quite a lot from the classical process which
absorbs at 0, and its particles split independently. Hence, the process has a straightforward
expression

fij(t) =
∑

r1+r2+···+ri=j

f1r1(t)f1r2(t) · · · f1ri
(t), (1.3)

where (fij(t)) is the minimal Q-process determined by its Q-matrix. As for the return process,
by using the method of taboo probability, we still have an explicit expression. However, the
formula (1.3) does not hold for our model even in the linear case (ri = αi+β, β > 0) because
when ri �= αi, the particles no longer split independently. Thus, the previous method is
useless now. Furthermore, it is impractical to apply the known criteria directly due to the
difficulties in solving the corresponding systems of equations or inequalities. Consequently,
new methods must be adopted. Throughout this paper, we use several comparison methods,
either comparing with the classical branching processes or comparing with some carefully
designed birth-death processes. It is interesting that through these methods we still obtain
relatively complete results. It is to be hoped that these methods will have more applications
in other situations.

We now state the main results of the paper.

Theorem 1.2 (Uniqueness). Let Q = (qij) be the Q-matrix given by (1.2).

(1) If M1 ≤ 1, then the process is unique.
(2) Let M1 ∈ (1,∞). Given a non-negative sequence {wk} such that

∑∞
k=1 wk/rk = ∞.

Set J = {j ≥ 1 : pj+1 > 0}. If

sup
i

sup
j∈J

1
j

j∑
k=1

riwi+k

ri+k

/(
1 +

i∑
k=1

wk

rk

)
< ∞,

then the process is unique. Especially, under the assumption M1 ∈ (1,∞), the condi-
tions are fulfilled (by setting wi = ri and wi ≡ 1 respectively) if ri ≤ αi+ β (i ≥ 1) for
some α, β > 0, or

∑∞
i=1 1/ri = ∞ and {ri} is non-decreasing.
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In particular, if ri ∼ const. iθ and ri > 0 for all i ≥ 1, then the process is unique iff
(4) θ > 1 and M1 ≤ 1 or
(5) θ = 1 and conditions (1) or (2) of Theorem 1.1 hold.

We mention that the uniqueness for the exceptional case of M1 = ∞ and
∑∞

i=1 1/ri = ∞
is actually indefinite. See for instance part (2) of Theorem 1.1.

The next result can be deduced from Theorem 1.1, it is not new but included here for the
sake of thoroughness. We will also present a new and short proof of the theorem, based on
the same comparison idea.

Theorem 1.3. Let the process be unique.
(1) (Recurrence). Assume additionally that the process is irreducible. Then it is recur-

rent iff M1 ≤ 1.
(2) (Extinction). Let q0 = 0, p0 > 0, ri > 0 for all i ≥ 1 and pk > 0 for some k ≥ 2.

Then the extinction probability of the process is equal to 1 iff M1 ≤ 1.

Theorem 1.4 (Positive Recurrence). Let the process be irreducible and M1 ≤ 1.
(1) Then the process is positive recurrent if

∞∑
i=1

1
ri

< ∞ and
∞∑

i=1

hi

(
i

∞∑
j=i

1
rj

+
i−1∑
j=1

j

rj

)
< ∞.

The conditions are fulfilled provided ri ∼ const. iθ, either θ > 2 or θ ∈ (1, 2] but still∑∞
i=1 ihi < ∞.

(2) If ri ∼ const. iθ (i, θ ≥ 1), then the process is positive recurrent iff

∫ 1

0

1 − h(s)
p(s) − s

(1 − s)θ−1ds < ∞. (1.4)

In particular, if θ = 1, then the same conclusion of part (5) of Theorem 1.1 holds.
(3) If

∑
i ihi < ∞, M1 < 1 and limi→∞ ri/i > 0, then the process is exponentially ergodic.

As a straightforward consequence of the above theorems, we obtain the following complete
result which refers to our typical models.

Corollary 1.5. Let ri ∼ const. iθ for some θ ≥ 1 and ri > 0 for all i ≥ 1 and take q0j = pj or
pj+1, j ≥ 1. Then the process is unique iff either θ > 1 and M1 ≤ 1, or θ = 1 but conditions
(1) or (2) of Theorem 1.1 still hold. Next, assume that the process is unique and irreducible.
Then it is recurrent iff M1 ≤ 1. Furthermore, it is positive recurrent iff one of the following
conditions holds.

(1) θ > 1.
(2) θ = 1 and M1 < 1.
(3) θ = 1, M1 = 1 and

∫ 1

0
1−s

p(s)−s
ds < ∞.

The respective proofs of Theorems 1.2–1.4 are given in the subsequent three sections.

2. Uniqueness

Proof of Theorem 1.2. a) We show that for the uniqueness, it is enough to consider the case
where q0 = 0. To do so, let (q̄ij) denote for a moment the Q-matrix which coincides with our
Q-matrix (qij) except q̄0 = 0. Clearly, the uniqueness of (q̄ij)-process follows from that of the
(qij)-process since the former is dominated by the latter. In detail, the maximal solution of
the equation

ui =
∑ qij

λ +
uj , 0 ≤ ui ≤ 1, i ≥ 0
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dominates that of the equation

ui =
∑
j �=i

q̄ij

λ + q̄i
uj , 0 ≤ ui ≤ 1, i ≥ 0.

Hence the assertion follows from the uniqueness criterion.
Conversely, let the (q̄ij)-process be unique. Then, the corresponding process (Xt) has at

most a finite number of jumps in every finite time-interval. Now, consider the minimal process
(Xt) determined by (qij). After (Xt) reaches 0, it stays at 0 satisfying the exponential law
(having parameter q0) and then jumps to some j ≥ 1 according to the distribution (hj).
This is the only way in which (Xt) yields more jumps than (Xt). Due to the conditional
independence of the jumps, the process (Xt) may have at most finitely many more jumps
than (Xt) in every finite time-interval and so the (qij)-process should also be unique.

The above observation is due to [9]. Certainly, the same conclusion holds if the single
absorbing state 0 is replaced by a finite set of absorbing states.

¿From now on, we ignore (q̄ij) and simply assume that q0 = 0.
b) To prove part (5) of Theorem 1.2, by a), we may choose α and ᾱ so that αi ≤ ri ≤ ᾱi,

i ≥ 1. Then, the conclusion follows by comparing our process with two classical branching
processes with coefficients α and ᾱ respectively, in the same way as we explained in the first
paragraph of a).

c) We now prove parts (1) and (2) of Theorem 1.2. The first part is easy since the process
is indeed recurrent as we will see in the next section. An alternative proof goes as follows.
Let Γ =

∑∞
k=1 kpk+1. It is easy to check that Γ = M1 + p0 − 1. Hence M1 ≤ 1 ⇐⇒ Γ ≤ p0

and M1 = 1 ⇐⇒ Γ = p0. Take ϕi = i + 1. Then

∑
j

qij(ϕj − ϕi) = −qi,i−1 +
∞∑

j=i+1

qij(j − i) = ri(Γ − p0) ≤ 0, i ≥ 1.

Hence
∑

j qij(ϕj − ϕi) ≤ ϕi for all i ≥ 0. Now, as an application of [4; Theorem 1.11] or [5;
Theorem 2.25] with En = {1, 2, ..., n} and the above choice of ϕi, we obtain the uniqueness of
the Q-process. Similarly, one can prove part (2) of the theorem with ϕi = 1 +

∑i
k=1 wk/rk.

d) It remains to prove part (3). Let M1 ∈ (1,∞] and
∑∞

i=1 1/ri < ∞. The main idea is
to compare our process with a birth-death process. For this, let Γ ∈ (p0,Γ), which will be
determined later, and consider the birth-death process (p̄ij(t)) with birth rate b0 = 0, bi = riΓ
and death rate ai = rip0, i ≥ 1. Since

∞∑
k=1

(
1
bk

+
k−1∑
i=1

ai+1 · · · ak

bi · · · bk

)
=

1
Γ

( ∞∑
k=1

1
rk

) ∞∑
k=0

(
p0

Γ

)k

< ∞,

it follows that (p̄ij(t)) is not unique. Hence the equation

ai(ϕi−1 − ϕi) + bi(ϕi+1 − ϕi) = cϕi ϕ0 = 0, c > 0, i ≥ 1

has a non-negative bounded solution. Moreover, it is easy to check that ϕi+1 ≥ ϕi for all
i ≥ 0. Obviously, we also have

ϕi+1 − ϕi ≥ p0

Γ
(ϕi − ϕi−1), i ≥ 1. (2.1)

Next, since
∞∑

pk+1

k−1∑(
p0

)� �⏐⏐ ∞∑
kpk+1 = Γ ∈ (0,∞], as Γ ↓ p0,
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we can find some Γ ∈ (p0,Γ) so that

∞∑
k=1

pk+1

k−1∑
�=0

(
p0

Γ

)�

≥ Γ. (2.2)

By (2.1) and (2.2), we have for i ≥ 1,

∑
j

qij(ϕj − ϕi) = ai(ϕi−1 − ϕi) + ri

∞∑
k=1

pk+1

k∑
�=1

(ϕi+� − ϕi+�−1)

≥ ai(ϕi−1 − ϕi) + ri(ϕi+1 − ϕi)
∞∑

k=1

pk+1

k−1∑
�=0

(
p0

Γ

)�

≥ ai(ϕi−1 − ϕi) + bi(ϕi+1 − ϕi)
= cϕi.

By the comparison lemma ([4; Lemma 3.10] and [11; §2 Lemma 1], or [5; Lemma 3.14]) and
the uniqueness criterion, we have thus proved that (pij(t)) is not unique. �

3. Recurrence and extinction

¿From now on, unless otherwise stated, let us assume that the process (pij(t)) is unique
and irreducible.

Proof of Theorem 1.3. a) We prove that (pij(t)) is recurrent provided M1 ≤ 1. Let (πij) be
the embedding chain of (pij(t)). It is well known that the Q-process (pij(t)) is recurrent iff
the equation ∑

j

πijyj ≤ yi, i ≥ 1 (3.1)

has a finite solution (yi) satisfying limi→∞ yi = ∞ (cf. [5; Theorem 4.34 and Theorem 4.24]).
Take yi = i, i ≥ 0. Then, we have

∑
j

πijyj = πi,i−1yi−1 +
∞∑

k=1

πi,i+kyi+k = i − 1
1 − p1

(p0 − Γ) ≤ i = yi, i ≥ 1.

We see that (3.1) holds and so (pij(t)) is recurrent.
b) We now consider the case that M1 > 1. Clearly, there exists some 0 < s0 < 1 satisfying

s0 > p(s0). To prove the transient assertion of the theorem, the goal is to compare our
process with a birth-death process. For this, let M = p0/s0 and consider the birth-death
process (p̄ij(t)) with birth rate bi = (αi + β)M and death rate ai = (αi + β)p0. The process
(p̄ij(t)) is certainly unique. It is transient since the equation

x̄i =
∑
k �=0

π̄ikx̄k, 0 ≤ x̄i ≤ 1

has a non-trivial solution: x̄0 = 1 − s0 and x̄i = 1 − si
0 (i ≥ 1), where (π̄ij) is the embedding

chain of (p̄ij(t)) ([11; §5, Lemma 1] or [5; Theorem 4.35]).
On the other hand, by the comparison lemma mentioned above, we know that the equation

xi =
∑
k �=0

πikxk, 0 ≤ xi ≤ 1

has a non-trivial solution iff the inequality

xi ≤
∑

πikxk, 0 ≤ xi ≤ 1 (3.2)
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also has a non-trivial solution. Thus, to prove the transience of (pij(t)), it is sufficient to
show that (x̄i) is a solution to (3.2). This can be done by some elementary computations
(remember that s0 > p(s0)).

c) To prove part (2) of the theorem, note that underlying our assumptions, the extinction
probability of the Q-process (pij(t)) is equal to 1 iff the minimal solution of the equation

xi =
∑
k �=0

πikxk + πi0, i �= 0 (3.3)

is equal to 1 identically. Because the last property is independent of whether the state at 0 is
absorptive or not, the proof is exactly the same as those for the recurrence. �

4. Positive Recurrence

Proof of Theorem 1.4. a) First we prove part (1) of the theorem. Consider the birth-death
process (p̄ij(t)) with rates bi = ai = rip0. The process (p̄ij(t)) is unique and positive recurrent.
Hence, by [8; Theorem 9.4.1] or [1; Theorem 6.2.3], the equation

bi(xi+1 − xi) + ai(xi−1 − xi) + 1 = 0, i �= 0 (4.1)

has a finite non-negative solution. Without loss of generality, assume that x0 = 0. Then, it is
easy to check that a solution to (4.1) is as follows:

xi =
1
p0

(
i

∞∑
j=i

1
rj

+
i−1∑
j=1

j

rj

)
, i ≥ 1.

Clearly, xi − xi−1 ↓ as i ↑. Thus, for i �= 0,

∑
j

qij(xj − xi) ≤ qi,i−1(xi−1 − xi) +
∞∑

k=1

qi,i+kk(xi+1 − xi)

≤ ai(xi−1 − xi) + bi(xi+1 − xi) ≤ 0.

Next, by assumption, we have

∞∑
i=1

q0ixi =
q0

p0

∞∑
i=1

hi

(
i

∞∑
j=i

1
rj

+
i−1∑
j=1

j

rj

)
< ∞.

Combining these facts with the result just quoted above, we see that (pij(t)) is positive
recurrent.

b) Next, we prove the main conclusion of part (2).
Because we are in the recurrent situation, up to a positive constant, the equation

μjqj =
∑
i:i �=j

μiqij , j ≥ 0

has a unique positive solution.
i) We show that when ri = iθ (i, θ ≥ 1), (μi) is bounded. First, we have

μ2 =
μ1q1 − μ0q01

q21
≤ μ1q1

q21
= μ1

1 − p1

2θp0
≤ μ1.

Assume that μj ≤ μj−1 ≤ · · · ≤ μ1. Then for j ≥ 2, we have

qj+1 jμj+1 = μjqj −
j−1∑

μiqij ≤ μj

(
qj −

j−1∑
qij

)
.
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Notice that

qj+1,j − qj +
j−1∑
i=1

qij = p0[(j + 1)θ − jθ] −
j∑

k=2

[jθ − (j + 1 − k)θ]pk − jθ
∞∑

k=j+1

pk

≥ θjθ−1p0 − θjθ−1

j∑
k=2

(k − 1)pk − θjθ−1
∞∑

k=j+1

(k − 1)pk

= θjθ−1(p0 − Γ) ≥ 0,

here the inequality comes from the mean value theorem. We obtain μj+1 ≤ μj . By induction,
we have proved that (μi) is bounded.

ii) Assume that
∑∞

j=1 μjrjs
j < ∞ for every 0 ≤ s < 1. Since

μjqj =
j−1∑
i=0

μiqij + μj+1qj+1,j, j ≥ 1,

we have

μjrj(1 − p1) = μ0q0j +
j−1∑
i=1

μiripj−i+1 + μj+1rj+1p0, j ≥ 1. (4.2)

If we multiply both sides of (4.2) by sj , then sum both sides over j ≥ 1, we find that

∞∑
j=1

μjrjs
j−1 = μ0q0

1 − h(s)
p(s) − s

. (4.3)

iii) We now prove the main assertion of part (2) in the particular case that rj = jθ (j, θ ≥ 1).
From i) and ii), it follows that

∞∑
j=1

μjj
θsj−1 = μ0q0

1 − h(s)
p(s) − s

. (4.4)

If we multiply both sides of (4.4) by (1 − s)θ−1 and integrate from 0 to 1, we obtain

∞∑
j=1

μjj
θ

∫ 1

0

sj−1(1 − s)θ−1ds = μ0q0

∫ 1

0

1 − h(s)
p(s) − s

(1 − s)θ−1ds.

Noticing that ∫ 1

0

sj−1(1 − s)θ−1ds = B(j, θ) =
Γ(j)Γ(θ)
Γ(j + θ)

and using Stirling formula, we get

jθB(j, θ) ∼ jθΓ(θ)
jj−1/2e−j

(j + θ)j+θ−1/2e−j−θ
∼ const., j → ∞.

We have thus proved that
∑∞

j=1 μj < ∞ iff

∞∑
j=1

μjj
θB(j, θ) = μ0q0

∫ 1

0

1 − h(s)
p(s) − s

(1 − s)θ−1ds < ∞.
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iv) For general ri ∼ const. iθ (i, θ ≥ 1), choose c0, c1 > 0 such that c0i
θ ≤ ri ≤ c1i

θ. Recall
that an irreducible recurrent process (pij(t)) with Q-matrix (qij) is positive recurrent iff the
minimal solution (x∗

i ) of the equation

xi =
∑
j �=i,0

qij

qi
xj +

1
qi

, i ≥ 0 (4.5)

is finite ([8; Theorem 9.4.1]). Next, let (xc∗
i ) denote the minimal solution of (4.5) replacing ri

with ciθ. Then, by the comparison theorem ([8; Theorem 3.3.1] or [4; Theorem 2.5]), we have

xc0∗
i ≥ x∗

i ≥ xc1∗
i , i ≥ 0.

Next, by the linear combination theorem ([8; Theorem 3.3.2] or [4; Theorem 2.4]),

c0x
c0∗
i = c1x

c1∗
i = x1∗

i , i ≥ 0.

Hence, xc0∗
i , x∗

i , xc1∗
i and x1∗

i are all finite or infinite simultaneously. We have thus reduced
the general case to the particular one treated above.

c) Finally, let ri ∼ const. i. When M1 = 1, the conditions (1.4) and (1.1) are the same.
When M1 < 1, we have∫ 1

0

1 − h(s)
p(s) − s

ds < ∞ ⇐⇒
∫ 1

0

1 − h(s)
1 − s

ds < ∞.

Notice that ∫ 1

0

1 − h(s)
1 − s

ds =
∞∑

j=1

hj

j−1∑
�=0

∫ 1

0

s�ds =
∞∑

j=1

hj

j−1∑
�=0

1
	 + 1

.

We have ∫ 1

0

1 − h(s)
1 − s

ds < ∞ ⇐⇒
∞∑

j=1

hj log j < ∞.

Thus, when M1 < 1, the last assertion of Theorem 1.4 now follows from (1.4).
d) The last assertion of the theorem follows from [5; Corollary 4.49]. �
We have just proved that when ri ∼ const. iθ (i, θ ≥ 1), the process is positive recurrent

iff (1.4) holds. On the other hand, part (1) of Theorem 1.4 says that the process is positive
recurrent whenever θ > 2. To prove the consistence of these two conclusions, one has to show
that (1.4) holds for all θ > 2. The case where M1 < 1 is simple:∫ 1

0

1 − h(s)
p(s) − s

(1 − s)θ−1ds ≤
∫ 1

0

(1 − s)θ−1

p(s) − s
ds ≤ const.

∫ 1

0

(1 − s)θ−2ds < ∞.

When M1 = 1, let p̃(s) = p0 + (1 − 2p0)s + p0s
2. Then, it is easy to check that p(s) ≥ p̃(s),

0 ≤ s < 1. Thus we have∫ 1

0

1 − h(s)
p(s) − s

(1 − s)θ−1ds ≤
∫ 1

0

1 − h(s)
p̃(s) − s

(1 − s)θ−1ds

=
1
p0

∞∑
j=1

hj

∫ 1

0

(1 − sj)(1 − s)θ−3ds

=
1
p0

∞∑
j=1

hj

(
1

θ − 2
− j

θ − 2
B(j, θ − 1)

)
.

By Stirling formula, one can check that the integral is finite.
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