## Solution to Homework \#1

1. Entropy of functions of a random variable. Let $X$ be a discrete random variable. Show that the entropy of a function of $X$ is less than or equal to the entropy of $X$ by justifying the following steps $(a),(b),(c)$ and (d):

$$
\begin{aligned}
H(X, g(X)) & \stackrel{(a)}{=} H(X)+H(g(X) \mid X) \\
& \stackrel{(b)}{=} H(X) \\
H(X, g(X)) & \stackrel{(c)}{=} H(g(X))+H(X \mid g(X)) \\
& \stackrel{(d)}{\geq} H(g(X))
\end{aligned}
$$

Hence $H(g(X)) \leq H(X)$.

## Solution:

(a) By the chain rule for entropies.
(b) Given $X, g(X)$ has a fixed value. Hence

$$
H(g(X) \mid X)=\sum_{x} p(x) H(g(X) \mid X=x)=\sum_{x} 0=0 .
$$

(c) By the chain rule for entropies.
(d) Follows because the (conditional) entropy of a discrete random variable is nonnegative, i.e., $H(X \mid g(X)) \geq 0$, with equality iff $g(X)$ is a one-to-one mapping.
2. A measure of correlation. Let $X_{1}$ and $X_{2}$ be identically distributed, but not necessarily independent. Let

$$
\rho=1-\frac{H\left(X_{1} \mid X_{2}\right)}{H\left(X_{1}\right)} .
$$

(a) Show $\rho=\frac{I\left(X_{1} ; X_{2}\right)}{H\left(X_{1}\right)}$.
(b) Show $0 \leq \rho \leq 1$.
(c) When is $\rho=0$ ?
(d) When is $\rho=1$ ?

## Solution:

(a) $\rho=\frac{H\left(X_{1}\right)-H\left(X_{1} \mid X_{2}\right)}{H\left(X_{1}\right)}=\frac{I\left(X_{1} ; X_{2}\right)}{H\left(X_{1}\right)}$
(b) $0 \leq \rho \leq 1$ follows easily because $0 \leq H\left(X_{1} \mid X_{2}\right) \leq H\left(X_{1}\right)$.
(c) $\rho=0$ iff $I\left(X_{1} ; X_{2}\right)=0$, i.e., $X_{1}$ and $X_{2}$ are independent.
(d) $\rho=1$ iff $H\left(X_{1} \mid X_{2}\right)=0$, i.e., $X_{1}$ is a function of $X_{2}$.
3. Example of joint entropy. Let $p(x, y)$ be given by

| $X$ | 0 | 1 |
| :---: | :---: | :---: |
| 0 | $\frac{1}{3}$ | $\frac{1}{3}$ |
| 1 | 0 | $\frac{1}{3}$ |

Find
(a) $H(X), H(Y)$.
(b) $H(X \mid Y), H(Y \mid X)$.
(c) $H(X, Y)$.
(d) $H(Y)-H(Y \mid X)$.
(e) $I(X ; Y)$.
(f) Draw a Venn diagram for the quantities in (a) through (e).

## Solution:

(a) $H(X)=\frac{2}{3} \log \frac{3}{2}+\frac{1}{3} \log 3=\log 3-\frac{2}{3}=0.918$ bits $=H(Y)$.
(b) $H(X \mid Y)=\frac{1}{3} H(X \mid Y=0)+\frac{2}{3} H(X \mid Y=1)=\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 1=\frac{2}{3}=0.667$ bits $=H(Y \mid X)$.
(c) $H(X, Y)=3 \times \frac{1}{3} \log 3=\log 3=1.585$ bits. Alternatively, $H(X, Y)=H(X)+H(Y \mid X)=$ 1.585 bits.
(d) $H(Y)-H(Y \mid X)=\log 3-\frac{2}{3}-\frac{2}{3}=\log 3-\frac{4}{3}=0.251$ bits.
(e) $I(X ; Y)=H(Y)-H(Y \mid X)=0.251$ bits.
(f)

4. Mixing increases entropy. Show that the entropy of the probability distribution

$$
\left(p_{1}, \ldots, p_{i}, \ldots, p_{j}, \ldots, p_{m}\right)
$$

is less than the entropy of the distribution

$$
\left(p_{1}, \ldots, \frac{p_{i}+p_{j}}{2}, \ldots, \frac{p_{i}+p_{j}}{2}, \ldots, p_{m}\right) .
$$

(hint: $\log _{e} x \leq x-1$ for $x>0$.)

## Solution:

Let $P_{1}=\left(p_{1}, \ldots, p_{i}, \ldots, p_{j}, \ldots, p_{m}\right)$ and $P_{2}=\left(p_{1}, \ldots, \frac{p_{i}+p_{j}}{2}, \ldots, \frac{p_{i}+p_{j}}{2}, \ldots, p_{m}\right)$.

$$
\begin{aligned}
H_{e}\left(P_{1}\right)-H_{e}\left(P_{2}\right) & =-p_{i} \ln p_{i}-p_{j} \ln p_{j}+2 \frac{p_{i}+p_{j}}{2} \ln \frac{p_{i}+p_{j}}{2} \\
& =p_{i} \ln \frac{p_{i}+p_{j}}{2 p_{i}}+p_{j} \ln \frac{p_{i}+p_{j}}{2 p_{j}} \\
& \leq p_{i}\left(\frac{p_{i}+p_{j}}{2 p_{i}}-1\right)+p_{j}\left(\frac{p_{i}+p_{j}}{2 p_{j}}-1\right) \\
& =0 .
\end{aligned}
$$

5. Relative entropy is not symmetric. Let the random variable $X$ have three possible outcomes $\{a, b, c\}$. Consider two distributions $p(x)$ and $q(x)$ on this random variable

| Symbol | $p(x)$ | $q(x)$ |
| :---: | :---: | :---: |
| a | $1 / 2$ | $1 / 3$ |
| b | $1 / 4$ | $1 / 3$ |
| c | $1 / 4$ | $1 / 3$ |

Calculate $H(p), H(q), D(p \| q)$ and $D(q \| p)$. Verify that in this case $D(p \| q) \neq D(q \| p)$.
Solution:

$$
\begin{aligned}
H(p) & =\frac{1}{2} \log 2+\frac{1}{4} \log 4+\frac{1}{4} \log 4=1.5 \mathrm{bits} \\
H(q) & =3 \times \frac{1}{3} \log 3=1.58496 \mathrm{bits} \\
D(p \| q) & =\frac{1}{2} \log \frac{3}{2}+\frac{1}{4} \log \frac{3}{4}+\frac{1}{4} \log \frac{3}{4}=\log 3-1.5=0.08496 \mathrm{bits} \\
D(q \| p) & =\frac{1}{3} \log \frac{2}{3}+\frac{1}{3} \log \frac{4}{3}+\frac{1}{3} \log \frac{4}{3}=-\log 3+\frac{5}{3}=0.0817 \mathrm{bits}
\end{aligned}
$$

It is clear that $D(p \| q) \neq D(q \| p)$.
6. Discrete entropies. Let $X$ and $Y$ be two independent integer-valued random variables. Let $X$ be uniformly distributed over $\{1,2, \ldots, 8\}$, and let $\operatorname{Pr}\{Y=k\}=2^{-k}$, for $k=1,2,3, \ldots$.
(a) Find $H(X)$.
(b) Find $H(Y)$.
(c) Find $H(X+Y, X-Y)$.
hint: For (b), the following expression may be useful

$$
\sum_{n=0}^{\infty} n r^{n}=\frac{r}{(1-r)^{2}}
$$

For (c), if you do not find a direct way, try to use

$$
\begin{aligned}
& I(X, Y ; X+Y, X-Y) \\
& \quad=H(X, Y)-H(X, Y \mid X+Y, X-Y) \\
& \quad=H(X+Y, X-Y)-H(X+Y, X-Y \mid X, Y)
\end{aligned}
$$

## Solution:

(a) $H(X)=\log 8=3$ bits.
(b) $H(Y)=\sum_{k} 2^{-k} \log 2^{k}=\sum_{k} k 2^{-k}=\frac{1 / 2}{(1-1 / 2)^{2}}=2$ bits.
(c) Since $(X, Y) \rightarrow(X+Y, X-Y)$ is a one-to-one mapping,

$$
H(X+Y, X-Y)=H(X, Y)=H(X)+H(Y)=5 \text { bits. }
$$

Alternatively, use the hint. It is clear $H(X, Y \mid X+Y, X-Y)=0$ and $H(X+Y, X-Y \mid X, Y)=0$. Hence $H(X+Y, X-Y)=H(X, Y)=H(X)+H(Y)=5$ bits.

