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Achieving Near-Capacity on a
Multiple-Antenna Channel

Bertrand M. Hochwald and Stephan ten Brink

Abstract—Recent advancements in iterative processing of
channel codes and the development of turbo codes have allowed
the communications industry to achieve near-capacity on a
single-antenna Gaussian or fading channel with low complexity.
We show how these iterative techniques can also be used to
achieve near-capacity on a multiple-antenna system where the
receiver knows the channel. Combining iterative processing with
multiple-antenna channels is particularly challenging because
the channel capacities can be a factor of ten or more higher than
their single-antenna counterparts. Using a “list” version of the
sphere decoder, we provide a simple method to iteratively detect
and decode any linear space–time mapping combined with any
channel code that can be decoded using so-called “soft” inputs
and outputs. We exemplify our technique by directly transmitting
symbols that are coded with a channel code; we show that iterative
processing with even this simple scheme can achieve near-ca-
pacity. We consider both simple convolutional and powerful turbo
channel codes and show that excellent performance at very high
data rates can be attained with either. We compare our simulation
results with Shannon capacity limits for ergodic multiple-antenna
channel.

Index Terms—Bell Labs Layered Space–Time (BLAST), con-
catenated codes, fading channels, receive diversity, soft-in/soft-out,
sphere decoding, transmit diversity, turbo codes, wireless
communications.

I. INTRODUCTION AND MODEL

ONE WAY to get high rates on a scattering-rich wireless
channel is to use multiple transmit and/or receive an-

tennas [1], [2]. Many of the practical space–time schemes that
achieve these high rates, such as Bell Labs layered space–time
(BLAST) [1], orthogonal designs [3], [4], and linear dispersion
codes [5] are designed to have simple symbol detection at the
receiver because they map the symbols linearly to the transmit
antennas. The codes of [3] and [4] have very simple detectors
and are generally designed to optimize a raw block or bit
pairwise error performance criteria, while the codes in [5] are
designed to optimize an information-theoretic criterion.

However, any effort to achieve capacity on a channel usually
requires some form of “outer” channel code that provides redun-
dancy and/or interleavers to guard against bursty fading, inter-
ference, and additive receiver noise. In this case, the space–time
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encoder or mapper acts like an “inner” code that transmits sym-
bols that have redundancy introduced by the outer code. At the
receiver, the space–time detector is, therefore, confronted by
symbols that are correlated through the channel code, thus sig-
nificantly complicating the detection process.

The space–time transmission scheme and channel code can
be combined, as in the trellis codes of [6], but these combined
codes are generally designed by hand and have exponential state
complexity in the number of antennas. We seek simple schemes
that work for any combination of transmit and receive antennas,
and at the high capacities that these antennas promise on a flat-
fading channel.

We propose a method to iteratively detect and decode any
linear space–time mapper that is combined with an outer
channel code. By a linear space–time mapper, we mean that
the symbols to be transmitted on each antenna should be linear
functions of the encoded data stream; the method, therefore,
applies to many existing space–time mapping schemes. The
channel code can be any code that may be decoded using “soft”
inputs and outputs. Convolutional and turbo channel codes [7]
are natural candidates. The method works in an iterative fashion
to approximate the optimal joint detector/decoder. It is simple
to implement, computationally tractable, and, as we show, can
be used to achieve near-capacity on a multiple-antenna channel.

At the heart of our method lies a modified version of the
so-called “sphere decoder” [8]. The sphere decoder is intro-
duced for space–time processing in [9], where it is used to com-
pute the maximum-likelihood (ML) symbol estimate with com-
plexity comparable, at a high signal-to-noise ratio (SNR), to
the vertical (V)-BLAST nulling/cancelling algorithm [10]. Our
modification provides a list of candidates at the detector that al-
lows us to compute, with low complexity, the bit posterior prob-
abilities needed for our iterative decoder.

Some examples of iterative methods that combine channel
codes and space–time processing include [11]–[14]. These
studies are limited to small signal constellations or few antennas
because the underlying optimal detection algorithm is often
exponentially complex in one or both. Other examples include
[15] and [16], where the suboptimal V-BLAST nulling/can-
celling detection is combined with iterative processing. Another
iterative method [17] uses a suboptimal group-nulling/can-
celling approach to detection. Our method approaches the
performance of optimal joint detection and decoding, while
avoiding the exponential complexity in the number of antennas
and data rate. We are, therefore, able to handle huge rates (tens
of bits/channel use) at very low error probabilities.

Our method is fastest when the linear space–time mapper
gives us at least as many equations as unknown symbols at the
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receiver. When there are at least as many receive antennas as
transmit antennas, this condition is generally satisfied. When
there are more transmit than receive antennas, space–time map-
pers [3]–[5] can be used to achieve this condition by adding spa-
tial redundancy. Nevertheless, our method can be used without
any space–time mapper at all.

For simplicity, our simulations consider only examples where
the number of receive antennas equals the number of transmit
antennas. No special space–time mapping is used and, as we
show, we are able to approach capacity with a simple inter-
leaver, off-the-shelf turbo code, and our iterative detector. No
special multi-antenna code-design notions such as “diversity”
[6], [18]–[20] are needed.

Our capacity comparisons assume that the receiver knows the
fading channel characteristics, which are changing sufficiently
rapidly that the channel can be viewed as “ergodic.” We do not
consider a static model, where a comparison with an “outage”
capacity would be more appropriate.

A. Linear Model for Multiple-Input/Multiple-Output (MIMO)
Channel

Let be an vector of symbols (also referred to as
“vector constellation symbol”) whose entries are chosen from
some complex constellation [e.g,. quaternary phase-shift
keying (QPSK), 16-quadrature amplitude modulation (QAM)]
with , possible signal points, and letbe an
vector of received signals (also referred to as “vector channel
symbol”) related by

(1)

where is a complex matrix, known perfectly to the receiver,
and is a vector of independent zero-mean complex Gaussian
noise entries with variance per real component. We assume
that the vector obeys the component-wise
energy constraint E : this normalization makes
the total transmitted power . Many narrowband flat-fading
space–time transmission schemes can be written in this form.
For example, BLAST [1] uses the transmit antennas to send
a layered structure of signals, and therefore,represents the
number of transmit antennas, represents the number of re-
ceive antennas, and is the true MIMO matrix channel. Other
examples include orthogonal designs [3], [4], and linear disper-
sion (LD) codes [5] where is an effectivechannel derived
from one or more uses of the true channel. In this case,and

are generally only proportional to the number of transmit and
receive antennas. We refer to any use of the transmit antennas
such that represents the true channel asdirect transmission.
BLAST is an example of direct transmission.

We assume that the vector model (1) is used repeatedly to
transmit a continuous stream of data bits, separated into blocks
representing uses of the channel. For any given block, let the
components of the symbol vectorbe obtained using the map-
ping function map , (i.e., gray
mapping [21]) where is an vector (block) of data
bits, and is the number of bits per constellation symbol. The
vector of bits transmitted during one application of the model (1)
is written ; it is obtained by concatenating ,

such that the transmitted vector constellation symbol is
map . The uncoded transmitted information rate is then

bits per use of the channel (1). We designate a sequence of
blocks by .

If the information bits in the blocks are
uncoded, then decisions on the bits can be made either by
nulling/cancelling [10] or ML on a block-by-block basis. We,
however, consider to themselves be the output of
a channel code of rate that introduces redundancy and
correlation between its entries. The transmitted information
rate is then bits per effective channel use, and it is sub-
optimal for the signal detector and channel decoder to operate
separately and only on individual blocks. The detector should
make decisions jointly on all the blocks using knowledge of the
correlations across blocks introduced by the channel code, and
the channel code should decode using likelihood information
on all the blocks obtained from the signal detector. An iterative
method to accomplish joint detection and decoding is presented
in the next section.

II. I TERATIVE DETECTION AND DECODING

We regard the channel code and the MIMO channel as
a serially concatenated scheme [22], with an outer channel
encoder (typically a convolutional or turbo code), bit inter-
leaver, and inner space–time constellation mapping with block
encoding matrix . To decode optimally, the
joint detector/decoder should compute the likelihood of each
bit given all the blocks of received complex data
and the constraints imposed by the channel code. Generally,
with codes of even reasonable block lengths, this is compu-
tationally infeasible. Therefore, we are often content to solve
the simpler problems of having the MIMO detector incorporate
soft reliability information provided by the channel decoder,
and the channel decoder incorporate soft information provided
by the MIMO detector. Information between the detector and
decoder is then exchanged in an iterative fashion until desired
performance is achieved. While this iterative process is not
strictly optimal, it has been shown that the “turbo principle”
is very effective and computationally efficient in other joint
detection/decoding problems [23]–[26]. In this section, we
describe the basic principles of iterative detection and decoding
while emphasizing the portions that are important to the model
(1) and leaving the well-known channel coding details to
references.

Fig. 1 gives a flowchart of the iterative algorithm that we
use. The detector takes channel observationsand a priori
knowledge on the inner coded bits and computes new
(also referred to as “extrinsic”) information for each of
the coded bits per vector channel symbol. Then

is deinterleaved to become thea priori input to the
outer soft-in/soft-out decoder (maximuma posteriori (MAP),
a posteriori probability (APP), Bahl–Cocke–Jelinek–Raviv
(BCJR) algorithm [27], [28]) which calculates extrinsic infor-
mation on the outer coded bits. Then is reinterleaved
and fed back asa priori knowledge to the inner detector,
thus completing a cycle or “iteration.” Each iteration reduces
the bit-error rate (BER) by this exchange of information. In
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Fig. 1. Transmitter, MIMO channel, and receiver with iterative detection and
decoding. The subscript “1” denotes variables associated with the inner code
(consisting of space–time mapping and channel), and the subscript “2” denotes
variables associated with the outer channel code. For example,x is the same
as the variablex in (1).

Fig. 1, the subscript “1” denotes processing blocks that are
connected with the inner mapping/detection operation, whereas
the subscript “2” denotes processing blocks connected to the
outer encoding/decoding operations. One complete cycle of
information exchange between the sections labeled “1” and “2”
is an iteration.

Although the overall flow of the algorithm described in Fig. 1
is generally accepted and standard, the actions within the sub-
blocks largely determine the overall complexity and feasibility
of the algorithm. Since we are using standard convolutional or
turbo channel codes, the outer encoder and decoder are also rela-
tively standard. However, because we are using the multiantenna
model (1), the inner detector must be carefully designed to be
computationally efficient at the high data rates we are consid-
ering. We focus in detail on the detector in Section III, and now
describe how to compute the variousa priori and extrinsic quan-
tities used in Fig. 1.

A. MAP Bit Detection

Maximizing the MAP or APP for a given bit minimizes the
probability of making an error on that bit. The APP is usually ex-
pressed as a log-likelihood ratio value (L-value [23]).L-values
provide a convenient notation for describing the operation of
iterative decoding algorithms; simple add/subtract operations
are sufficient to separatea priori or old information from new
(“extrinsic”) information obtained during an APP detection/de-
coding cycle. As shown in Fig. 1, usually only extrinsic infor-
mation is exchanged in processing cycles. A decision is made
from anL-value by using its sign to tell whether the bit is a one
or zero. The magnitude of theL-value indicates the reliability of
the decision;L-values near zero correspond to unreliable bits. In
this paper, the logical zero for a bit is represented by amplitude
level , and logical one by .

We assume, for the moment, that we are working on a block of
bits corresponding to one use of the linear model (1). (For the

moment, we omit the subscripts used in Fig. 1.) Thea posteriori
L-value of the bit , , conditioned on
the received vector channel symbol, is

(2)

We assume that the bits inhave been encoded with a channel
code, but that an interleaver at the encoder is used to “scramble”
the bits from other blocks into our block, so that the bits within

are approximately statistically independent of one another.
Using Bayes’ theorem, and exploiting the independence of

by splitting up joint probabilities into prod-
ucts, we can write the soft output value as

(3)

where is the set of bit vectors having
; that is

(4)

is the set of indices with

(5)

(6)

By multiplying the numerator and denominator with
, we may write (3) as

(7)

where denotes the subvector ofobtained by omitting its
th element , and denotes the vector of all values,

also omitting . Thus, can be written as a sum ofa priori
L-value and extrinsicL-value . These manipulations are
standard and more details may be found in [23].

We may rewrite (7) using the subscripts used in Fig. 1 as

(8)

Equation (8) applies to the channel model (1), whererep-
resents the coded bits to be transmitted andis the vector mea-
surement obtained at the receiver, but we may also apply (7) to
the channel (error-correcting) code. Equation (7) then becomes
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the a posteriori L-value obtained from APP decoding of the
outer channel code. Thus, the channel decoder processing can
also be decomposed intoa priori and extrinsic components. We
omit a detailed description of this standard interpretation and
simply give the resulting equation for the channel code

(9)

In this equation, the raw data bits are denoted(see Fig. 1
variables with subscript “2”), and is now the set of vectors
whose length is the same as the interleaver, with .

B. Likelihood Function for APP Detection

An essential part of computing theL-value (7) for the de-
tector is computing the likelihood function . This is easily
found from (1)

map (10)

For theL-value calculation, only the term in the exponent is
relevant, and the constant factor outside the exponent can be
omitted.

C. Some Standard Simplifications for Digital Signal Processor
(DSP) Implementation

To evaluate the numerator and denominator in the log-likeli-
hood ratio computation in (7), it is sometimes advantageous to
use the “Jacobian logarithm.”

(11)

where can be viewed as a “refinement” of the coarse ap-
proximation . On a DSP with no exponential or
logarithm function, a Jac-log approximation can be obtained by
storing in a lookup table [28]. To compute the Jac-log ap-
proximation to for , we can use the recursive
calculation:

1) initialize:
2) compute: for to do .

Further simplications are possible by using the Max-log approx-
imation, which omits altogether. Simulations in [28] and
[29] show that the performance degradation over the Jac-log ap-
proximation is often very small. With the Max-log approxima-
tion, the extrinsicL-value of (7) becomes

(12)

where map .
Unfortunately, even with these simplifications, computing

is exponential in the length of the bit vectoror
the number of symbols in the constellation. To find the
maximizing hypotheses in (12) for each, there are
hypotheses to search over in each of the two terms. For even a
moderate block size , or bits per symbol , this complexity
may be overwhelming. For example, if the model (1) is used
with eight transmit and eight receive antennas and direct
transmission of a 16-QAM constellation, then
and . In the next section, we therefore
concentrate on finding a method to approximate (12) that
avoids this exhaustive search.

III. MIMO D ETECTIONUSING THESPHEREDECODER

A simple way to approximate (12) is to exclude from our
search for which

(13)

is large and include only the hypotheses for which (13) is small;
it turns out that, in practice, there are generally only a handful
of hypotheses for which (13) is small. In this handful, which
we call ourcandidate list, we can search for the hypotheses that
maximize the two terms in (12). Searching the candidate list
generally provides a good approximation of (12). In this sec-
tion, we describe the application of a list sphere decoding (LSD)
algorithm to rapidly find the candidate list. In the process, we
show how the sphere decoder, originally designed for real con-
stellations, may be modified to handle complex constellations.

We first give an overview of the sphere decoder for real con-
stellations and channels. The sphere decoder (or sphere detector,
as we may also call it in the context of MIMO detection) solves

(14)

where is the center of our search sphere, andis the lattice
defined by having each entry of the -dimensional vector
be taken from a constellation of consecutive integers. We
observe that

(15)

where is the unconstrained ML estimate
of . The true (constrained) ML estimate is, therefore

(16)
The sphere decoder may thus be used to find.

Solving (14) is generally difficult unless has orthogonal
columns, in which case, the -dimensional search becomes

simple one-dimensional searches. Otherwise, an exhaustive
search needs to examine different hypotheses. The
sphere decoder avoids an exhaustive search by examining only
those points that lie inside a sphere

(17)

with the given radius large enough to contain the solution. The
algorithm is described originally in [30] and refined in [8], and
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has its origins in finding the shortest vector in a lattice. Its appli-
cation as a decoder for fading channels is described in [31], and
as an ML decoder for multiple antenna channels in [5], [9], [32],
and [33]. As we show below, sphere decoding uses the same
Cholesky factorization of the channel matrix as in V-BLAST
nulling/cancelling algorithm described in [10], but it makes a
joint decision on the symbols.

We assume, for the moment, that has been chosen so
that the sphere (17) contains the solution to (14) and possibly
some additional points of the lattice. Let be an upper trian-
gular matrix chosen such that (using,
for example, Cholesky factorization). Let the entries ofbe
denoted , , and assume, without loss of
generality, that . Then (17) may be written

(18)

Each term in the sum overis nonnegative. The sphere decoder
establishes bounds on by examining these terms in
subsets.

Starting with , and throwing out the terms
, we obtain from (18)

or

(19)

(The function finds the smallest integer greater than or equal
to its argument, and finds the largest integer less than or equal
to its argument; these functions are used because the constella-
tion is assumed to be set of consecutive integers.) After com-
puting the lower and upper bounds in (19), the sphere decoder
chooses a candidate value for and computes the implica-
tions of this choice on . (Contrast this with the V-BLAST
nulling/cancelling algorithm, which makes a decision on at
this point.) To find the influence of the choice of on ,
the sphere decoder looks at the two terms in (18),
throws out the remaining terms, and obtains the inequality

which yields the upper bound

(20)

and a corresponding lower bound. The sphere decoder now
chooses a candidate for within the range given by the
upper and lower bounds, and proceeds to , and so on.

Eventually, one of two things happens: 1) the decoder reaches
and chooses a value within the computed range; or 2) the

decoder finds that no point in the constellation falls within the
upper and lower bounds obtained for some. In the first case,
the sphere decoder has a candidate solution for the entire vector
, computes its radius (which cannot exceed), and starts the

search process over, using this new smaller radius to find any
better candidates. In the second case, the decoder must have
made at least one bad candidate choice for . The
decoder revises the choice for (which immediately pre-
ceded the attempt for ) by finding another candidate value
within its range, and proceeds again to try. If no more can-
didates are available at , the decoder backtracks to ,
and so on.

The performance of the algorithm is closely tied to the choice
of the initial radius . The radius should be chosen large enough
so that the sphere contains the solution to (14). However, the
larger is chosen, the longer the search takes. Ifis chosen
too small, the algorithm could fail to find any point inside the
sphere, requiring thatbe increased. For good choices of(we
have more to say about how to chooselater), the algorithm
appears to be roughly cubic in for the values of that we
consider [33], [34]. This is a vast improvement over an exhaus-
tive search, which is exponential in .

A. Complex Sphere Decoder

The sphere-decoding algorithm described above applies to a
real system of equations whenis chosen from a real lattice.
Therefore, we may apply the algorithm to the complex system
(1) only when the real and imaginary components of, , and

can be decoupled to create a system of real equations with
twice the dimension of the original system. This decoupling is
possible, for example, when the entries ofare chosen from
a QAM constellation. It is not generally possible, however, for
PSK or other complex constellations. Fortunately, as we show,
the sphere decoder may be modified to handle complex constel-
lations as well.

We wish to solve

(21)

where and are complex, denotes conjugate-transpose,
and is a complex lattice in the sense that each coordinate of

is chosen from a complex constellation. The complex sphere
search is then

(22)

We use the Cholesky factorization to find an upper triangular
with real and positive such that . Then (22)
may be written

(23)

As in the real case, these terms are nonnegative and are exam-
ined in subsets to find bounds on .

The term yields

(24)
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Fig. 2. Intersection of search disk and 8-PSK constellation yields a subset of
the PSK constellation contained within the arc obtained by the intersection of
the two circle boundaries.

This inequality limits the search to points of the constellation
contained in a complex disk of radius centered at .
These points are easily found when the constellation forms a
complex circle (as in PSK). Fig. 2 shows graphically that the
intersection of a disk and a circle is generally an arc. The angular
sweep of this arc can be obtained analytically by solving for the
overlap of the search disk and the constellation circle.

Let , where
are the angles of the -PSK constellation, and

is the radius of the circle formed by the PSK constella-
tion. Denote where . Then (24) becomes

which yields

(25)

If , then the search disk does not contain any point of the
PSK constellation. If , then the search disk includes the
entire constellation. For , the arc is described by

(We assume that .) Alternatively, the range of
allowable constellation points is given by

(26)

We may now choose a candidate by letting be a point
within the range (26). The remainder of the algorithm proceeds
as in the real case. The sphere decoder establishes bounds on

by finding its allowable arc using the two terms
, in (23), chooses a candidate for , and so on.

Fig. 3. Intersection of search disk and a 16-QAM constellation can be obtained
by considering the QAM constellation as three concentric rings of points.

We note that complex constellations other than PSK may also
be efficiently decoded using the complex sphere decoder. For ef-
ficient decoding, the decoder must be able to quickly recognize
which constellation points are contained within the search disk
for every . Because identifying constellation points within
the search disk is simple when the points are arranged in a circle,
it follows that constellation points that are arranged in concen-
tric circles can also easily be identified. For example, Fig. 3
shows how the 16-QAM constellation can be expressed as an
arrangement of points in three concentric circles. Solving for
the points within the search disk simply requires solving the in-
equality (25) for three different values of. While 16-QAM
can also be handled by the real sphere decoder by decoupling
the real and imaginary equations to form a system of real equa-
tions that is twice as large (see, for example, [9]), the complex
sphere decoder has a speed advantage because it does not double
the effective dimension of the search lattice.

B. LSD

The previous section shows that the sphere decoder solves
(14), (16), or (21). However, we are interested in computing
(12). Finding the ML estimate does not necessarily help,
because, although it is the estimate that makes (13) smallest, it
is not necessarily the estimate that maximizes the two terms in
(12).

However, a simple modification to the sphere decoder helps
us to compute (12). The sphere decoder is modified to generate a
list of the points that make (13) smallest. This list, by
definition, must include , but its size obeys

, and is predetermined sufficiently large so that
also contains the maximizer of (12) with high probability. To
create , the sphere decoder needs to be modified in two ways.
Every time it finds a point inside the initial radiusit: 1) does
not decrease to correspond to the radius of this new point;
2) adds this point to if the list is not already full; or if is
full, it compares this point with the point in with the largest
radius and replaces this point if the new point has smaller radius.
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Hence, contains the ML estimate and neighbors
for which (13) is smallest. The “soft” information about any
given bit is essentially contained in because if there are
many entries in with , then it can be concluded that
the likely value for is indeed one, whereas, if there are few
entries in with , then the likely value is minus one.
If there are no entries in with a prescribed bit value, then we
can set its correspondingL-value to an extreme value
whose size can be made an increasing function of the radius.
A larger generally allows for larger , which makes the
list more reliable. In practice, a simple clipping ofL-values (in
our case to 8) also yields good results.

Equation (12) is approximated usingas

(27)

where map . The approximation (27) becomes an
equality only when , but the size of
needed for good performance is usually far less. Therefore, in
practice, computing (27) is much faster than computing (12).

There is also a tradeoff between the accuracy of (27) and the
speed of the LSD. Finding points is generally slower than
just finding (which corresponds to ), because the
search radius always stays atand does not decrease with every
point that is found. But as noted in [34], the added complexity
of holding the radius fixed is small. Generally, we would like to
make as large as possible, while still having acceptable
complexity. We have more to say about how to chooseand

in Sections III-C and IV-B.
We observe that for the LSD soft value calculation

(LSD/APP), the candidate list per block channel symbol
can be computed just once and stored in memory, no matter
how many iterations are used between the detector and decoder.
With every iteration, the updateda priori knowledge from
the outer decoder is used for the metric calculation of (27),
searching the same to find the maximizing hypotheses. If
buffer sizes are severely limited, the sphere detector can be
rerun at every iteration.

C. Note on Choosing the Sphere Radius

The list size measures how well (27) approximates
(12). Suppose that the desired degree of approximation is ob-
tained for some , and we need to chooseto obtain with

candidates, on average. Clearly, ifis chosen too small,
only a few points will be found inside the sphere, no matter how
large is. On the other hand, choosingtoo large slows the
LSD down because it searches through many candidates before
it finds the best of them.

To obtain a rough idea of a typical value of, we note that for
the true

where is a chi-square random variable with degrees
of freedom. The expected value of this random variable is

E . Therefore, from (15), one possible choice
of radius is

(28)

where is chosen so that we are reasonably sure, as mea-
sured by a confidence interval for the random variable, that
we will capture the true. Depending on the size of , we
may increase this radius by some multiple of the covering radius
(or its approximation) of the lattice [35]. We have found that
simple trial and error provides a satisfactory value forwithout
difficulty.

IV. PERFORMANCEEXAMPLES OF USING MULTIPLE

ANTENNAS AT HIGH DATA RATES

In this section, we demonstrate the near-capacity perfor-
mance of the iterative LSD/APP detector/decoder. We focus
on direct transmission, with an equal number of transmit and
receive antennas ( system). We first compute some
channel capacities and mutual information of constrained
constellations.

A. Capacity of the Ergodic MIMO Channel

With direct transmission, and assuming that the entries of the
complex matrix are independent complex Gaussian random
variables (Rayleigh amplitude, uniform phase) with unit vari-
ance, the channel capacity of the model (1) is [2]

E (29)

where is the SNR as physically measured at each
receive antenna, and the expectation is over the entries of. We
use the convention that (double-sided noise power
spectral density) to define the SNR measure . For
(29) to be meaningful, the channel should be ergodic in the sense
that the statistical nature of is observed as the channel is used.
We assume that the channel is perfectly tracked by the receiver
and interleaved so that successive channel uses see independent
samples of .

To achieve any point on the capacity curve, a symbol constel-
lation with a Gaussian distribution is generally needed. How-
ever, to be practical, we restrict our attention to PSK or QAM
constellations. To see the effect of a PSK or QAM constellation
on the maximum achievable rate in the model (1), we compute
the mutual information between the outputand input , as-
suming that are chosen independently and equally
likely from the constellation. The mutual information is com-
puted using the formula

(30)

where E is the entropy function. Standard
arguments show that for the Gaussian
channel (1) for any symbol constellation. The term in (30)
is more difficult to compute and generally has no closed-form
expression. For our purposes, it suffices to note that the ex-
pectation in E is over the three sources of
randomness in the choices of, , and . This expectation is
easily approximated numerically using sampling (Monte-Carlo)
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Fig. 4. Capacity (29) and mutual information versusE =N for
two-transmit/two-receive system in Rayleigh ergodic flat fading. The
uppermost curve is the capacity, and the remaining curves represent the
maximum data rates achievable by various symbol constellations.

methods. When is not too large, we may compute the ex-
pectation over without approximation using a sum

E

where the sum allows the entries of the vectorto run over all
possible combinations of the constellation values.

The result of computing (30) for various constellations for
two transmit and two receive antennas appears in Fig. 4. The
capacity is represented by the uppermost curve [Gaussian input,
(29)]. The remaining curves can be thought of as generalizations
of constellation-constrained rate curves commonly available for
single-antenna systems [36].

We would like to achieve a point on the capacity curve
(29) at some rate . To make our transmitted data rate, we
must choose the vector constellation size and channel
code rate such that (channel coding theorem
[37]: error-free transmission possible for ). We
also must consult Fig. 4 to ensure that the mutual information
attained by the constellation is close to the capacity curve at

. For example, suppose it is desired to achieve rate
(at dB). One possibility is to choose a 64-QAM
symbol constellation, which has an uncoded maximum data
rate of 12 bits/channel use, and a channel code rate .
Fig. 4 confirms that the mutual information of a 64-QAM
constellation at six bits/channel use is very close to capacity.

B. Discussion of Simulation Results

We first provide a definition of that is used in some
of our performance curves. By our definition of in Sec-
tion I-A, the (average) signal energy per transmitted PSK or
QAM constellation symbol is . Because the fading
coefficients are independent with unit variance, the (average)
signal energy per receive antenna is. Hence, the receive
antennas collect total power , carrying coded bits,

Fig. 5. Capacity and mutual information versusE =N for four transmit/four
receive system in Rayleigh ergodic flat fading. The uppermost curve is
the capacity, and the remaining curves represent the maximum data rates
achievable by various symbol constellations.

or information bits. We therefore define the signal en-
ergy per transmitted information bit at the receiver to be

, or, expressed in terms of logarithmic SNR
measures

(31)

Since system capacity grows linearly with the number of an-
tennas when , capacity for a given PSK or QAM con-
stellation is attained at (approximately) the same as de-
fined in (31), independently of the number of antennas.

In our examples, we use the same number of transmit and
receive antennas, so . We use direct transmission, with
no special space–time mapping. The sphere detector operates
very rapidly because it has as many equations as unknowns [5],
[33].

For the simulations, a rate parallel concatenated
(turbo) code [7] of memory 2 with (recursive) feedback poly-
nomial and feedforward polynomial

is used. The interleaver size of the turbo
code is 9216 information bits. As can be seen from Figs. 4 and
5, for a code rate of the contrained input capacity
(QPSK/16-QAM/64-QAM) is generally very close to the con-
tinuous (Gaussian) input capacity.

Fig. 6 shows the performance of iterative detection and de-
coding for different modulation schemes (gray mapping) up
to transmit/receive antennas. For
bits per vector channel symbol, full APP detection was applied,
which searches over hypotheses per detected bit. For

, sphere detection with candidate lists of maximal
lengths and

were used. The respective capacity limits
(dashed lines) indicate how closely the MIMO capacity is ap-
proached. The transmission is organized in blocks of length
9216 information bits. For each block, we performed four itera-
tions over the MIMO detection loop, and eight iterations within
the turbo decoder. These choices for the number of iterations
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Fig. 6. BER curves of QPSK, 16-QAM and 64-QAM over 1�1, 2�2, 4�4, and 8�8 MIMO channels; block size 9216 information bits, code rateR = 1=2,
memory 2 turbo code; APP and LSD/APP detection. The transmitted information rate (bits/channel use) isRMM ; for example, the 4�4 case with 64-QAM
transmits 12 bits/channel use and is roughly 4 dB from capacity.

were found to yield good overall BER performance. Increasing
either number of iterations past these suggested numbers in-
creases the decoding complexity without materially improving
performance.

The BER curves in Fig. 6 for the 1 1 case (one transmit,
one receive) are given as references for turbo code performance
on a Rayleigh channel. As a general rule, the more bits that are
involved in the detection process , the more candidates
should be kept for computing the soft output values. Hence, the
process of limiting the candidate list to a reasonable number is
especially restrictive for the 64-QAM, 8 8 case (lower right
BER chart of Fig. 6), where . Most of the gap of
approximately 6 dB from the capacity limit is due to our setting

, which is a tiny fraction of ,
the total number of hypotheses required for full APP detection.
To show that even this small list of candidates is
very helpful, we note that reducing this list to (list
contains ML estimate only) results in a BER curve with “turbo
cliff” at about 17 dB (not shown), representing a loss of 5 dB
over .

Fig. 7 compares the performance of iterative detection and
decoding using a very simple outer convolutional code (

, memory 2) with the turbo code. Although the final (after
iterating) performance of the turbo code is better, the advantage
is only approximately 4 dB. Interestingly, we see that the gains
from the detector/decoder iterations are more pronounced with
the convolutional code.

In Fig. 8, we can see how BER performance improves as
is increased from 1 to 512. Since the size of is

a measure of time spent in the list sphere decoder and time
spent computing (27), this figure gives a measure of the perfor-
mance/complexity tradeoff when using our proposed iterative
LSD/APP decoder.

In Fig. 9, we apply a rate memory 2 turbo code
(punctured version of code used in previous examples)
to yield the huge spectral efficiency of bits per
channel use (64-QAM on 8 8 channel). In this case, the ML
estimate by itself already performs quite well, but iterating with
a candidate list of length gains another 3 dB and
puts us less than 5 dB from capacity.
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Fig. 7. BER curves for ML detection (hard decision output), LSD with no iterations (soft output detection, where the LSD output is used just once), and LSD
with multiple iterations of 16-QAM over a 4� 4 channel; comparison of outer memory 2 turbo code (left) and outer memory 2 convolutional code (right), both of
code rateR = 1=2. The information rate is 8 bits/channel use, and capacity is at 3.7 dB.

Fig. 8. BER curves as a function of SNR for various values ofN ranging
from 1 to 512, for an 8� 8 channel transmitting QPSK withR = 1=2memory
2 turbo code. The information rate is 8 bits/channel use, and capacity is at 1.6 dB
(see Fig. 6). AsN increases, performance improves, but the time needed to
compute (27) also rises.

V. CONCLUSION

We have presented a computationally efficient method
of achieving near-capacity on a multiantenna channel. The
method iterates the channel decoder and an LSD that finds a
set of candidates from which the posterior bit probabilities can
be accurately computed.

Our approach scales easily with the symbol constellation size
and number of antennas, but we have focused primarily on cases
with equal number of transmit and receive antennas. We note
that space–time code design notions such as “diversity” that are
derived from pairwise probability of error criteria are not needed
for our iterative method to achieve near-capacity. All that is
needed, in principle, for any combination of transmit and receive

Fig. 9. BER curves for ML detection (hard decision output), LSD with no
iterations (soft output detection, where the LSD output is used just once), and
LSD with multiple iterations of 64-QAM over an 8� 8 channel; memory 2
turbo code of rateR = 3=4. The information rate is 36 bits/channel use, and
we are a little over 4 dB from capacity.

antennas is a single channel code followed by a linear map of
the coded data symbols to the transmit antennas. These coded
data symbols are then interleaved and sent over the transmit
antennas.

When there are more transmit than receive antennas, our ex-
periments show (not reported here) that direct transmission still
successfully achieves capacity, but sphere detection becomes
more computationally burdensome. Alternatively, a mapping
such as used in [5] can be used to ensure that the number of
equations at the receiver is at least as large as the number of
unknowns, without sacrificing channel capacity.

The size of the list in the modified sphere decoder
closely determines the running time and closeness to capacity.
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We have provided some guidelines for choosing as a
function of SNR and number of antennas. Generally, the larger
the information rate, the larger the list should be. In all cases,
the complexity is reasonable and is not exponential in the rate
or number of antennas, as optimal processing would be.

We have not yet examined the performance of our method on
a static channel, where a comparison with outage capacity might
be more appropriate than ergodic capacity.

Some possible ways that we have not considered to close the
remaining gap to capacity include improving the turbo code and
constellation shaping, especially at high rates.

REFERENCES

[1] G. J. Foschini, “Layered space–time architecture for wireless commu-
nication in a fading environment when using multi-element antennas,”
Bell Labs. Tech. J., vol. 1, no. 2, pp. 41–59, 1996.

[2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,”Eur. Trans.
Telecommun., vol. 10, pp. 585–595, Nov. 1999.

[3] S. M. Alamouti, “A simple transmitter diversity scheme for wireless
communications,” IEEE J. Select. Areas Commun., vol. 16, pp.
1451–1458, Oct. 1998.

[4] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block
codes from orthogonal designs,”IEEE Trans. Inform. Theory, vol. 45,
pp. 1456–1467, July 1999.

[5] B. Hassibi and B. Hochwald, “High-rate codes that are linear in space
and time,” IEEE Trans. Inform. Theory, vol. 48, pp. 1804–1824, July
2002.

[6] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space–time codes for
high data rate wireless communication: performance criterion and code
construction,”IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, 1998.

[7] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: turbo-codes,” inProc. Int. Conf.
Communications, May 1993, pp. 1064–1070.

[8] U. Fincke and M. Pohst, “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,”Math.
Comput., vol. 44, pp. 463–471, Apr. 1985.

[9] M. O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder for
space–time codes,”IEEE Commun. Lett., pp. 161–163, May 2000.

[10] G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky,
“Detection algorithm and initial laboratory results using V-BLAST
space–time communication architecture,”Electron. Lett., vol. 35, pp.
14–16, Jan. 1999.

[11] A. M. Tonello, “Space–time bit-interleaved coded modulation with an
iterative decoding strategy,” inProc. Vehicle Technology Conf., Sept.
2000, pp. 473–478.

[12] A. van Zelst, R. van Nee, and G. Awater, “Turbo-BLAST and its perfor-
mance,” inProc. Vehicle Technology Conf., May 2001, pp. 1282–1386.

[13] H.-J. Su and E. Geraniotis, “Space–time turbo codes with full antenna
diversity,” IEEE Trans. Commun., vol. 49, pp. 47–57, Jan. 2001.

[14] C. Schlegel and A. Grant, “Concatenated space–time coding,” inProc.
PIMRC, San Diego, CA, Sept. 2001, pp. 139–143.

[15] M. Sellathurai and S. Haykin, “Turbo-BLAST for high-speed wireless
communications,” inProc. WCNC, Sept. 2000, pp. 315–320.

[16] S. L. Ariyavisitakul, “Turbo space–time processing to improve wireless
channel capacity,”IEEE Trans. Commun., vol. 48, pp. 1347–1359, Aug.
2000.

[17] A. Stefanov and T. Duman, “Turbo-coded modulation for systems with
transmit and receive antenna diversity over block fading channels:
System model, decoding approaches, and practical considerations,”
IEEE J. Select. Areas Commun., vol. 19, pp. 958–968, May 2001.

[18] J.-C. Guey, M. P. Fitz, M. R. Bell, and W.-Y. Kuo, “Signal design for
transmitter diversity wireless communication systems over Rayleigh
fading channels,” inProc. IEEE VTC, Atlanta, GA, 1996, pp. 136–140.

[19] A. R. Hammons, Jr. and H. El Gamal, “On the theory of space–time
codes for PSK modulation,”IEEE Trans. Inform. Theory, vol. 46, pp.
524–542, Mar. 2000.

[20] B. Hochwald and T. L. Marzetta, “Unitary space–time modulation for
multiple-antenna communication in Rayleigh flat fading,”IEEE Trans.
Inform. Theory, vol. 46, pp. 543–564, Mar. 2000.

[21] E. Biglieri, G. Taricco, and E. Viterbo, “Bit-interleaved space–time
codes for fading channels,” inProc. Conf. Information Science and
Systems (CISS), Princeton, NJ, Mar. 15–17, 2000, pp. WA4/1–WA4/6.

[22] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial con-
catenation of interleaved codes: performance analysis, design and itera-
tive decoding,”IEEE Trans. Inform. Theory, vol. 44, pp. 909–926, May
1998.

[23] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary and
block convolutional codes,”IEEE Trans. Inform. Theory, vol. 42, pp.
429–445, Mar. 1996.

[24] J. Hagenauer, “The turbo principle: tutorial introduction and state of the
art,” in Proc. 1st Int. Symp. Turbo Codes, Sept. 1997, pp. 1–12.

[25] X. Li and J. A. Ritcey, “Bit-interleaved coded modulation with iterative
decoding,” inProc. Int. Conf. Communications, June 1999, pp. 858–862.

[26] S. ten Brink, J. Speidel, and R. Yan, “Iterative demapping and decoding
for multilevel modulation,” in Proc. GLOBECOM, Nov. 1998, pp.
579–584.

[27] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,”IEEE Trans. Inform. Theory,
vol. IT-20, pp. 284–287, Mar. 1974.

[28] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
suboptimal MAP decoding algorithms operating in the log domain,” in
Proc. Int. Conf. Communications, June 1995, pp. 1009–1013.

[29] J. Hagenauer, P. Robertson, and L. Papke, “Iterative (‘turbo’) decoding
of systematic convolutional codes with the MAP and SOVA algorithms,”
in Proc. ITG Symp. Source and Channel Coding, 1994, pp. 21–29.

[30] M. Pohst, “On the computation of lattice vectors of minimal length, suc-
cessive minima and reduced bases with applications,” inProc. ACM
SIGSAM, 1981, pp. 37–44.

[31] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels,”IEEE Trans. Inform. Theory, vol. 45, pp. 1639–1642, July
1999.

[32] B. Hochwald and B. Hassibi, “Cayley differential unitary space–time
codes,”IEEE Trans. Inform. Theory, vol. 48, pp. 1485–1503, June 2002.

[33] M. O. Damen, K. Abed-Meraim, and M. S. Lemdani, “Further results
on the sphere decoder,” inProc. IEEE Int. Symp. Information Theory,
June 2001, p. 333.

[34] B. Hassibi, Private Communication, 2001.
[35] J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and

Groups. New York: Springer-Verlag, 1988.
[36] J. Wozencraft and I. Jacobs,Principles of Communication Engi-

neering. New York: Wiley, 1965.
[37] C. E. Shannon, “A mathematical theory of communication,”Bell Syst.

Tech. J., vol. 27, pp. 379–423, Oct. 1948.

Bertrand Hochwald was born in New York,
NY. He received the undergraduate degree from
Swarthmore College, Swarthmore, PA, and the
M.S. degree in electrical engineering from Duke
University, Durham, NC. In 1989, he enrolled at
Yale University, New Haven, CT, where he received
the M.A. degree in statistics and the Ph.D. degree
in electrical engineering.

From 1986 to 1989, he worked for the United
States Department of Defense, Fort Meade, MD.
In 1995–1996 he was a Research Associate and

Visiting Assistant Professor at the Coordinated Science Laboratory, University
of Illinois, Urbana-Champaign. He joined the Mathematics of Communications
Research Department at Lucent Technologies Bell Laboratories, Murray Hill,
NJ, in September, 1996, where he is now a Distinguished Member of the
Technical Staff. He holds several patents in the field of multiantenna wireless
communication.

Dr. Hochwald is the recipient of several achievement awards while with the
Department of Defense and the Prize Teaching Fellowship at Yale.

Stephan ten Brink received the Dipl.-Ing. degree
in electrical engineering and information technology
from the University of Stuttgart, Stuttgart, Germany,
in 1997.

From 1997 to 2000 he was a Research Assistant
at the Institute of Telecommunications, Stuttgart,
Germany, where he was working toward the doctoral
degree. Since November 2000, he has been with the
Wireless Research Lab, Bell Laboratories, Lucent
Technologies, Holmdel, NJ. His research interests
include error-correcting coding, channel estimation,

and iterative detection and decoding for digital communication systems.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


