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Approaching MIMO Capacity Using
Bitwise Markov Chain Monte Carlo Detection

Rong-Rong Chen, Ronghui Peng, Alexei Ashikhmin, Behrouz Farhang-Boroujeny

Abstract—This paper examines near capacity performance of
Markov Chain Monte Carlo (MCMC) detectors for multiple-
input and multiple-output (MIMO) channels. The proposed
MCMC detector (Log-MAP-tb b-MCMC) operates in a strictly
bit-wise fashion and adopts Log-MAP algorithm with table
look-up. When concatenated with an optimized low-density
parity-check (LDPC) code, Log-MAP-tb b-MCMC can operate
within 1.2-1.8 dB of the capacity of MIMO systems with 8
transmit/receive antennas at spectral efficiencies up to 𝜂 = 24
bits/channel use (b/ch). This result improves upon best per-
formance achieved by turbo coded systems using list sphere
decoding (LSD) detector by 2.3-3.8 dB, leading to nearly 50%
reduction in the capacity gap. Detailed comparisons of the Log-
MAP-tb b-MCMC with LSD based detectors demonstrate that
MCMC detector is indeed the detector of choice for achieving
channel capacity both in terms of performance and complexity.

Index Terms—MIMO detection, Markov chain Monte Carlo,
list sphere decoding, LDPC codes, channel capacity.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) technolo-
gies have received much interests in the past decade

because multiple antennas offer significant capacity gain for
wireless channels [1]. As the number of transmit antenna
increases, complexity of the optimum maximum a posterior
(MAP) MIMO detector increases exponentially. This moti-
vates the design of suboptimal MIMO detectors. Represen-
tative sub-optimum MIMO detectors include linear detectors
such as minimum mean square error (MMSE) and zero-forcing
(ZF) [2] detectors, the more sophisticated list sphere decoding
(LSD) based detectors and its variants [3]–[5], and the recently
proposed Markov Chain Monte Carlo (MCMC) detectors [6],
[7]. The linear detectors achieve low computational complex-
ity at the expense of significant performance loss. The LSD
detectors have a complexity that grows exponentially with
the number of transmit antenna [8]. The MCMC detector
of [6] is a low-complexity MIMO detector that outperforms
LSD detector [3] for turbo coded systems with a reduced
complexity [7]. This paper examines performance of the
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MCMC detector operating at near channel capacity. Our main
contributions are summarized as follows:

∙ Earlier versions of MCMC detectors operate in symbol-
wise fashion ( [6], [7], [9]). Later study has shown that a
bit-wise implementation is more hardware friendly, which
leads to significant complexity reduction [10]. However,
no detailed study of bit-wise MCMC (b-MCMC) detector
has been presented. We keep the focus of this paper on
b-MCMC detectors and provide a detailed comparisons
of b-MCMC versus symbol-wise MCMC (s-MCMC). It
is shown that the low-complexity implementation of b-
MCMC is sufficient to achieve the desirable near capacity
performance.

∙ The studies in [3], [4], [6], [7], [9], [10] are limited to
Max-Log MIMO detectors. In this work we propose a
novel bit-wise MCMC detector that employs the Log-
MAP algorithm with table look-up (Log-MAP-tb). The
Log-MAP-tb b-MCMC detector is found to achieve su-
perior performance over the Max-Log b-MCMC detector
at reduced complexity.

∙ We show that Log-MAP-tb b-MCMC is amicable for
channel code optimization. The extrinsic information
transfer (EXIT) chart approach for optimizing low-
density parity-check (LDPC) codes (originally proposed
for optimal MAP detectors, [11]) leads to effective chan-
nel codes for the MCMC detector.

∙ We obtain unprecedent near capacity performance at high
spectral efficiencies by using Log-MAP-tb b-MCMC in
conjunction with the LDPC codes that we design. When
operating at near the capacity, the complexity of the
MCMC detector remains orders of magnitude less than
LSD detectors. Our study also covers a comparison of
several LSD based detectors that have been reported in
the literature, but never been compared against each other.

II. SYSTEM MODEL

We consider a MIMO channel with 𝑡 transmit and 𝑟 receive
antennas. The channel model is given by :

y =

√
𝜌

𝑡
Hd+ n, (1)

where d ∈ ℂ𝑡, y ∈ ℂ𝑟, and n ∈ ℂ𝑟 are complex column
vectors that represent the transmitted signal, received signal,
and channel noise, respectively; H is the 𝑟 by 𝑡 channel
fading matrix with independent and identically distribued
(i.i.d.) complex Gaussian 𝒞𝒩 (0, 1) distributed entries; H is
also assumed to be independent over time; the noise vector n
has i.i.d. 𝒞𝒩 (0, 1) distributed entries; 𝜌 denotes the SNR per
receive antenna. In this paper, we assume that the ideal channel
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state information is available at the receiver. At the transmitter,
a sequence of information bit is passed to a channel encoder.
The coded bit sequence is then mapped to a sequence of
complex symbols through Gray mapping. The size of the
constellation is 𝑀 = 2𝑀𝑐 . The symbol sequence is then
divided into blocks of 𝑡 symbols and sent through 𝑡 transmit
antennas over the MIMO channel. At the receiver, the turbo
principle [12] is applied to perform joint MIMO detection and
channel decoding.

III. BIT-WISE MCMC DETECTOR BASED ON LOG-MAP
WITH TABLE LOOK-UP

In this section, we describe the proposed Log-MAP-tb b-
MCMC detector. Compared to prior work on symbol-wise
MCMC detection [6], [7], [9], [13], Log-MAP-tb b-MCMC
operates in a strictly bit-wise fashion, hence is amicable for
efficient circuit implementation [10]. Furthermore, we show
that the use of Log-MAP-tb yields better performance and
lower complexity than existing Max-Log detectors [6], [7],
[9].

A. Bit-wise Gibbs Sampler

The MCMC detector operates in two steps: It first adopts a
statistical procedure called the Gibbs sampler (GS) to produce
a small sample set containing the most likely transmitted
vectors. Subsequently, these vectors are used to compute
output bit-wise log-likelihood ratio (LLRs) to be passed to
the channel decoder. We first introduce some notations. Let
d = (𝑑1, ⋅ ⋅ ⋅ , 𝑑𝑡)𝑇 represent the transmitted signal vector,
where 𝑑𝑗 is the complex symbol transmitted from the 𝑗-th
antenna. The notation (⋅)𝑇 denotes the transpose operator.
The bit sequence corresponding to d = (𝑑1, ⋅ ⋅ ⋅ , 𝑑𝑡)𝑇 is
denoted by b = (𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝐾)𝑇 , where 𝐾 = 𝑡𝑀𝑐. Given
the received signal vector y = (𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑟)𝑇 and the LLR of
the 𝑖-th bit provided by the channel decoder, denoted by 𝜆𝑖,
the GS performs 𝐼 iterations described as below to identify
a sample set containing 𝐼 most likely transmitted bit vectors{
b(𝑛), 𝑛 = 1, ⋅ ⋅ ⋅ 𝐼}.
Bit-wise Gibbs Sampler
Initialization 𝑛 = 0;
generate the initial vector b(0) = {𝑏(0)1 , ⋅ ⋅ ⋅ , 𝑏(0)𝐾 } randomly.
for 𝑛 = 1 to 𝐼

for 𝑖 = 1 to 𝐾
First compute 𝛾𝑖, the LLR of the 𝑖-th bit of b(𝑛)

according to its a posteriori probability
distribution conditioned upon y, 𝜆𝑖 and(

𝑏
(𝑛)
1 , ⋅ ⋅ ⋅ , 𝑏(𝑛)𝑖−1, 𝑏

(𝑛−1)
𝑖+1 , ⋅ ⋅ ⋅ , 𝑏(𝑛−1)

𝐾

)𝑇
:

𝛾𝑖=ln

[
𝑃 (𝑏

(𝑛)
𝑖 = 1∣𝑏(𝑛)1 , ⋅ ⋅ ⋅ , 𝑏(𝑛)𝑖−1, 𝑏

(𝑛−1)
𝑖+1 , ⋅ ⋅ ⋅ , 𝑏(𝑛−1)

𝐾 ,y, 𝜆𝑖)

𝑃 (𝑏
(𝑛)
𝑖 = −1∣𝑏(𝑛)1 , ⋅ ⋅ ⋅ , 𝑏(𝑛)𝑖−1, 𝑏

(𝑛−1)
𝑖+1 , ⋅ ⋅ ⋅ , 𝑏(𝑛−1)

𝐾 ,y, 𝜆𝑖)

]
.

(2)
Generate a random number 𝑈 uniformly between

[0, 1]. If 𝑈 < 1/(1 + exp(−𝛾𝑖)), let
𝑏
(𝑛)
𝑖 = 1, otherwise let 𝑏(𝑛)𝑖 = −1.

end 𝑖 loop
end 𝑛 loop
Let d+ and d− denote signal vectors corresponding

to
(
𝑏
(𝑛)
1 , ⋅ ⋅ ⋅ , 𝑏(𝑛)𝑖−1,+1, 𝑏

(𝑛−1)
𝑖+1 , ⋅ ⋅ ⋅ , 𝑏(𝑛−1)

𝐾

)𝑇
and

(
𝑏
(𝑛)
1 , ⋅ ⋅ ⋅ , 𝑏(𝑛)𝑖−1,−1, 𝑏

(𝑛−1)
𝑖+1 , ⋅ ⋅ ⋅ , 𝑏(𝑛−1)

𝐾

)𝑇
, respectively.

We can compute (2) as

𝛾𝑖 =
∥∥y −

√
𝜌

𝑡
Hd−∥∥2 − ∥∥y −

√
𝜌

𝑡
Hd+

∥∥2
+ 𝜆𝑖

=
(
∥𝑑−𝑗 ∥2 − ∥𝑑+𝑗 ∥2

)
𝜌𝑗𝑗 + 2 Re

[
(𝑑+𝑗 − 𝑑−𝑗 )

∗(𝑣𝑗 −∑
𝑙 ∕=𝑗

𝜌𝑗𝑙𝑑
+
𝑙

)]

+ 𝜆𝑖,
(3)

where (⋅)∗ denotes the Hermitian operator, 𝑗 = ⌈𝑖/𝑀𝑐⌉ is the
index of the symbol that bit 𝑖 is mapped to, 𝑑+𝑗 , 𝑑

−
𝑗 denote the

𝑗-th symbol of d+ and d−, 𝑣𝑗 =
√

𝜌
𝑡 h

∗
𝑗 y, where h𝑗 is the

𝑗-th column of H, and 𝜌𝑗𝑙 =
𝜌
𝑡 h

∗
𝑗 h𝑙.

B. Complexity comparison of bit-wise Gibbs sampler and
symbol-wise Gibbs sampler

As opposed to the bit-wise GS described in III-A, symbol-
wise GS has been widely used in the literature for higher order
modulations [7], [9], [13]. At each iteration of the symbol-wise
GS, a complex symbol is generated randomly according to
the a posteriori symbol probability distribution 𝜋. Compared
to the bit-wise GS where each bit is generated sequentially
according to its LLR 𝛾𝑖, the symbol-wise GS generates each
group of 𝑀𝑐 bits (constituting the same complex symbol)
simultaneously. Computation of 𝜋 involves evaluations of

𝑀 = 2𝑀𝑐 terms of the form
∥∥∥y − √

𝜌
𝑡Hx(𝑘)

∥∥∥2, where

{x(𝑘), 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑀} differs only in one symbol. Hence, the
complexity of the symbol-wise GS is about 𝑀/𝑀𝑐 times that
of the bit-wise GS.

C. Computations of LLRs using Max-Log and Log-MAP-tb

Following the bit-wise GS described in III-A, we compute
the output LLRs also in a strictly bit-wise fashion. This differs
from the symbol-wise computations presented in [7], [9] due
to the use of symbol-wise GS. We first run the bit-wise GS
over 𝐼 iterations to generate vectors b(1), ⋅ ⋅ ⋅ ,b(𝐼) which are
put into a set ℬ. Following [6], we run 𝑄 parallel GS to obtain
more samples and they are all added (except for repetitions)
to ℬ. For each bit 𝑖, we introduce an expanded set ℬ𝑒

𝑖 that
contains all the vectors in ℬ, as well as vectors that differ
from the vectors in ℬ only in bit 𝑖. We let ℬ𝑒

𝑖,+1 and ℬ𝑒
𝑖,−1

denote the set of bit vectors in ℬ𝑒
𝑖 whose 𝑖-th bit is +1 and

−1, respectively. Considering ℬ𝑒 instead of ℬ assures that the
number of elements in ℬe

𝑖,+1 and ℬe
𝑖,−1 are the same. This

is necessary for successful operation of the various Max-Log
and Log-MAP detectors studied in this paper.

The Max-Log algorithm is used extensively in the literature
to compute the output LLRs for a given MIMO detector [3]–
[7]. The Max-Log b-MCMC detector utilizes ℬ𝑒

𝑖 to compute
the extrinsic output LLR for the 𝑖-th bit using the Max-Log
approximation

LLR𝑖 = ln
𝑃 (𝑏𝑖 = 1∣y,𝝀)
𝑃 (𝑏𝑖 = −1∣y,𝝀)

≈ max
{b: b∈ ℬ𝑒

𝑖,+1}

{
−
∥∥∥y −

√
𝜌

𝑡
Hd(b)

∥∥∥2

+
1

2
𝝀𝑇b

}

− max
{b: b∈ ℬ𝑒

𝑖,−1}

{
−
∥∥∥y −

√
𝜌

𝑡
Hd(b)

∥∥∥2

+
1

2
𝝀𝑇b

}
− 𝜆𝑖

(4)
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where 𝝀 = (𝜆1, ⋅ ⋅ ⋅ , 𝜆𝐾)𝑇 denotes the LLR from the channel
decoder and d(b) denotes the symbol vector corresponding to
the bit vector b.

The proposed Log-MAP-tb b-MCMC detector is obtained
by replacing Max-Log in (4) with the more accurate Log-
MAP-tb [14]. If we use the same ℬ𝑒

𝑖,+1 and ℬ𝑒
𝑖,−1, Log-MAP-

tb indeed has a higher complexity than Max-Log. However,
we find that Log-MAP-tb can achieve better performance than
Max-Log while requiring a much smaller sample set ℬ. This
leads to reduction in overall complexity. We confirm this
observation through simulation results in Section V.

IV. EXIT CHARTS AND LDPC CODE DESIGN

We first compare the performance of various detectors using
EXIT chart. Besides MCMC detectors, four versions of LSD
based detectors are considered including the Max-Log LSD
[3], the Max-Log soft-in and soft-out (SISO) LSD [4], and
our modified versions of these two detectors using Log-MAP-
tb, denoted by Log-MAP-tb LSD and Log-MAP-tb SISO-
LSD. For the LSD based detectors, tree search algorithms are
applied to find a list ℒ containing likely samples. In order to
apply Log-MAP-tb, it is necessary to consider an expanded
list ℒ𝑒 (similar to ℬ𝑒 defined in Section III-C for MCMC)
when computing output LLRs.

We consider a TX8 16QAM system using 8 transmit and
8 receive antenna and 16QAM modulation. Fig. 1 presents
the EXIT curves of six detectors at 𝐸𝑏/𝑁0 = 4.1 dB (where
the definition of 𝐸𝑏/𝑁0 follows [3]). For the 10x10 Log-
MAP-tb b-MCMC (10x10 indicates 𝑄 = 10 parallel GS and
𝐼 = 10 iterations for each GS), the number of samples in ℬ
equals 𝑄 ⋅ 𝐼 = 100. Hence, to ensure fair comparison, we
let 𝐿 = 100 (𝐿 is the number of samples in ℒ) for both
Log-MAP-tb LSD and Log-MAP-tb SISO-LSD. We follow
[3] and [4] to choose 𝐿 = 512 for Max-Log LSD and Max-
Log SISO-LSD. In general, the higher an EXIT curve, the
better the detector performance. This is independent of the
choice of channel codes. Fig. 1 shows that the EXIT curve
of 10x10 Log-MAP-tb b-MCMC is the highest among all
detectors, which is consistent with the simulation results (see
Fig. 4). The effectiveness of the Log-MAP-tb over Max-Log
is also shown in Fig. 1. Albeit requiring four times the number
of samples, the EXIT curve of 20x20 Max-Log b-MCMC is
lower than that of the 10x10 Log-MAP-tb b-MCMC. Similar
observations hold for the LSD based detectors. Next, we adopt
the EXIT chart method [11] to optimize the LDPC code for the
10x10 Log-MAP-tb b-MCMC. We first generate the detector
EXIT curve at 𝐸𝑏/𝑁0 = 4.1 dB (slightly above the channel
capacity for a rate 1/2 code), shown as the top curve in Fig. 1.
Under specific code design constraints, we find an optimized
LDPC code (C1) by applying linear programming techniques
to match the EXIT curve of the code with the EXIT curve
of the detector. The code constraints used in our numerical
search and the resulting optimized parameters of C1 are given
in Section V. We have also attempted to apply the EXIT chart
approach to optimize LDPC codes for other detectors. Results
of such design, however, are not satisfactory. For instance, we
observe that the code specifically designed for the Log-MAP-
tb SISO-LSD using the EXIT chart approach yields an inferior
performance to that of C1, when both codes are applied
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Fig. 1. EXIT curves of various detectors at 𝐸𝑏/𝑁0 = 4.1 dB for a TX8
16QAM system.
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Fig. 2. Probability distribution of the output LLR of 10x10 Log-MAP-tb b-
MCMC and Log-MAP-tb SISO-LSD at 𝐸𝑏/𝑁0 = 4.1 dB for a TX8 16QAM
system.

to a MIMO system using the same Log-MAP-tb SISO-LSD
detector. We conjecture that this is due to both the inaccuracy
of the EXIT chart design method and the discrepancy in
detection performance. To see this, we compare the output
LLR distribution of the 10x10 Log-MAP-tb b-MCMC and
the Log-MAP-tb SISO-LSD (𝐿 = 100). In Fig. 2, conditioned
upon a transmitted bit 𝑏𝑖 = +1, we plot the probability density
function (pdf) of the extrinsic LLR, denoted by 𝑋𝑖, generated
at the output of these two detectors, assuming uniform prior.
The mean and variances of 𝑋𝑖 are also given in Fig. 2. We
observe from Fig. 2 that there is a peak around LLR=18 for the
SISO-LSD, which is not present for the MCMC. The SISO-
LSD also has a larger variance Var(𝑋𝑖) = 43.95 compared
to Var(𝑋𝑖) = 11.56 for the MCMC. These suggest that the
SISO-LSD is more likely to over estimate output LLRs, thus
causing degradation in decoding performance. This provides a
good explanation as to why the EXIT chart-based code design
is less effective for the SISO-LSD.

To better understand the root of such differences in the
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output statistics, we recall that 𝑋𝑖 is computed via the Log-
MAP algorithm

𝑋𝑖 = ln
𝑃 (𝑏𝑖 = 1∣y,𝝀)
𝑃 (𝑏𝑖 = −1∣y,𝝀)

≈ ln
∑

{b: b∈ ℬ𝑒
𝑖,+1}

exp
{
−

∥∥∥y −
√

𝜌

𝑡
Hd(b)

∥∥∥2

+
1

2
𝝀𝑇b

}

− ln
∑

{b: b∈ ℬ𝑒
𝑖,−1}

exp
{
−

∥∥∥y −
√

𝜌

𝑡
Hd(b)

∥∥∥2

+
1

2
𝝀𝑇b

}
− 𝜆𝑖.

(5)

We denote the first logarithmic term in (5) by 𝑋+
𝑖 and the

second term by 𝑋−
𝑖 . Note that while Var(𝑋+

𝑖 ) are close for
these two detectors, the difference in Var(𝑋−

𝑖 ) is significant.
Given 𝑏𝑖 = +1, it is more challenging to identify significant
samples that contribute to 𝑋−

𝑖 than those contribute to 𝑋+
𝑖 .

The stochastic nature of the b-MCMC makes it a good detector
for estimating both 𝑋+

𝑖 and 𝑋−
𝑖 . In comparison, the SISO-

LSD is inferior in estimating 𝑋−
𝑖 , thus yielding LLRs that are

overconfident. A possible approach to alleviate this problem
for the SISO-LSD is to scale down the LLR appropriately or
to saturate it to a fixed value, before feeding it to the channel
decoder [15].

In a related work [16], limitations of the EXIT chart
approach for LSD based detectors are studied for small
MIMO systems. It points out the inaccuracy of the EXIT
curves for these detectors and shows that better codes can
be obtained by performing code design using EXIT curves
of more sophisticated LSD based detectors. This observation
is consistent with our finding: a code designed for a superior
detector (the b-MCMC detector in our case) may enable better
performance for an inferior detector than a code specifically
designed for the latter detector. An in-depth investigation into
this issue, however, is beyond the scope of this paper.

We have also obtained an optimized LDPC code, C2, for a
TX8 64QAM system using the EXIT curve of the 10x10 Log-
MAP-tb b-MCMC detector at 𝐸𝑏/𝑁0 = 6.6 dB. This turns
out to be a good code for the 20x20 Max-Log b-MCMC. For
the Log-MAP-tb SISO-LSD, since the detection complexity
increases exponentially with decreasing SNR, the simulation
time of this detector becomes orders of magnitudes longer
compared to that of the Log-MAP-tb b-MCMC at operating
SNRs that are about 2 dB above capacity. This prohibits
feasible code design for the Log-MAP-tb SISO-LSD and also
makes it difficult to obtain reliable performance curve for this
detector in the near capacity region.

V. SIMULATION RESULTS

In this section, we present simulation results to compare
performance of MCMC detectors and four versions of LSD
based detectors described in Section IV. While Max-Log
LSD and Max-Log SISO-LSD are proposed separately in [3]
and [4], a direct comparison between these two detectors
in performance and complexity seems to be missing in the
literature. Here we provide a systematic comparison of these
two detectors, together with their modified versions against
MCMC detectors. All the channel codes used here have a rate
of 𝑅 = 1/2 and a code length of 18432. The turbo code we
use is the same as that of [3]. The optimized LDPC codes C1
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Fig. 3. Comparisons of Max-Log b-MCMC versus Max-Log s-MCMC in
performance and complexity. Replacing b-MCMC by s-MCMC in the same
system leads to a 𝑃 -fold increase in simulation time.

and C2 (parameters are given in captions of Fig. 4 and Fig.
5) are used for the TX8 16QAM and TX8 64QAM system,
respectively.

A. Max-Log b-MCMC versus Max-Log s-MCMC

We first compare performance of Max-Log b-MCMC and
Max-Log s-MCMC [6]. The Max-Log b-MCMC employs a
bit-wise GS as described in Section III-A and the LLRs
are computed using Max-Log (4). The Max-Log s-MCMC
employs a symbol-wise MCMC and the LLRs are computed
following [6] using symbol-wise expanded sets. We examine
four turbo coded systems: TX4 16QAM, TX4 64QAM, TX8
16QAM and TX8 64QAM. For each system, the same pa-
rameters 𝑄 and 𝐼 are used for both b-MCMC and s-MCMC.
We use 10x10 (𝑄 = 𝐼 = 10) for the TX4 16QAM system,
20x20 for the other three systems. Fig. 3 shows that these
two detectors perform very closely. It is only for the TX8
64QAM system that the s-MCMC performs slightly better than
b-MCMC by about 0.2 dB. Replacing b-MCMC by s-MCMC
increases the simulation time of each system by a factor of 𝑃 ,
where 𝑃 varies from 1.7 to 7.8. This confirms that b-MCMC
achieves similar performance as s-MCMC with much reduced
complexity.

B. TX8 16QAM system

Performance of various detectors for a TX8 16QAM system
is shown in Fig. 4. The LDPC code C1 is used for 10x10
Log-MAP-tb b-MCMC, 20x20 Max-Log b-MCMC, and Log-
MAP-tb SISO-LSD (𝐿 = 100) because it gives the best
performance (among the codes we have tested) for each of
these detectors. The parameter 𝐺 denotes the normalized
simulation time of each system against the LDPC coded
system that employs 10x10 Log-MAP-tb b-MCMC. For each
system, the simulation time is recorded at a SNR point with
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Fig. 4. Performance of turbo and LDPC coded TX8 16QAM systems. The
optimized LDPC code C1 is found using the EXIT chart approach to best
match the 10x10 Log-MAP-tb b-MCMC. The parameters are given by 𝑑𝑐 =
5, 𝑑𝑣 = [2, 3, 11, 12], 𝑢𝑣 = [0.65, 0.33, 0.01, 0.005], where 𝑑𝑐 is the
degree of check nodes, 𝑑𝑣 is the degree sequence of variable nodes, 𝑢𝑣(𝑖) is
the fraction of variables nodes that have degree 𝑑𝑣(𝑖). The code rate is 1/2
and the code length is 18432. The code design constraints that we assume
are: the maximum check node degree satisfies 𝑑𝑐 ≤ 7 and the maximum
variable node degree satisfies 𝑑𝑣 ≤ 200.

BER ≈ 10−4. Main findings from Fig. 4 are summarized as
follows:

(a) For both turbo coded and LDPC coded systems, the
same Log-MAP-tb b-MCMC detector gives the best
performance with the lowest complexity. Its simulation
time 𝐺 ≈ 1 is much shorter compared to LSD based
detectors 𝐺 = 3.3 ∼ 10. While the Max-Log LSD runs
the fastest among LSD-based detectors, it performs nearly
2 dB worse than the LDPC coded Log-MAP-tb b-MCMC
and is about three times slower.

(b) The EXIT chart code design is effective for Log-MAP-tb
b-MCMC. The optimized code C1 performs about 1 dB
better than the turbo coded system.

(c) The 10x10 Log-MAP-tb b-MCMC outperforms 20x20
Max-Log b-MCMC by 0.3 ∼ 0.4 dB with about half
the simulation time.

(d) With the same list size, Max-Log SISO-LSD performs
about 0.3 dB better than Max-Log LSD. Its simulation
time, however, is three times longer because it needs to
re-generate ℒ for each iteration of channel decoding and
MIMO detection.

(e) With 𝐿 = 100, Log-MAP-tb SISO-LSD outperforms
Log-MAP-tb LSD, albeit at twice the simulation time.
Since Log-MAP-tb LSD uses a fixed ℒ over all iterations,
it requires a larger list to get good performance. In
comparison, since Log-MAP-tb SISO-LSD adaptively
finds ℒ using priors, a small list size 𝐿 = 100 suffices.
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Fig. 5. Performance of turbo and LDPC coded TX8 64QAM systems. The
optimized LDPC code C2 is found using the EXIT chart approach to best
match the 10x10 Log-MAP-tb b-MCMC. Parameters of C2 are given by 𝑑𝑐 =
5, 𝑑𝑣 = [2, 3, 8, 9], 𝑢𝑣 = [0.66, 0.31, 0.02, 0.01]. The code rate is 1/2
and the code length is 18432. The code design constraints that we assume
are: the maximum check node degree satisfies 𝑑𝑐 ≤ 7 and the maximum
variable node degree satisfies 𝑑𝑣 ≤ 200.

C. TX8 64QAM system

For the TX8 64QAM system, as shown in Fig. 5, the
same 10x10 Log-MAP-tb b-MCMC detector still gives the
best near capacity performance with the lowest complexity.
Its simulation time is 𝐺 = 0.7 ∼ 1 whereas LSD based
detectors (operating at SNRs that are 2 dB higher) require
𝐺 = 4.1 ∼ 27. Due to the exponential complexity of
LSD based detectors, it becomes computationally infeasible to
operate these detectors in the lower SNR region. The LDPC
code optimization is shown to be effective for Log-MAP-
tb b-MCMC, yielding a 1.8 dB coding gain over the turbo
coded system. The 10x10 Log-MAP-tb b-MCMC is about 1
dB better than the 20x20 Max-Log b-MCMC with comparable
simulation time, thus confirming the superiority of the Log-
MAP-tb over Max-Log in both performance and complexity.

D. Performance Summary

A summary of the performance comparison between this
work, [3], and [6] is given in Table I for the TX8 16QAM
and 64QAM systems. We compare both the capacity gap
and the number of samples used for MIMO detection. The
number of samples equals the list size 𝐿 for LSD based
detectors and equals 𝑄 ⋅ 𝐼 for MCMC detectors. As shown
in Table I, this work reduces the capacity gap and number of
samples significantly. For the TX8 64QAM system, capacity
gap is reduced from 4 dB [6] to 1.8 dB and the number of
samples is reduced from 900 to 100. Both the Log-MAP-tb
b-MCMC detector and LDPC code optimization contribute to
this performance gain.

VI. CONCLUSION

This paper studies performance of MCMC detection in
the near capacity regime. The proposed Log-MAP-tb b-
MCMC detector has two distinguished features. (1) It adopts
a strictly bit-wise implementation that enables complexity
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TABLE I
COMPARISONS OF CAPACITY GAP AND NUMBER OF SAMPLES REQUIRED FOR MIMO DETECTION.

System Spectral efficiency Capacity limit results in [3] results in [6] this work
TX8 16QAM 16 b/ch 3.8 dB capacity gap (dB) 3.7 2.6 1.4

# of samples 512 400 100
TX8 64QAM 24 b/ch 6.4 dB capacity gap (dB) 5.6 4 1.8

# of samples 1024 900 100

[3] considers turbo coded systems with Max-Log LSD, [6] considers turbo coded systems with Max-Log s-MCMC detection, and this work
considers LDPC coded systems with Log-MAP-tb b-MCMC.

reduction from existing symbol-wise MCMC detectors. (2)
It adopts Log-MAP-tb to overcome performance limitations
of existing Max-Log MCMC detectors. The Log-MAP-tb b-
MCMC detector in conjunction with LDPC code optimization
yields unprecedent near capacity performance at high spectral
efficiencies of 16 ∼ 24 b/ch. As summarized in Table I, our
results not only significantly improve the best performance
achieved by the turbo coded systems with the LSD detector
by 2.3-3.8 dB, but also outperform existing work on Max-Log
MCMC by 1.2-2.2 dB. Furthermore, the best near capacity
performance of the Log-MAP-tb b-MCMC is obtained with
a simulation time that is much less than that of the LSD
based detectors and the Max-Log MCMC. This work strongly
established the proposed MCMC detector as the detector of
choice for approaching MIMO channel capacity.
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