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Abstract—In this paper, we propose novel low-complexity
soft-in soft-out (SISO) equalizers using the Markov chain Monte
Carlo (MCMC) technique. We develop a bitwise MCMC equal-
izer (b-MCMC) that adopts a Gibbs sampler to update one bit
at a time, as well as a group-wise MCMC (g-MCMC) equal-
izer where multiple symbols are updated simultaneously. The
g-MCMC equalizer is shown to outperform both the b-MCMC
and the linear minimum mean square error (MMSE) equalizer
significantly for channels with severe amplitude distortion. Direct
application of MCMC to channel equalization requires sequential
processing which leads to long processing delay. We develop a
parallel processing algorithm that reduces the processing delay
by orders of magnitude. Numerical results show that both the
sequential and parallel processing MCMC equalizers perform
similarly well and achieve a performance that is only slightly worse
than the optimum maximum a posteriori (MAP) equalizer. The
MAP equalizer, on the other hand, has a complexity that grows
exponentially with the size of the memory of the channel, while
the complexity of the proposed MCMC equalizers grows linearly.

Index Terms—Equalization, intersymbol interference, Markov
chain Monte Carlo, soft-in soft-out detection.

I. INTRODUCTION

T HE increasing demand for high speed wireless products
has motivated a significant amount of research to combat

the intersymbol interference (ISI) resulting from multipath
transmission. Early developments date back to the 1960s and
1970s when symbol-by-symbol linear and decision feedback
equalizers were developed [1], [2]. These traditional methods
face the problem of noise enhancement, in the case of linear
equalizers, or error propagation, in the case of decision feed-
back equalizers. Furthermore, these methods are based on hard
decisions and thus cannot benefit from the modern coding
techniques where by making use of soft information one can
approach the channel capacity. Significant improvement in
system performance can be achieved by joint processing of
equalization and channel decoding. Such systems operate
based on turbo principles where soft information are exchanged
between a soft-in soft-out (SISO) equalizer and a channel
decoder. The optimal maximum a posteriori (MAP) equalizer
can be used to find the best bit/symbol stream that matches the
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received signal in the presence of prior information provided by
the channel decoder. However, the computational complexity
of the MAP equalizer, even with the use of efficient imple-
mentations such as the BCJR algorithm [3] is exponential with
respect to the length of the channel impulse response and the
constellation size and thus may be prohibitive in many cases.

To resolve this problem, low complexity equalizers have been
developed and remain an active area of research. The first work to
reduce the complexity of the MAP equalizer for a turbo equaliza-
tion system is due to [4], where the soft-output Viterbi algorithm
(SOVA) is used for the implementation of the SISO equalizer.
In [5], a low-complexity SISO equalizer is implemented with
an adaptive soft interference canceler based on linear filters. A
SISO turbo equalizer based on the minimum mean square error
(MMSE) criteria is proposed [6] and [7]. This turbo MMSE
equalizer performs better than the SIC approach of [5] and is
widely used due to its excellent performance. Trellis-based
approaches that prune the insignificant branches of trellis to
reduce the complexity of the BCJR algorithm have also been suc-
cessfully developed. Examples of such algorithms are breadth-
first algorithms such as the -best BCJR (M-BCJR) and the
threshold-based BCJR (T-BCJR) of [8], and the depth-first algo-
rithm such as the list-sequential (LISS) algorithm of [9] and [10].

In this paper, we develop a novel low complexity approxima-
tion to the MAP equalizer based on the Markov chain Monte
Carlo (MCMC) simulation principles [11]. The MCMC simu-
lation is a mathematical tool that may be used to draw samples
from an arbitrary and possibly unknown distribution. The key
point that makes the MCMC attractive to SISO equalization is
the fact that, unlike the BCJR algorithm, its computational com-
plexity does not grow exponentially with the channel memory.
The BCJR algorithm uses a complete sample set of trellis states
to achieve optimal detection, while the other trellis-based ap-
proaches [8] trade the use of an incomplete set of trellis states
for suboptimal performance. As noted in [8], to ensure good
detection performance, the trellis states chosen should be those
that have significant contribution to the soft information that one
seeks. The SISO MCMC equalizer proposed in this paper fol-
lows a similar strategy. It uses an statistical method to search for
a small (to keep the complexity low) but important (to achieve
good performance) sample set containing important samples
that match the best with received signals.

The contributions of this work are summarized as follows:
1) We develop new MCMC detectors for ISI channels that

can achieve near optimal MAP performance at low com-
plexity. Such detectors operate either bit-wise (b-MCMC),
or group-wise (g-MCMC) over groups of symbols. Pre-
vious work in the literature considers only b-MCMC [12],
or symbol-wise MCMC (s-MCMC) [13], and the latter is
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a special case of the proposed g-MCMC with . For
ISI channels with moderate or severe amplitude distortion,
the b-MCMC or s-MCMC is shown to be much inferior to
the g-MCMC with or .

2) We provide a systematic comparison between the proposed
MCMC detectors and the SISO turbo MMSE equalizer [7]
over several ISI channels with different levels of ampli-
tude distortion. It is shown that for channels with mild dis-
tortion, all the detectors considered in this work perform
closely to the optimal MAP detector. However, as the level
of amplitude distortion increases, the g-MCMC
performs about 1.5–2 dB better than the MMSE detector.

3) We propose to use the QRD-M algorithm [14] in the im-
plementation of g-MCMC to moderate its computational
complexity.

4) We develop a parallel implementation of the MCMC de-
tector for ISI channels which significantly reduces the pro-
cessing delay of its sequential counterpart without degra-
dation of performance.

The earlier works on the application of MCMC detector to
MIMO detection were based on s-MCMC [15]–[17]. In [18],
where an implementation of the MCMC detector in a custom
chip was studied, it was noted that b-MCMC is more appealing
to hardware implementation. More recently, a comparison of
b-MCMC and s-MCMC for achieving capacity of MIMO chan-
nels has been presented in [19]. It reveals that for MIMO chan-
nels b-MCMC performs as good as s-MCMC, thus the conclu-
sion was drawn that b-MCMC should be used because of its
simplicity. Our study in this paper reveals that this conclusion is
not applicable to channels with ISI. Simulation studies show that
in channels with a small condition number (where the channel
condition number is defined as the ratio of the maximum over
minimum spectral density at the channel output) the b-MCMC
performs as good as the s-MCMC and g-MCMC and all perform
very close to the optimal MAP detector. However, as the channel
condition number increases, the b-MCMC begins to fail, and in
channels with higher condition number, the s-MCMC may also
fail. In channels with a large condition number, only g-MCMC
performs close to the MAP detector. It is also worth noting that
the condition number defined here is a simple way of quanti-
fying the channel amplitude distortion by a single number. A
larger condition number means a higher amplitude distortion.

In a recent work, Kashif et al. [13] have also explored the
use of MCMC for SISO equalization. The emphasis of [13] is
on non-linear channels with very short memory—the channels
considered have a memory of two samples. It also explores a
number of MCMC detection algorithms from the literature, in-
cluding the one presented in [16]. In this paper, we explore linear
channels with longer memory length. Also, based on the results
in [13] and our findings, we note that the least complex and most
stable MCMC algorithm reported so far is the one proposed in
[16]. We thus concentrate on the use of this algorithm.

While in this work we consider bit/symbol-wise MAP equal-
ization, another important class of equalization techniques has
been investigated extensively in the literature which performs
maximum likelihood sequence estimation (MLSE). The basis of
such techniques is the Viterbi algorithm (VA) which is used to
search for the most likely transmitted sequence (path) with the
minimum cost in a trellis. The complexity of the VA algorithm

Fig. 1. A block diagram of the system model that employs joint iterative equal-
ization and channel decoding.

is determined by the number of states in the trellis, which grows
exponentially with the length of the channel impulse response
and the size of the signal constellation. To reduce algorithm
complexity, the generalized Viterbi algorithm (GLA) developed
in [20] operates on a trellis with a smaller constraint length and
invokes list decoding to select a list of survivors con-
necting to each trellis state. The reduced-state sequence esti-
mation (RSSE) proposed in [21] constructs a trellis with fewer
states based on partitioning a set of channel states. In [22], per-
survivor processing (PSP) techniques are developed to approx-
imate MLSE based on the idea of canceling residual ISI on the
basis of the particular survivor sequence, i.e., in a per-survivor
fashion. The PSP techniques are applicable to reduced-com-
plexity MLSE algorithms [20], [21] and to channels with un-
known parameters. Breadth-first MLSE under given structural
and complexity constraints are discussed in [23]. In [24], a sta-
tistical approach based on particle filter is investigated for ISI
channels. It proposes a grouping technique of particle trajecto-
ries to reduce algorithm complexity which resembles merging
paths in trellis decoding. A large number of particle trajectories,
however, is still required to approach the performance of the
MAP detector. Detailed comparisons of the above approaches
with the MCMC equalizers proposed in this work, however, are
beyond the scope of this paper.

This paper is organized as follows. In Section II, we
introduce the system model and the optimum MAP equal-
ization. Section III includes detailed descriptions of the
proposed MCMC equalizers. Simulation results are presented
in Section IV and the conclusions are drawn in Section V.

In this paper, the following notations are used. Vectors are de-
noted by lowercase bold letters and are in column form. Matrices
are denoted by uppercase bold letters. The superscripts T is used
to denote matrix or vector transpose. To differentiate between bit
and symbol indices, is consistently used for bits and is used for
the symbols. The notations and denote the probability
mass function of discrete random variables and the probability
density function of continuous random variables, respectively.

II. SYSTEM DESCRIPTION

We consider the communication system depicted in Fig. 1. A
sequence of binary information bits is first encoded by a
channel encoder of rate . The coded bits are passed through
an interleaver with the output . We assume a packetized
data transmission system in which each packet consists of
coded bits. The modulator maps each set of bits of to a
data symbol to form the transmit signal sequence . This
sequence is passed through an ISI channel to generate output
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. At the receiver, SISO equalization and channel decoding
are performed in a turbo loop. The SISO equalizer computes the
log-likelihood ratio (LLR) of the coded bits, , based on
the extrinsic information from the channel decoder, . The
extrinsic (i.e., the new portion) of LLR values from the SISO
equalizer given by are passed to the channel
decoder for channel decoding. The decoder generates improved
extrinsic LLR values to be passed back to the equalizer.
After several outer iterations of information exchange between
the SISO equalizer and channel decoder, the channel decoder
makes a decision on the transmitted uncoded bits based
on .

A. ISI Channel Model

The ISI channel is characterized by the equation

(1)

where is the time index, is the received signals,
is the channel impulse response, is the

transmitted symbol sequence, are independent and
identically distributed (i.i.d.) complex Gaussian noise samples
with zero-mean and a variance of . While we transmit
symbols , due to the channel memory, we take into
account the received signal samples because they
also depend on the transmitted sequence. For notational conve-
nience, in (1), we let and

. We define vectors
and . Also, let

. Due to finite memory of the channel,
we have

(2)

For each bit vector , we denote
the corresponding symbol vector by .
When no confusion arises, we simplify the notation and use
instead of . Since there is a one-to-one mapping between
and , we let and use them interchangeably.

B. Optimal MAP Equalizer

Given , the extrinsic LLR value of a particular bit is given
by

(3)

Since

we have and
, where

. Hence, we can write

Furthermore, we make the independence assumption such that

(4)

We then substitute (4) into (3) to obtain (5), shown at the bottom
of the page.

(5)
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The summations in (5) are over a total of combina-
tions of . For typical values of which are in the order of
at least few hundreds, this clearly is a prohibitive complexity.
By utilizing the trellis structure of the ISI channel, the BCJR
algorithm [3] may be used to reduce this complexity signifi-
cantly. However, even this reduced complexity grows exponen-
tially with the multiplication of the length of the channel
and the number of bits per symbol . We use MCMC to re-
duce this complexity to a more affordable level.

III. MCMC EQUALIZER

The complexity of the optimum SISO (i.e., MAP) equalizer
comes from the exponential growth of the number of combi-
nations of which leads to summation terms in the
numerator and in the denominator of (5). However, we note that
in practice there is always only a small subset of that con-
tributes significantly to the final results of the summations. Let
us call such subset the important set. An ideal important set is
the set that includes only the significant probability terms under
the summations in (5). The MCMC is a search method that finds
the desired significant terms by browsing through the choices of

in an efficient manner. We refer to these choices as samples.
By increasing the number of samples of MCMC, one can im-
prove the detector performance. In other word, MCMC allows
one to trade between the complexity and performance.

A. Bit-Wise MCMC Equalizer

The MCMC equalizer, in general, is implemented in two
steps. In the first step, the Gibbs sampler is used to generate a
collection of sample vectors , for , which
forms the important sample set . In the second step, the a
posteriori LLR values are computed using the samples in .
The details, for b-MCMC, are as follows.

1) Gibbs Sampler: During the th iteration, starting with
, is generated bit by

bit sequentially. Assuming that through have been
updated during the th iteration, given by , and
bits have been last updated during the

th iteration, denoted by . Condi-
tioned upon

the selection of the bit is based on the conditional proba-
bility distribution , where

For each , 1, we define

We let denote the symbol vector corresponding to . As-
suming that is mapped to the th symbol, we have

(6)

When or , the vector is indepen-
dent of . Thus, (6) is simplified to

(7)

where is a scaling constant to ensure that .

Algorithm 1: b-MCMC Equalizer

Input: Prior LLR for transmitted symbols(from the decoder)
Output: Extrinsic LLR for channel decoder
1 Use bit-wise Gibbs sampler to generate sample set

// D parallel Markov chain
2 repeat

3 Generate initial sequence
// I iterations

4 for to do

5 Generate from the distribution

6

7 Generate from the distribution

8

9
...

10 Generate from the distribution

11

12 Save into the important set
13 until times;
14
15 Compute the LLR
16 for to do

17 Construct and .
18 Compute extrinsic LLR for using (8)
19

2) Computing the a posteriori LLR Values: Assume that the
Gibbs sampler produces the important sample set . Each el-
ement in is a bit vector of length . Assume that bit
is mapped to symbol . Then, the received signals that are
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affected by are . Since depends only on bits
, we

find that when computing the output LLR for , it is sufficient
to truncate each sequence in to take into account only bits

. We denote the set that contains the truncated
sequences by . For each , we con-
struct a larger set which includes all sequences in ,
together with new sequences that are obtained by flipping the

th bit of each sequence in . Repetitious sequences are re-
moved from . Furthermore, we let and denote
sequences in whose th bit equals 0 and 1, respectively.
The LLR value for bit is then computed as

(8)

The performance of the MCMC equalizer is dependent on the
quality of samples in the important set. In practice, Gibbs sam-
pler may require many iterations to converge to its stationary
distribution. This is called burn-in period. As a result, including
the burn-in period in the implementation of the Gibbs sampler
may increase the complexity significantly. In [16], it has been
shown empirically that the formulas such as (8) still work well
if the stationary distribution of the underlying Markov chain is
replaced by a uniform distribution over the significant samples
(see [16, Fig. 2]). To obtain samples with this uniform distribu-
tion, it has also been noted in [16] that a set of parallel Gibbs
samplers with no burn-in period and small number of iterations
are more effective than using a single Gibbs sampler with many
iterations. We have followed this implementation in this paper.

B. Group-Wise MCMC Equalizer

Our numerical results in Section IV show that while for chan-
nels with mild amplitude distortion the b-MCMC equalizer per-
forms well, for channels with moderate or severe amplitude dis-
tortion, performance of the b-MCMC equalizer is compromised.
This is because under such channel conditions, the Gibbs sam-
pler suffers from slow-mixing problem when it gets stuck in cer-
tain states and cannot move freely. To improve the mixing rate
and hence the speed of convergence, one can perform group up-
dating, which updates a group of symbols simultaneously from
their joint conditional distribution. It is shown in [25] and [26]
that group updating indeed mix faster than ordinary single-up-
dating scheme. Hence, we propose a group-wise MCMC equal-
ization (g-MCMC) algorithm to deal with channels with mod-
erate or severe amplitude distortion.

In g-MCMC, we group every symbols
together and update these symbols simul-

taneously. Assume that symbols have been
updated during the th iteration, given by , and
symbols have been last updated during the

th iteration, denoted by . Conditioned

upon , we want to generate

a random sample vector corresponding to according
to some probability distribution. We define the full sample
space that contains all possible values
of , where . We compute the a posteriori
probability distribution where

For each , let

By removing (consisting of symbols to ) from ,
we obtain

We then have

(9)

When or , the vector is
independent of , thus is independent of . Hence, (9) can be
simplified as

(10)

where denotes the bit vector corresponding
to , is a scaling constant such that .
Here, we apply the independence assumption again
such that

.
When the size of the full sample space is large, we can use

a QRD-M algorithm [14] described in Section III-C to reduce
the complexity of the g-MCMC. The resulting g-MCMC is sum-
marized in Algorithm 2, where denotes the remainder of
divided by , and denotes the maximum integer less than .
Note that line 5 of Algorithm 2 allows us to group different ad-
jacent symbols over iterations. As shown in Section IV, this is
necessary to speed up the mixing rate of Gibbs sampler. After
the sample set is generated, the g-MCMC follows the same
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procedure as b-MCMC to compute the extrinsic LLR value of
each bit.

Algorithm 2: Group-wise MCMC Equalizer

Input: Prior LLR for transmitted bits (from channel decoder)
Output Extrinsic LLR for channel decoder
1 Use group-wise Gibbs sampler to generate sample set
2 repeat

3 Generate initial sequence ;
4 for to do
5 , ;

6 Generate from the distribution

7

8 Generate from the distribution

9

10
...

11 Generate from the distribution

12

13 Save into the important set
14 until times;
15
16 SubFunction: Generate from the distribution
17 if is small (e.g., ) then

18 for each do
19 Compute using (10).
20 Generate one sample vector randomly according to

PMF .
21 else
22 Perform QRD-M to generate reduced sample space

containing samples
23 Generate one sample vector from according to PMF

(10).
24
25 Compute the LLR
26 for to do

27 Construct and .
28 Compute extrinsic LLR for using (8)
29

C. Complexity Reduction of g-MCMC Using QRD-M

The complexity for computing using (10)
becomes high when is large. For small values of
, we can still consider the full sample space . When is

large, instead of , we introduce a reduced sample space
for that contains sample vectors with large a pos-
teriori probabilities (APPs). Typically is much smaller than
. We propose to adopt the QR decomposition and M-algorithm

(QRD-M)1 to find . The QRD-M algorithm selects only

1One may also use b-MCMC or s-MCMC in place of QRD-M to generate
the reduced sample space � . For the test cases studied in this paper (see Sec-
tion IV), we empirically found that QRD-M is a superior choice.

branches with the smallest accumulated metric at each level
of the tree search. Hence, it has a constant complexity that is
controlled by the parameter. Larger values of improve
the algorithm performance at the cost of increased complexity.
The QRD-M algorithm has been widely applied in MIMO
detection [14]. Next, we show that the QRD-M algorithm is
also applicable to channels with ISI.

The set of (1) can be represented in a matrix form as

(11)

where , and

...
. . .

. . .
...

...
. . .

. . .
...

. . .
...

(12)

is a by channel matrix. We first simplify (10) as fol-
lows. Let . Since and are
independent of , we can drop the superscript in these vec-
tors and subtract their contribution from the received signals by
letting

(13)

where denotes the submatrix of with rows to
and columns to . For notational convenience, when

or , the corresponding column of is
assumed to be zero. The received signal in (13) can be
thought of received signals of a MIMO channel with transmit
antenna and receive antenna, where the transmitted
signal vector is , and the channel matrix is given by

. Hence, we can directly apply the QRD-M algorithm
to to find samples with large APPs. We then scale the
APPs of these samples to get a desired probability distribution

, based on which the Gibbs sampler will
generate a random sample from for .

D. Parallel Implementation of MCMC Equalizer

In Sections III-A and III-B, we presented the serial implemen-
tation of the b-MCMC and g-MCMC, where we run each Gibbs
sampler over the entire transmitted sequence
during which each bit or each group of symbols is updated se-
quentially. This sequential processing is repeated over iter-
ations for each Gibbs sampler. From an implementation point
of view, sequential processing requires large number of clock
cycles that is proportional to the sequence length . This in
turn means a long processing time or, equivalently, long delay
in the detection path. This, of course, is undesirable and should
be avoided if possible.
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TABLE I
SAMPLES UPDATING IN PARALLEL GIBBS SAMPLER

Fig. 2. Graphical representation of an ISI channel with � � �. A transmitted
sequence of length 8 is divided into two subblocks each with a length of� � �.
Symbol � from Gibbs sampler 1 affects � and � , which depends on the values
of � and � (belonging to Gibbs sampler 2).

We solve the problem discussed above by introducing a par-
allel implementation of the Gibbs sampler. For ease of disposi-
tion, let us assume BPSK modulation and consider the parallel
implementation of a b-MCMC. Here each transmitted symbol
represents one bit. We first divide the transmitted symbol vector

into subblocks each containing symbols. Instead of run-
ning a single Gibbs sampler over the entire sequence of , we
run parallel Gibbs samplers, one for each subblock. Within each
subblock, the Gibbs sampler updates the symbols sequen-
tially from left to right. Due to the channel memory, the APP
of a given symbol in a subblock may depend on the values of
some symbols belonging to other subblocks. To speed up the
convergence rate of the Gibbs sampler, it is helpful to synchro-
nize the parallel Gibbs samplers and have the updated symbol
values available to the neighboring subblocks. To show how the
parallel implementation works, we examine the example shown
in Fig. 2 where , , and . Two Gibbs sam-
plers are run in parallel. The symbol updating process of these
two Gibbs samplers is shown in Table I. At time 0, the sam-
ples are initialized randomly to obtain . Subsequently, at
each time instance, each Gibbs sampler updates a sample con-
ditioned upon previously updated samples in parallel. For in-
stance, at time of the first iteration , Gibbs sampler
1 updates bit , where the superscript is the iteration index,
and the subscript is the index for the bit that is being updated.
Bit is generated conditioned upon the values of four bits,
where were updated at and , respectively,
during iteration 1 by Gibbs sampler 1; was updated at
during iteration 0; , which belongs to the second Gibbs sam-
pler, was updated at time during iteration . This
procedure is then repeated for a total of iterations to find the
important sample set .

Fig. 3. Power spectral density function at the output of four ISI channels C1,
C2, C3 and C4. Note that C1 has a severe amplitude distortion, C2 has a mild
amplitude distortion, C3 and C4 have moderate amplitude distortion.

IV. SIMULATION RESULTS

In this section, we present simulation results of the proposed
MCMC equalizers. We consider four ISI channels with channel
impulse responses:

The first two channels are taken from [27] and [5]. Assuming
that the transmit symbols are i.i.d. random variables and ig-
noring the channel noise, the power spectral density at output of
these channels is presented in Fig. 3. As seen, Channel 1 (C1)
has deep spectral nulls, which corresponds to a high channel
condition number (defined in Section I) and significant ampli-
tude distortion. Channel 2 (C2) has a mild amplitude distortion.
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Fig. 4. Performance comparisons of various equalizers over ISI channel C1 which has a severe amplitude distortion.

The amount of amplitude distortion for Channel 3 (C3) lies in
between that of C1 and C2. Channel 4 (C4) has a memory of

and has moderate amplitude distortion. The channel re-
sponse is assumed to be perfectly known to the receiver. We
will compare the performance of various proposed MCMC de-
tectors with the exact soft MMSE [7] equalizer and the MAP
equalizer over these four ISI channels with different levels of
amplitude distortion. The simulation set up is the same as that
of [7]. A rate convolutional code with generator poly-
nomials is used. The coded bit length
is 4098. The bit sequence is mapped to a sequence of 8-PSK
symbols of length using gray mapping.
The channel interleaver is an -random interleaver [28] with

, where is the number of coded bits. At the
receiver we perform six iterations of channel equalization and
MAP decoding.

In Fig. 4, we examine the equalization performance over the
severely distorted ISI channel C1. We plot the bit-error-rate
(BER) curves (shown as solid lines) of the optimal MAP de-
tector, the MMSE detector [7], and 10 20 (10 parallel Gibbs
samplers with 20 iterations each) g-MCMC detectors ( ,
2, 4), after one, two, three, six iterations of channel equalization
and decoding. The g1-MCMC operates symbol-wise
inside the Gibbs sampler. The QRD-M algorithm with
is applied to the g4-MCMC and g2-MCMC

to generate the reduced sample space , consisting of
samples with the largest APPs at the end of the QRD-M algo-
rithm. For the case of g4-MCMC, the size of the full sample
space is and, thus, the number of
samples in is only about 0.6% of that of . Assuming that
the transmitted symbols has unit energy, the average energy
per bit to noise ratio is defined as

The main observations from Fig. 4 are summarized as
follows.

1) For a severely distorted ISI channel, neither b-MCMC (not
shown in the figure) nor g1-MCMC (s-MCMC) works. The
g4-MCMC performs the best among the MCMC detec-
tors considered. Performance gap between g4-MCMC and
g2-MCMC reduces after six iterations.

2) The g4-MCMC detector significantly outperforms the
MMSE detector of [7]. After six iterations, the g4-MCMC
is about 2 dB better than the MMSE at .
More iterations does not reduce this performance gap
(a performance curve of the MMSE detector after ten
iterations is shown in the last subfigure of Fig. 4).

3) The g4-MCMC detectors performs closely to the optimal
MAP detector. The performance gap at is
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Fig. 5. Performance comparisons of various equalizers over ISI channel C2 which has a mild amplitude distortion.

about 1.7 dB after six iterations. With only one iteration,
the g4-MCMC performs within 3 dB of the MAP detector,
while the MMSE performs about 18 dB worse.

4) To optimize performance of g4-MCMC, it is necessary to
group different adjacent symbols over iterations (see Line
5 of Algorithm 2). The performance of g4-MCMC with
fixed grouping (i.e., grouping the same set of symbols over
iterations), denoted by g4-MCMC-FG, is much worse than
the g4-MCMC with varying grouping, especially for small
number of iterations.

In Fig. 4, we also present the BER curve (shown as the dashed
line) for an AWGN channel with no ISI, i.e., . This
is also called the matched filter bound (MFB) which provides a
performance lower bound for the ISI channel. We observe from
Fig. 4 that the MAP detector approaches the MFB after six iter-
ations of joint detection and channel decoding.

Fig. 5 shows the BER performance over channel C2. Since
C2 has a mild amplitude distortion, all the detectors consid-
ered (g4-MCMC, b-MCMC, and MMSE) can approach the
performance of MAP equalizer after six iterations and they
all approach the MFB. We also note that MCMC detectors
with small parameters (1 4 for g4-MCMC and 2 4 for
b-MCMC) are sufficient to obtain good performance after six
iterations. This leads to very low detection complexity. After
only one iteration, both the 10 10 g4-MCMC and 10

10 b-MCMC perform closely to the MAP detector, while the
MMSE is more than 2 dB worse.

In Fig. 6, we examine the performance of various equalizers
over channel C3 which has a moderate amplitude distortion.
Here, all MCMC equalizers have parameters 10 10. It is
shown that the b-MCMC performs the worst and has an error
floor at . The g1-MCMC performs nearly 4 dB
worse than the g2-MCMC and g4-MCMC. The MMSE detector
is about 1.5 dB worse than the g4-MCMC at .
The MAP detector also approaches the MFB after six iterations.

In Fig. 7, we consider an ISI channel C4 with a longer channel
memory of . The amount of amplitude distortion for C4
is shown to be moderate (see Fig. 3). Since the optimal MAP
detector needs to operate on a trellis with states,
it becomes computational prohibitive to operate this detector
over C4. Fig. 7 shows that g-MCMC with small parameters
still work well for this channel. In particular, after six iterations,
the g4-MCMC 10 20 with outperforms the MMSE
(with a filter length of 21) by about 1.5 dB at .
The g6-MCMC 10 20 with improves performance
slightly at the cost of additional complexity. Note that neither
g1-MCMC (s-MCMC) nor b-MCMC (not shown here) works
for this channel. We note that the gap between the MFB and
that of the g4-MCMC/g6-MCMC reduces at higher SNRs.
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Fig. 6. Performance comparisons of the different equalizers over ISI channel C3 which has a moderate amplitude distortion.

Fig. 7. Performance comparisons of the different equalizers over ISI channel
C4 with a longer memory of � � � and moderate amplitude distortion.

Finally, we compare performance of serial and parallel im-
plementation of the MCMC detector. Fig. 8 shows performance
curves of a 10 10 b-MCMC detector over C2. Since a rate 1/2
turbo code is employed here, the operating SNR is lower than

Fig. 8. Performance comparisons of b-MCMC with parallel/serial implemen-
tation over ISI channel C2.

that of Fig. 5 employing a convolutional code. The length of the
coded bit sequence is 7800 bits. Assuming 8-PSK modulation,
the length of the symbol sequence is symbols.
For the parallel implementation, the sequence of
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received signal samples is divided into 520 subblocks, each con-
taining five samples. The b-MCMC equalizer is applied to these
520 subblocks in parallel. We perform five outer iterations of
joint equalization and channel decoding. For each outer itera-
tion, channel equalization is performed once followed by eight
inner iterations of turbo decoding. From Fig. 8, we find that the
parallel implementation achieves almost identical performance
as the serial implementation while significantly reducing pro-
cessing delay. At , the 10 10 b-MCMC equal-
izer is only 0.23 dB worse than the MAP detector. We observe a
1 dB gap between the MFB and that of the MAP detector, which
is much larger than the gap shown in Fig. 5 for the convolu-
tional coded system. We believe that this is because the turbo
coded system operates at a much lower SNR, in which case a
precoder may be needed to further improve performance of the
turbo equalization in order to better approach the MFB [6], [29].
We note that a 2 dB gap between the MFB and that of the MAP
detector is also observed in [30] for a turbo coded system.

V. CONCLUSION

In this paper, we demonstrated that MCMC techniques are
highly effective in the design of low-complexity equalizers
for frequency selective channels. This work extends previous
work on b-MCMC MIMO detectors for frequency flat channels
to channels with ISI. We showed that the b-MCMC equal-
izer works well for channels with mild amplitude distortion,
however, fails for channels with moderate or severe amplitude
distortion. The g-MCMC, on the other hand, is robust to the
different levels of channel amplitude distortion. For several
ISI channels examined in this work, the MCMC detectors
demonstrate significant performance gain over the widely used
turbo MMSE equalizer. The proposed MCMC detector enables
parallel processing, which makes it amenable for practical im-
plementation. Extensions of this work to channels with longer
memory, and to channels with unknown impulse response are
the subject of future research.
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