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Achieving Near-Capacity on a
Multiple-Antenna Channel

Bertrand M. Hochwald and Stephan ten Brink

Abstract—Recent advancements in iterative processing of encoder or mapper acts like an “inner” code that transmits sym-
channel codes and the development of turbo codes have allowedpols that have redundancy introduced by the outer code. At the
the communications industry to achieve near-capacity on a yacejver, the space—time detector is, therefore, confronted by

single-antenna Gaussian or fading channel with low complexity. .
We show how these iterative techniques can also be used toSymbols that are correlated through the channel code, thus sig-

achieve near-capacity on a multiple-antenna system where the hificantly complicating the detection process.

receiver knows the channel. Combining iterative processing with  The space—time transmission scheme and channel code can
multiple-antenna channels is particularly challenging because he combined, as in the trellis codes of [6], but these combined
the channel capacities can be a factor of ten or more higher than . yoq are generally designed by hand and have exponential state
their single-antenna counterparts. Using a “list” version of the lexity in th b f K simpl h
sphere decoder, we provide a simple method to iteratively detect COMPIexity in the number of antennas. We seek simple schemes
and decode any linear space—time mapping combined with any that work for any combination of transmit and receive antennas,
channel code that can be decoded using so-called “soft” inputs and at the high capacities that these antennas promise on a flat-
and outputs. We exemplify our technique by directly transmitting fading channel.

symbols that are coded with a channel code; we show that iterative . .
processing with even this simple scheme can achieve near-ca- We propose a method to iteratively detect and decode any

pacity. We consider both simple convolutional and powerful turbo  lin€ar space—time mapper that is combined with an outer
channel codes and show that excellent performance at very high channel code. By a linear space-time mapper, we mean that
data rates can be attained with either. We compare our simulation the symbols to be transmitted on each antenna should be linear
results with Shannon capacity limits for ergodic multiple-antenna  f,nctions of the encoded data stream: the method, therefore,
channel, applies to many existing space—time mapping schemes. The
ltnde)t( gern:js—Bfel(;_Labi Layelred SPaC%TTimi (B'-'QS_T/)’ (f:ton-t channel code can be any code that may be decoded using “soft”
ggheenrz; € dg((:)oc?i?l‘g? {pagncsn?i?n%iiérg?tilyetull}g%SI g’c’)jgs, mvx?i(r)el e(?sus'inputs and outpgts. Convolutional and turpo chf_:mnell codes [7]
communications. are natural candidates. The method works in an iterative fashion
to approximate the optimal joint detector/decoder. It is simple
to implement, computationally tractable, and, as we show, can
|. INTRODUCTION AND MODEL be used to achieve near-capacity on a multiple-antenna channel.
NE WAY to get high rates on a scattering-rich wireless At the heart of our method lies a modified version of the
channel is to use multiple transmit and/or receive aso-called “sphere decoder” [8]. The sphere decoder is intro-
tennas [1], [2]. Many of the practical space—time schemes tihtced for space—time processing in [9], where it is used to com-
achieve these high rates, such as Bell Labs layered space—timte the maximum-likelihood (ML) symbol estimate with com-
(BLAST) [1], orthogonal designs [3], [4], and linear dispersiolexity comparable, at a high signal-to-noise ratio (SNR), to
codes [5] are designed to have simple symbol detection at the vertical (V)-BLAST nulling/cancelling algorithm [10]. Our
receiver because they map the symbols linearly to the transmiedification provides a list of candidates at the detector that al-
antennas. The codes of [3] and [4] have very simple detectdpws us to compute, with low complexity, the bit posterior prob-
and are generally designed to optimize a raw block or Hibilities needed for our iterative decoder.
pairwise error performance criteria, while the codes in [5] are Some examples of iterative methods that combine channel
designed to optimize an information-theoretic criterion. codes and space-time processing include [11]-{14]. These
However, any effort to achieve capacity on a channel usualifudies are limited to small signal constellations or few antennas
requires some form of “outer” channel code that provides redupecause the underlying optimal detection algorithm is often
dancy and/or interleavers to guard against bursty fading, intexponentially complex in one or both. Other examples include
ference, and additive receiver noise. In this case, the space-t[dfs and [16], where the suboptimal V-BLAST nulling/can-
celling detection is combined with iterative processing. Another
Paper approved by H. Leib, the Editor for Communication and Informatidﬁer?‘t've method [17] uses_ a suboptimal group-nulling/can-
Theory of the IEEE Communications Society. Manuscript received October Xg€lling approach to detection. Our method approaches the
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receiver. When there are at least as many receive antennasuh that the transmitted vector constellation symbal is
transmit antennas, this condition is generally satisfied. Whempx). The uncoded transmitted information rate is ttién
there are more transmit than receive antennas, space—time nidp-bits per use of the channel (1). We designate a sequence of
pers [3]-[5] can be used to achieve this condition by adding sgaecksx by x(), x(® .. ..
tial redundancy. Nevertheless, our method can be used withoulf the information bits in the blocksx()),x(® ... are
any space—time mapper at all. uncoded, then decisions on the bits can be made either by
For simplicity, our simulations consider only examples whenmsulling/cancelling [10] or ML on a block-by-block basis. We,
the number of receive antennas equals the number of transhaitvever, considex(!), x(?), . .. to themselves be the output of
antennas. No special space—time mapping is used and, asavebannel code of ratB < 1 that introduces redundancy and
show, we are able to approach capacity with a simple intererrelation between its entries. The transmitted information
leaver, off-the-shelf turbo code, and our iterative detector. Nate is thenR M M. bits per effective channel use, and it is sub-
special multi-antenna code-design notions such as “diversigptimal for the signal detector and channel decoder to operate
[6], [18]-[20] are needed. separately and only on individual blocks. The detector should
Our capacity comparisons assume that the receiver knows thake decisions jointly on all the blocks using knowledge of the
fading channel characteristics, which are changing sufficienttprrelations across blocks introduced by the channel code, and
rapidly that the channel can be viewed as “ergodic.” We do ntite channel code should decode using likelihood information
consider a static model, where a comparison with an “outagefi all the blocks obtained from the signal detector. An iterative
capacity would be more appropriate. method to accomplish joint detection and decoding is presented
in the next section.
A. Linear Model for Multiple-Input/Multiple-Output (MIMO)
Channel

Let s be anM x 1 vector of symbols (also referred to as
“vector constellation symbol”) whose entries are chosen from\We regard the channel code and the MIMO channel as
some Comp|ex constellatiod [e_g,_ quaternary phase-shif‘[a Serially concatenated scheme [22], with an outer channel
keying (QPSK), 16-quadrature amplitude modulation (QAMgNncoder (typically a convolutional or turbo code), bit inter-
with 2M< M. > 1 possible signal points, and letbe anN x 1  leaver, and inner space-time constellation mapping with block

vector of received signals (also referred to as “vector chanr@§icoding matrixH. To decodex(®), x(®), ... optimally, the
symbol”) related by joint detector/decoder should compute the likelihood of each

bit given all the blocks of received complex daté), y®) . ..
y=Hs+n (1) and the constraints imposed by the channel code. Generally,
with codes of even reasonable block lengths, this is compu-
whereH is a complex matrix, known perfectly to the receivertationally infeasible. Therefore, we are often content to solve
andn is a vector of independent zero-mean complex Gaussitire simpler problems of having the MIMO detector incorporate
noise entries with variance? per real component. We assumesoft reliability information provided by the channel decoder,
that the vectos = [s1,...,s1s]7 obeys the component-wiseand the channel decoder incorporate soft information provided
energy constraint [, ||?> = E,/M: this normalization makes by the MIMO detector. Information between the detector and
the total transmitted powek,. Many narrowband flat-fading decoder is then exchanged in an iterative fashion until desired
space—time transmission schemes can be written in this foperformance is achieved. While this iterative process is not
For example, BLAST [1] uses the transmit antennas to sesttictly optimal, it has been shown that the “turbo principle”
a layered structure of signals, and therefdve represents the is very effective and computationally efficient in other joint
number of transmit antennad, represents the number of re-detection/decoding problems [23]-[26]. In this section, we
ceive antennas, arid is the true MIMO matrix channel. Other describe the basic principles of iterative detection and decoding
examples include orthogonal designs [3], [4], and linear dispavhile emphasizing the portions that are important to the model
sion (LD) codes [5] wherdH is an effectivechannel derived (1) and leaving the well-known channel coding details to
from one or more uses of the true channel. In this cA$and references.
N are generally only proportional to the number of transmit and Fig. 1 gives a flowchart of the iterative algorithm that we
receive antennas. We refer to any use of the transmit antennas. The detector takes channel observatiprend a priori
such thatH represents the true channeldisect transmission knowledgeL 4, on the inner coded bits and computes new
BLAST is an example of direct transmission. (also referred to as “extrinsic”) informatiohg, for each of
We assume that the vector model (1) is used repeatedlythe M - M. coded bits per vector channel symbpl Then
transmit a continuous stream of data bits, separated into blodks, is deinterleaved to become tlepriori input L 4, to the
representing uses of the channel. For any given block, let theter soft-in/soft-out decoder (maximuaposteriori (MAP),
components of the symbol vectobe obtained using the map-a posteriori probability (APP), Bahl-Cocke—Jelinek—Raviv
ping functions,, = mapx<">), m = 1,..., M (i.e., gray (BCJR) algorithm [27], [28]) which calculates extrinsic infor-
mapping [21]) wherex<™> is anM,. x 1 vector (block) of data mationL g, on the outer coded bits. Thdhg, is reinterleaved
bits, andM.. is the number of bits per constellation symbol. Thand fed back aa priori knowledgeL 4, to the inner detector,
vector of bits transmitted during one application of the model (thus completing a cycle or “iteration.” Each iteration reduces
is writtenx; it is obtained by concatenating<'>,...,x<M>_ the bit-error rate (BER) by this exchange of information. In

Il. ITERATIVE DETECTION AND DECODING
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'\gr::::iamsit nterieaver code rate R binary Moment, we omit the subscripts used in Fig. 1.) @lp@steriori
souree  |_-value of the bitry, £ = 0, ..., M - M. — 1, conditioned on

cor ion| o %4 Y outer X5 i : / i
s & H < Jouer the received vector channel symhqlis

PPN Lp (sly) = o 212t = HIY] @)
H

Plox = —1y]’

We assume that the bits inhave been encoded with a channel
code, but that an interleaver at the encoder is used to “scramble”

n T binary the bits from other blocks into our block, so that the bits within
aweN Ty R hard sk  x are approximately statistically independent of one another.

deinterleaver decision i .. .
Lo, L, ni o ‘ Using Bayes’ theorem, and exploiting the independence of
i MIMO " s . .
N etector 11 =& eoft mou o Zo,..., @011 by splitting up joint probabilities into prod-
- L 2 ucts, we can write the soft output value as
N receive b2
t
antennas interleaver LD (mk |y)
inner outer . T
information bits coded bits Z p (y|X) exp ; Z LA (I])
I = L) + 1o X5 ®
L — LAYk
At Le, Z p(Y|X) - €xp Z LA(“U)
xEXp —1 jeJk,x

[\ J

Fig. 1. Transmitter, MIMO channel, and receiver with iterative detection and ~~
decoding. The subscript “1” denotes variables associated with the inner code Le(zely)

(consisting of space—time mapping and channel), and the subscript “2” denotes . M-M,—1 py . _
variables associated with the outer channel code. For exampls,the same Weherexk&l is the set o™~ bit vectorsx havingz; =

as the variablex in (1). +1; that is

Fig. 1, the subscript “1” denotes processing blocks that are Xi1 = {xlor = +1}, Xi1 = {xfor = -1} (4)
connected with the inner mapping/detection operation, wheregs, is the set of indiceg with
the subscript “2” denotes processing blocks connected to the

outer encoding/decoding operations. One complete cycle of Jex=1{jli=0,....,M -M.~1,j#k, z;=1} (5)
information exchange between the sections labeled “1” and “2” La(z;) = In Plz; =1] _ (6)
is an iteration. ! Plz; = —1]

Although the overall flow of the algorithm described in Fig. ]By multiplying the numerator and denominator wittp[—1/2-
is generally accepted and standard, the actions within the S;EJM'MC_l La(zr)], we may write (3) as

blocks largely determine the overall complexity and feasibilit k=0
of the algorithm. Since we are using standard convolutional &6n (zx|y)

turbo channel codes, the outer encoder and decoder are also rela- ) 14T .1,

: , : > p(ylx) - exp 5xp - Ly

tively standard. However, because we are using the multiantenna x€Xy 11

model (1), the inner detector must be carefully designed to be~ La(zy) +1n > (y]x) - (l T ) ™
computationally efficient at the high data rates we are consid- xeXr _lp YIX) - OXP{ 2%k " AL [k]

ering. We focus in detail on the detector in Section Ill, and now \ : ~ o
describe how to compute the varicpriori and extrinsic quan- Li(eely)

tities used in Fig. 1. wherex;) denotes the subvector afobtained by omitting its

) ] kth elementr;, andL 4 ;) denotes the vector of all 4 values,

A. MAP Bit Detection also omittingz .. Thus,Lp can be written as a sum afpriori
Maximizing the MAP or APP for a given bit minimizes theL-value L 4 and extrinsid_-value L . These manipulations are

probability of making an error on that bit. The APP is usually exstandard and more details may be found in [23].

pressed as a log-likelihood ratio valuealue [23]).L-values We may rewrite (7) using the subscripts used in Fig. 1 as

provide a convenient notation for describing the operation of i

iterative decoding algorithms; simple add/subtract operatioZ’?1 (1ly)

are sufficient to separate priori or old information from new > p(ylx1)-exp (%xf[k] . LAh[k])
(“extrinsic”) information obtained during an APP detection/de= 1, , (. k)+In EXk 41 _
coding cycle. As shown in Fig. 1, usually only extrinsic infor- Y S p(ylxi) - exp (%xlT,[k] 'LAl,[k])
mation is exchanged in processing cycles. A decision is made x1€Xp, -1

from anL-value by using its sign to tell whether the bit is a one Lo, (e rly)

or zero. The magnitude of thevalue indicates the reliability of Y ®)

the decisiont-values near zero correspond to unreliable bits. In

this paper, the logical zero for a bit is represented by amplitudeEquation (8) applies to the channel model (1), whereep-

level z;, = —1, and logical one by, = +1. resents the coded bits to be transmitted pisithe vector mea-
We assume, for the moment, that we are working on a blocksiirement obtained at the receiver, but we may also apply (7) to

bitsx corresponding to one use of the linear model (1). (For thiee channel (error-correcting) code. Equation (7) then becomes
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the a posteriori L-value obtained from APP decoding of thewheres = mapx).

outer channel code. Thus, the channel decoder processing cddnfortunately, even with these simplifications, computing
also be decomposed inépriori and extrinsic components. WeLg(z|y) is exponential in the length of the bit vectaror
omit a detailed description of this standard interpretation atite number of symbols in the constellatich To find the

simply give the resulting equation for the channel code maximizing hypotheses in (12) for each, there are?-M.~1
hypotheses to search over in each of the two terms. For even a
Lp, (z2,kLa,) moderate block siz&7, or bits per symbal,., this complexity
3 exp (%Xg[k] .LA%[k]) may bg overwhelming. For.example,. if the model (1) is u_sed
_ x2 €Xk 11 with eight transmit and eight receive antennas and direct
= LA2 (J,’ka) —|— ln (9)

transmission of a 16-QAM constellation, théh- M. —1 = 31

and 2M-Me—1 ~ 9 x 10%. In the next section, we therefore
~ concentrate on finding a method to approximate (12) that

Ly (w251 Ly 101 avoids this exhaustive search.

In this equation, the raw data bits are denated(see Fig. 1

variables with subscript “2”), anX;, . is now the set of vectors lll. MIMO D ETECTION USING THE SPHEREDECODER

searchs for which

x2EXE, 1

B. Likelihood Function for APP Detection

An essential part of computing tHevalue (7) for the de- ly — Hs|)? (13)
tector is computing the likelihood functigify |x). This is easily

is| incl ly the h h for which (13) i Il;
found from (1) is large and include only the hypotheses for which (13) is small;

it turns out that, in practice, there are generally only a handful

ex [_% Ay -H- s||2] of hypotheses for which (13) is small. In this handful, which
_ _ p 202 y 10 . .
p(yls = mapx)) = (2r02)N : (10)  we call ourcandidate listwe can search for the hypotheses that

. ] ‘maximize the two terms in (12). Searching the candidate list
For thelL-value calculation, only the tgrm in the exponent iSenerally provides a good approximation of (12). In this sec-
relevant, and the constant factor outside the exponent canip® we describe the application of a list sphere decoding (LSD)
omitted. algorithm to rapidly find the candidate list. In the process, we
show how the sphere decoder, originally designed for real con-
%'Eellations, may be modified to handle complex constellations.
We first give an overview of the sphere decoder for real con-
To evaluate the numerator and denominator in the log-likekitellations and channels. The sphere decoder (or sphere detector,
hood ratio computation in (7), it is sometimes advantageousge we may also call it in the context of MIMO detection) solves

use the “Jacobian logarithm.”
g IIli{l(S —8)THTH(s - 8) (24)
se/

C. Some Standard Simplifications for Digital Signal Process
(DSP) Implementation

jacln(ag,as) := In(e™ + e*?) ] ) ]

B lar—as| whv_ereé is the center of our search sph(_ere, atqu the lattice

= max(ay, az) + In (1 te ) (11)  defined by having each entry of the-dimensional vectos

h be taken from a constellation @f’- consecutive integers. We

observe that
wherer(-) can be viewed as a “refinement” of the coarse aR— 9 R .
proximationmax(a;, a). On a DSP with no exponential or |y — Hs||" = (s — 8) " H H(s - 5)
logarithm function, a Jac-log approximation can be obtained by +y" (I-HE"H)"'H)y (15)
stonpgr('-) ina |°°]kvljp Eable [28]. To compute the Jac—log.apwhereé = (HTH)~'H"y is the unconstrained ML estimate
proximationtan 37; %, e* for N; > 2, we canuse the recursivest ¢ The true (constrained) ML estimate is, therefore

r(lai—az|)

calculation:
1) initialize: v = —o0 Smi = arg min |y — Hs||* = arg min(s — 8)" H"H(s — 8).
. s€E sE
2) compute: foi = 1to N; dowv := jacln(v, a;). (16)

Further simplications are possible by using the Max-log approkhe sphere decoder may thus be used todipd
imation, which omitsr(-) altogether. Simulations in [28] and ~ Solving (14) is generally difficult unlesH has orthogonal
[29] show that the performance degradation over the Jac-log &9lumns, in which case, th&/-dimensional search becomes

proximation is often very small. With the Max-log approxima// simple one-dimensional searches. Otherwise, an exhaustive
tion, the extrinsid_-value of (7) becomes search needs to examir®d/ M- different hypotheses. The

L L sphere decoder avoids an exhaustive search by examining only
Lp(zily) =~ 5 Jax {‘ﬁ”y —-H-s|>+ X[Tl;] . LAJk]} those points that lie inside a sphere
¢,+1

xEXp 4+
(s—38)"H'H(s - 8) < r? (17)

1 1
3.8, { by~ Bl o Lo

2 xEXp,—1 with the given radiug large enough to contain the solution. The

(12) algorithm is described originally in [30] and refined in [8], and
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has its origins in finding the shortest vector in a lattice. Its applidecoder finds that no point in the constellation falls within the
cation as a decoder for fading channels is described in [31], amgber and lower bounds obtained for sospg In the first case,
as an ML decoder for multiple antenna channels in [5], [9], [32]he sphere decoder has a candidate solution for the entire vector
and [33]. As we show below, sphere decoding uses the saspeomputes its radius (which cannot exceg¢dand starts the
Cholesky factorization of the channel matrix as in V-BLASBearch process over, using this new smaller radius to find any
nulling/cancelling algorithm described in [10], but it makes hetter candidates. In the second case, the decoder must have
joint decision on the symbols. made at least one bad candidate choicesfors, ..., sy . The
We assume, for the moment, that> 0 has been chosen sodecoder revises the choice fer, 1 (which immediately pre-
that the sphere (17) contains the solution to (14) and possilslyded the attempt for,,) by finding another candidate value
some additional points of the lattice. LBt be an upper trian- within its range, and proceeds again to #y. If no more can-
gular M x M matrix chosen such th&f?U = H'H (using, didates are available at, 1, the decoder backtracks £@, ;,
for example, Cholesky factorization). Let the entriestéfbe and so on.
denotedu;;, 1 < j = 1,..., M, and assume, without loss of The performance of the algorithm is closely tied to the choice
generality, that,;; > 0. Then (17) may be written of the initial radiusr. The radius should be chosen large enough
AT T . so that the sphere contains the solution to (14). However, the
(s —8) U U(s —3) largerr is chosen, the longer the search takes: i§ chosen
M Mo too small, the algorithm could fail to find any point inside the
= Zua si— 8 + Z —L(s;—58;)] < r?. (18) sphere, requiring thatbe increased. For good choicesdfve
i=1 jeig1 M have more to say about how to choostater), the algorithm
Each term in the sum oveiis nonnegative. The sphere decodeiPpPears to be roughly cubic i for the values ofM/ that we

establishes bounds of, .. .. s, by examining these terms in consider [33], [34]. This is a vast improvement over an exhaus-
subsets . tive search, which is exponential 1.

Starting withi = M, and throwing out the terms
1 =1,...,M — 1, we obtain from (18)

2

A. Complex Sphere Decoder
The sphere-decoding algorithm described above applies to a

wiiar(sar — 8ar)? <r? real system of equations wheris chosen from a real lattice.
or Therefore, we may apply the algorithm to the complex system
(1) only when the real and imaginary componenty oH, and
R r R s can be decoupled to create a system of real equations with
’VSM - UJMM—‘ <su < {SM + UMMJ (19)  twice the dimension of the original system. This decoupling is

) _ ) possible, for example, when the entriessofire chosen from
(The function[ ] finds the smallest integer greater than or equal QAM constellation. It is not generally possible, however, for
toits argument, ant| finds the largestinteger less than or equabsk or other complex constellations. Fortunately, as we show,

to its argument; these functions are used because the constgll@asphere decoder may be modified to handle complex constel-
tion is assumed to be set of consecutive integers.) After Cofgtions as well.

puting the lower and upper bounds in (19), the sphere decodefye wish to solve

chooses a candidate value for; and computes the implica-

tions of this choice omy;_;. (Contrast this with the V-BLAST 1;131\1(5 —8)"H"H(s - 8) (21)
nulling/cancelling algorithm, which makes a decisionsgp at

this point.) To find the influence of the choice of; ons,,_;, Wheres andH are complex(-)* denotes conjugate-transpose,
the sphere decoder looks at the two teims M — 1 in (18), andA is a complex lattice in the sense that each coordinate of

throws out the remaining terms, and obtains the inequality s is chosen from a complex constellation. The complex sphere
search is then

2
“?\1 1LM_1 |SM—1—8m-1+ M(SM —8n) ( SVHH 3) < 2 29
TR UN M s —$§) (s—8) <r-. (22)

+uirar (s —80)? <1° We use the Cholesky factorization to find an upper triangUlar
with u;; real and positive such th&f*U = H*H. Then (22)

which yields the upper bound may be written

2 _— 2 J — 3 /] 2
sm—1 < [Sm-1t V2 = Wy (s = $a) (s —8)*U*U(s —§)
UM —1,M—~1 o " o
2 2 4 Wig 2 \2 2
_UM-1,M . XZuiiZuii|si—si+ Z “(s5 =87 <7 (23)
Un M (o2 SM)J (20) =1 =1 =it i

and a corresponding lower bound. The sphere decoder né@in the real case, these terms are nonnegative and are exam-
chooses a candidate for,;_; within the range given by the ined in subsets to find bounds e, .. ., s,.

upper and lower bounds, and proceeds;a_», and so on. The termi = M yields
Eventually, one of two things happens: 1) the decoder reaches ) r
s1 and chooses a value within the computed range; or 2) the |sar = Sm| < Ui (24)
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a A
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Fig. 2. Intersection of search disk and 8-PSK constellation yields a subsefdg. 3. Intersection of search disk and a 16-QAM constellation can be obtained
the PSK constellation contained within the arc obtained by the intersectionlnf considering the QAM constellation as three concentric rings of points.
the two circle boundaries.
We note that complex constellations other than PSK may also

This inequality limits the search to points of the constellatiobe efficiently decoded using the complex sphere decoder. For ef-
contained in a complex disk of radiugusys centered akys.  ficient decoding, the decoder must be able to quickly recognize
These points are easily found when the constellation formsahich constellation points are contained within the search disk
complex circle (as in PSK). Fig. 2 shows graphically that thier every s,,,. Because identifying constellation points within
intersection of a disk and a circle is generally an arc. The angutbe search disk is simple when the points are arranged in a circle,
sweep of this arc can be obtained analytically by solving for thiefollows that constellation points that are arranged in concen-
overlap of the search disk and the constellation circle. tric circles can also easily be identified. For example, Fig. 3

Let sy = ree'®, wherefy € {0,2r/2M-, ... 2n(2™ —  shows how the 16-QAM constellation can be expressed as an
1)/2M-} are the2™- angles of the"<-PSK constellation, and arrangement of points in three concentric circles. Solving for
r. > 0 is the radius of the circle formed by the PSK constellahe points within the search disk simply requires solving the in-
tion. Denotes,; = #.¢% where?, > 0. Then (24) becomes equality (25) for three different values of. While 16-QAM

) can also be handled by the real sphere decoder by decoupling

lsar — Sar]? = 12 4+ 72 — 2r o cos(Oar — Oar) < ;" the real and imaginary equations to form a system of real equa-
D tions that is twice as large (see, for example, [9]), the complex

sphere decoder has a speed advantage because it does not double

which yields
y the effective dimension of the search lattice.

A 1 . 72
cos(Opr — Opr) > 5 7 [r3+rz - — ] =:n. (25) B. LSD

cTe MM

The previous section shows that the sphere decoder solves

If » > 1, then the search disk does not contain any point of tl@f4), (16), or (21). However, we are interested in computing
PSK constellatiqn. If) < —1, then the search disk in.cludes the{lZ). Finding the ML estimate,,; does not necessarily help,
entire constellation. For1 < 7 < 1, the arc is described by hecquse, although it is the estimate that makes (13) smallest, it
A 1 is not necessarily the estimate that maximizes the two terms in
|0ar — Oar] < cos™ . (12)

(We assume that < cos~!(-) < r.) Alternatively, the range of However, a simple modification to the sphere decoder helps
allowable constellation pointg is given by us to compute (12). The sphere decoder is modified to generate a

list £ of the N..,q pointss that make (13) smallest. This list, by
oM. oM. oM. . definition, must includé,,;, but its sizeN,,,q obeys2M M. >
<——0u< (Oar + cos™ 1)

I (a1 — cos ' < om o Neana > 1, and is predetermined sufficiently large so tifat
(26) also contains the maximizer of (12) with high probability. To
createl, the sphere decoder needs to be modified in two ways.
We may now choose a candidatg by lettingf,, be a point Every time it finds a point inside the initial radiusit: 1) does
within the range (26). The remainder of the algorithm proceedst decrease to correspond to the radius of this new point;
as in the real case. The sphere decoder establishes boundg)adds this point taC if the list is not already full; or if_ is
61 by finding its allowable arc using the two terms- M —  full, it compares this point with the point id with the largest
1, M in (23), chooses a candidate #y; 1, and so on. radius and replaces this point if the new point has smaller radius.
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Hence,L contains the ML estimate and...,, — 1 neighbors CTZEX%N = 202N. Therefore, from (15), one possible choice
for which (13) is smallest. The “soft” information about anyof radius is
given bitz, is essentially contained id because if there are
many entries inC with z, = 1, then it can be concluded that r* =20°KN —y* (I-HH'H) 'H")y (28
the likely value forzy, is indeed one, whereas, if there are few )
entries in with zj, = 1, then the likely value is minus one.WhereéK > 1 is chosen so that we are reasonably sure, as mea-
If there are no entries id with a prescribed bit value, then weSured by a confidence interval for thg ; random variable, that
can set its correspondingvalueL (1, |y) to an extreme value We Will capture the trus. Depending on the size ¥cana, We
whose size can be made an increasing function of the radiugnay Increase FhIS rad|us by some multiple of the covering radius
A largerr generally allows for largeN,,.q, which makes the ((_)r its approxmatlon) of '_[he Iattlce_ [35]. We have fqund that
list more reliable. In practice, a simple clippinglofvalues (in s!mple trial and error provides a satisfactory valuerfarithout
our case tak 8) also yields good results. difficulty.
Equation (12) is approximated usirgas
IV. PERFORMANCE EXAMPLES OF USING MULTIPLE
Lg (xk|y)z% o max {%IIy—H |2+ X[Tk] 'LA,[k]} ANTENNAS AT HIGH DATA RATES
xl b L 1 In this section, we demonstrate the near-capacity perfor-
—~  max {——2||y—H . s||2-|-x[Tk] 'LA,[k]} mance of the iterative LSD/APP detector/decoder. We focus
2xeLnXe 1| O on direct transmission, with an equal number of transmit and
(27)  receive antennasM x M system). We first compute some

wheres — magx). The approximation (27) becomes anchannel capacities and mutual information of constrained

equality only whenNgana = 2M M-, but the size 0fN ang constellations.
need_ed for good_ perform_ance is usually far less. Th_erefore,Arj Capacity of the Ergodic MIMO Channel
practice, computing (27) is much faster than computing (12). T o . )

There is also a tradeoff between the accuracy of (27) and théMVith direct transmission, and assuming that the entries of the
speed of the LSD. Findiny...q points is generally slower than c0mplex matrixH are independent complex Gaussian random
just findings,,; (which corresponds td,...q = 1), because the variables (Rayleigh amplitude, uniform phase) with unit vari-

search radius always stays-@nd does not decrease with everfNC€: the channel capacity of the model (1) is [2]
point that is found. But as noted in [34], the added complexity
of holding the radius fixed is small. Generally, we would like to
makeN..n.q as large as possible, while still having acceptable
complexity. We have more to say about how to choossd Wherep = E/20” is the SNR as physically measured at each
N.ana in Sections 111-C and IV-B. receive antenna, and the expectation is over the entrils ¥fe
We observe that for the LSD soft value calculatiof'Se the convention tha¥y/2 = o (double-sided noise power

(LSD/APP), the candidate list per block channel symbgt SPectral density) to define the SNR measpre: £ /No. For

can be computed just once and stored in memory, no maitg?) to be meaningful, the channel should be ergodic in the sense

how many iterations are used between the detector and deco the statistical nature #f is observed as the channel is used.
With every iteration, the updatepriori knowledgeL . from We'e}ssume that the channel is perfectly tracked by the receiver
the outer decoder ’is used for the metric calculaticlm of (2 nd interleaved so that successive channel uses see independent

searching the samg to find the maximizing hypotheses. If amples .OH' . .
. - To achieve any point on the capacity curve, a symbol constel-
buffer sizes are severely limited, the sphere detector can IQ

. . fion with a Gaussian distribution is generally needed. How-
rerun at every iteration. ever, to be practical, we restrict our attention to PSK or QAM
constellations. To see the effect of a PSK or QAM constellation
on the maximum achievable rate in the model (1), we compute

The list size Ncana measures how well (27) approximateshe mutual information between the outguand inputs, as-
(12). Suppose that the desired degree of approximation is @ming thatsy, . .., s5; are chosen independently and equally
tained for soméV.....4, and we need to chooseo obtainl with  likely from the constellation. The mutual information is com-
N.ana candidates, on average. Clearly; ifs chosen too small, puted using the formula
only a few points will be found inside the sphere, no matter how

C = Elog det (IN + %HH) (29)

C. Note on Choosing the Sphere Radius

large N,ana is. On the other hand, choosingoo large slows the I(s;y) = H(y) — H (yls) (30)
LSD down because it searches through many candidates before ] .
it finds the bestV..,.4 of them. where H(-) = —Elogp(-) is the entropy function. Standard

To obtain a rough idea of a typical valuengfwe note that for arguments show thaf (y|s) = N log 2ro?e for the Gaussian
the trues channel (1) for any symbol constellation. The tefiffy ) in (30)

is more difficult to compute and generally has no closed-form
ly — Hs||? = |n|> ~ 0% - x2x expression. For our purposes, it suffices to note that the ex-
pectation inH(y) = —Elogp(y) is over the three sources of
where x2, is a chi-square random variable witV degrees randomness in the choices ©fH, andn. This expectation is
of freedom. The expected value of this random variable éasily approximated numerically using sampling (Monte-Carlo)
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Fig. 4. Capacity (29) and mutual information versus,/N, for BN, (9B)
two-transmit/two-receive system in Rayleigh ergodic flat fading. The
uppermost curve is the capacity, and the remaining curves represent Fig 5. Capacity and mutual information versiis/ N, for four transmit/four
maximum data rates achievable by various symbol constellations. receive system in Rayleigh ergodic flat fading. The uppermost curve is
the capacity, and the remaining curves represent the maximum data rates
achievable by various symbol constellations.

methods. Whed/ M. is not too large, we may compute the ex-

pectation oves without approximation using a sum or RM M, information bits. We therefore define the signal en-
ergy per transmitted information bit at the receiver tafhe—
H(y) (N/RMM.,) - E, or, expressed in terms of logarithmic SNR
1 1 ) measures
=~ e S [l ] B B, N
NolaB ~— Nplas 810 RMM,”

;V]D?\fe tgi;’gln; ?g%vg?ng]t?oﬁgtgfefhgf(fgﬁs\ggﬁ?oau\?aﬁg all Since system capacity grows linearly with the number of an-
P ' tennas wher/ = N, capacity for a given PSK or QAM con-

tw-(l)—r][(raaaisrgiltt g;g?vncgl:gggi\fgognftz;ngo:S ZZ?gtﬁ:l?:?oni "Lt lation is attained at (approximately) the samgN, as de-
PP 9. = ed in (31), independently of the number of antennas.

capacity is represented by the uppermost curve [Gaussian inpu}h our examples, we use the same number of transmit and

(29)]. The re_maining curves can be thought of as generqlizati?é%eive antennas, sd = N. We use direct transmission, with
of constellation-constrained rate curves commonly available for special space’—time mapping. The sphere detector ’operates

single-antenna systems [36]. : : .
We would like to achieve a point on the capacity curv\ée:g rapidly because it has as many equations as unknowns [5],

(29) at some rat€’. To make our transmitted data rate we
must choose the vector constellation s&Zé*- and channel
code rateR such thatRM M. = C (channel coding theorem
[37]: error-free transmission possible f&M M. < C). We
also must consult Fig. 4 to ensure that the mutual informati

For the simulations, a ratB = 1/2 parallel concatenated
(turbo) code [7] of memory 2 with (recursive) feedback poly-
nomial G,.(D) = 1+ D + D? and feedforward polynomial

D) = 1+ D? is used. The interleaver size of the turbo
attained by the constellation is close to the capacity curve%%tde is 9216 information bits. As can be seen from Figs. 4 and

§} for a code rate o = 1/2 the contrained input capacity

¢. For example, suppose it is desired to achieve ¢ate: 6 (QPSK/16-QAM/64-QAM) is generally very close to the con-
(at Es/Noy = 11dB). One possibility is to choose a 64-QAMt. R ;
bol constellation, which has an uncoded maximum da{gupus (Gaussian) input capacity. . . .
sym £12 bits/ch ' | dach | cod Fig. 6 shows the performance of iterative detection and de-
'r:ailtei f!ts ¢ ahnne huse, an Ia.cf annet co iﬁaﬁésdl,/z-A coding for different modulation schemes (gray mapping) up
g. 4 conlirms t at. the mutua |n.0rmat|on or a 'Q.Mto M = N = 8 transmit/receive antennas. FofM, < 8
constellation at six bits/channel use is very close to capaC|ty.bitS per vector channel symbol, full APP detection was applied,
_ _ _ _ which searches ovez™?- hypotheses per detected bit. For
B. Discussion of Simulation Results MM, > 8, sphere detection with candidate lists of maximal
We first provide a definition of;, /Ny that is used in some lengthSN¢ana = 512(8 < MM, < 32) and Neana = 1024
of our performance curves. By our definition &f; in Sec- (32 < MM, < 48) were used. The respective capacity limits
tion I-A, the (average) signal energy per transmitted PSK ¢dashed lines) indicate how closely the MIMO capacity is ap-
QAM constellation symbok,,, is E;/M. Because the fading proached. The transmission is organized in blocks of length
coefficients are independent with unit variance, the (averag#)16 information bits. For each block, we performed four itera-
signal energy per receive antennais. Hence, theV receive tions over the MIMO detection loop, and eight iterations within
antennas collect total powé¥ E;, carrying M M. coded bits, the turbo decoder. These choices for the number of iterations
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Fig. 6. BER curves of QPSK, 16-QAM and 64-QAM ovex 1, 2x 2, 4x 4, and 88 MIMO channels; block size 9216 information bits, code Ate= 1/2,

memory 2 turbo code; APP and LSD/APP detection. The transmitted information rate (bits/channelliRs€)Js; for example, the %4 case with 64-QAM
transmits 12 bits/channel use and is roughly 4 dB from capacity.

were found to yield good overall BER performance. Increasing Fig. 7 compares the performance of iterative detection and
either number of iterations past these suggested numbersdaeoding using a very simple outer convolutional coffe£
creases the decoding complexity without materially improving/2, memory 2) with the turbo code. Although the final (after
performance. iterating) performance of the turbo code is better, the advantage
The BER curves in Fig. 6 for the & 1 case (one transmit, is only approximately 4 dB. Interestingly, we see that the gains
one receive) are given as references for turbo code performafroen the detector/decoder iterations are more pronounced with
on a Rayleigh channel. As a general rule, the more bits that #ine convolutional code.
involved in the detection proce&3/ - M..), the more candidates In Fig. 8, we can see how BER performance improves as
should be kept for computing the soft output values. Hence, thg, 4 is increased from 1 to 512. Since the sizeMaf,,.q iS
process of limiting the candidate list to a reasonable numberismeasure of time spent in the list sphere decoder and time
especially restrictive for the 64-QAM, 8 8 case (lower right spent computing (27), this figure gives a measure of the perfor-
BER chart of Fig. 6), wherd/ M. = 48. Most of the gap of mance/complexity tradeoff when using our proposed iterative
approximately 6 dB from the capacity limitis due to our settingSD/APP decoder.
Neana = 1024, which is a tiny fraction oM. ~ 2.81 x 104, In Fig. 9, we apply a ratd? = 3/4 memory 2 turbo code
the total number of hypotheses required for full APP detectiofpunctured version aR = 1/2 code used in previous examples)
To show that even this small list f...,,g = 1024 candidates is to yield the huge spectral efficiency &M M. = 36 bits per
very helpful, we note that reducing this list .., = 1 (list channel use (64-QAM on & 8 channel). In this case, the ML
contains ML estimate only) results in a BER curve with “turb@stimate by itself already performs quite well, but iterating with
cliff” at about 17 dB (not shown), representing a loss of 5 dB candidate list of lengtV...q = 512 gains another 3 dB and
over Neana = 1024, puts us less than 5 dB from capacity.
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hard decisi'on output detection + hard decisi'on output de'tection ——
soft output sphere detection —A— soft output sphere detection —A—
soft output sphere detection soft output sphere detection
0.1 4 detector iterations 0.1 8 iterations
4x4
4x4 channel
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. channel - 0.01 _16-QAM
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Fig. 7. BER curves for ML detection (hard decision output), LSD with no iterations (soft output detection, where the LSD output is used just or8B), and L
with multiple iterations of 16-QAM over a 4 4 channel; comparison of outer memory 2 turbo code (left) and outer memory 2 convolutional code (right), both of
code rateR = 1/2. The information rate is 8 bits/channel use, and capacity is at 3.7 dB.

1 - . T 1
8x8, QPSK, N g =512 ——
N ang = 256 8-
128 —4A—
0.1} 64 —o— 0.1
32 = 64QAM, R=3/4 turbo code
16 —A— . hard decision detection
8 e soft output sphere deteclfon
_ 001 3o g 00| o
w 1% o
[a]
0.001 0.001 8x8
channel
64-QAM
0.0001 \ 0.0001
Jf 1 1e-005 T e
1e-005 : : - ! 6 8 10 12 14 16 18 20
1 2 3 4 5 6 7 Eb/No [dB]

Eb/No [dB]
Fig. 9. BER curves for ML detection (hard decision output), LSD with no
Fig. 8. BER curves as a function of SNR for various valued/of,.q ranging iterations (soft output detection, where the LSD output is used just once), and
from 1 to 512, for an 8 8 channel transmitting QPSK witR = 1/2 memory LSD with multiple iterations of 64-QAM over an & 8 channel; memory 2
2 turbo code. The information rate is 8 bits/channel use, and capacity is at 1.6tdBo code of rate? = 3/4. The information rate is 36 bits/channel use, and
(see Fig. 6). AsV...q increases, performance improves, but the time neededw are a little over 4 dB from capacity.
compute (27) also rises.

V. CONCLUSION antennas is a single channel code followed by a linear map of
We have presented a computationally efficient methdfe coded data symbols to the transmit antennas. These coded
of achieving near-capacity on a multiantenna channel. THata symbols are then interleaved and sent over the transmit
method iterates the channel decoder and an LSD that find@ennas.
set of candidates from which the posterior bit probabilities can When there are more transmit than receive antennas, our ex-
be accurately computed. periments show (not reported here) that direct transmission still
Our approach scales easily with the symbol constellation sigéccessfully achieves capacity, but sphere detection becomes
and number of antennas, but we have focused primarily on cageye computationally burdensome. Alternatively, a mapping
with equal number of transmit and receive antennas. We neléch as used in [5] can be used to ensure that the number of
that space—time code design notions such as “diversity” that &guations at the receiver is at least as large as the number of
derived from pairwise probability of error criteria are not needaghknowns, without sacrificing channel capacity.
for our iterative method to achieve near-capacity. All that is The size of the listN...q in the modified sphere decoder
needed, in principle, for any combination of transmit and receiedosely determines the running time and closeness to capacity.
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We have provided some guidelines for choosiNg,,q as a

[22]

function of SNR and number of antennas. Generally, the larger
the information rate, the larger the list should be. In all cases,
the complexity is reasonable and is not exponential in the rati3]
or number of antennas, as optimal processing would be.

We have not yet examined the performance of our method of4

a static channel, where a comparison with outage capacity migh
be more appropriate than ergodic capacity.

t
(25]

Some possible ways that we have not considered to close tig;
remaining gap to capacity include improving the turbo code and

constellation shaping, especially at high rates.
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