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Abstract

In this paper, we describe a program generator for physical
layer (PHY) baseband processing in a software-defined radio
implementation. The input of the generator is a very high-
level platform-independent description of the transmitter and
receiver PHY functionality, represented in a domain-specific
declarative language called Operator Language (OL). The out-
put is performance-optimized and platform-tuned C code with
single-instruction multiple-data (SIMD) vector intrinsics and
threading directives. The generator performs these optimiza-
tions by restructuring the algorithms for the individual com-
ponents at the OL level before mapping to code. This way
known compiler limitations are overcome. We demonstrate
the approach and the excellent performance of the generated
code on on the IEEE 802.11a (WiFi) receiver and transmitter
PHY for all transmission modes.

1 Introduction

A major challenge in implementing software-defined radios
(SDRs) is meeting the real-time demands of the signal process-
ing in the physical layer (PHY). For this reason, most common
SDR platforms are not software-only, but use a hybrid archi-
tecture that, besides a digital signal processor (DSP) or a gen-
eral purpose processor (GPP), also includes one or more field-
programmable gate arrays (FPGA). The PHY functionality is
then partitioned across these devices, making the implementa-
tion, optimization, and maintenance difficult and costly.

Recently, true SDR has come into reach with modern multi-
core GPPs (e.g., Intel Core [1]), or multi-core DSPs (e.g., the
Sandblaster DSP [2, 3] or Tilera [4]). However, optimizing
the PHY layer for these processors is still very challenging
since it requires careful tuning to the memory hierarchy, the
explicit use ofν-way single-instruction multiple-data (SIMD)
vector instruction, and efficient threading. Further, whenthe
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platform changes, the code still has to be reoptimized, since
performance usually does not port.

Contribution of this paper. In this paper, we propose to
overcome these problems using a program generator for PHYs.
The generator is based on Spiral [5–8] and automates the pro-
duction and optimization of PHY source code. The input to
the generator is a high-level, platform-independent descrip-
tion of the PHY receiver or transmitter functionality, described
in a domain-specific mathematical declarative language called
Operator Language (OL). The output is highly optimized C
code including SIMD vector intrinsics and threading direc-
tives. Difficult optimizations, such as vectorization, areper-
formed at the OL level using a platform-cognizant rewriting
system that effectively manipulates the algorithm based ona
few hardware parameters to obtain a suitable structure. Sim-
ilarly, our generator is able to perform cross-block optimiza-
tions and to efficiently map different parts of the computation
to different data types (e.g., 16-way bytes for Viterbi decoding
and 4-way floating point for the fast Fourier transform).

The main contribution of the presented work is to show
that the PHY layer can be expressed in OL (which was proto-
typically introduced in [9]), to include the necessary support
for multiple data types and cross block optimizations into the
generator, and finally, the generated code, which has excellent
performance.

We demonstrate the latter for both the transmitter and re-
ceiver of IEEE 802.11a (WiFi) on the Intel platforms Core
and Atom (backends for other architectures are in develop-
ment). For example, the generated code achieves real-time
WiFi transmission speeds for all data rates up to 54 Mbps on
an off-the-shelf Intel Core based system. Further, we show
that the computer-generated code outperforms the best hand-
optimized code.

2 Background and Prior Work

To date most SDR implementations run (fully or partially) on
an FPGA [10]. Although FPGAs are reconfigurable, the PHY
implementation still has to be done in Verilog or VHDL just

1



as for application specific integrated circuits (ASIC). Thedif-
ference compared to a true software PHY implementation is
that in an FPGA or ASIC design, the hardware is designed to
match the algorithm, naturally using fine grained parallelism
and pipelining to achieve high performance.

First true software PHY implementations used a single DSP
that is programmed serially [11–13]. Although fully flexi-
ble (and easy to program), these could not achieve real-time
performance for computational intensive PHY standards like
WiFi. Recent processors possess multiple cores, each typically
possessing further parallelism in the form of SIMD vector ex-
tensions [1–4,14,15]. While these platforms come close to the
computational power needed to run PHY standards like WiFi,
it also becomes increasingly challenging to implement PHY
software that exploits the full computational potential.

Finally, a quite different kind of SDR platforms has sur-
faced, using simple radio front-end boards attached to com-
modity personal computers (PCs) [16–18]. These are mostly
of interest for academic test-beds as in [18,19] and run the full
functionality on a PC that commonly features an Intel or simi-
lar GPP. Hence the challenges to efficiently utilize the compu-
tational resources in terms of SIMD and multicore parallelism
are quite similar to the SDR platforms described above.

3 Operator Language and PHYs

The operator Language (OL) [9] is a domain-specific declar-
ative mathematical language used to represent certain classes
of numerical algorithms. OL is an extension or superset of
SPL [5,20,21] to cover non-linear multi-input and multi-output
operations. The idea behind SPL and OL is to formally repre-
sent algorithm knowledge in a platform-independent way. Ac-
tual code is generated from this representation using a number
of steps that depend on the target platform. We first introduce
SPL and then extend the discussion to OL.

SPL. SPL is a language to describe fast algorithms for lin-
ear transforms, which are functions of the formx 7→ y = Mx
with a fixed matrixM . By slight abuse of notation we will
simply refer toM as transform. An example is the discrete
Fourier transform (DFT) defined by

M = DFTn = [ωij
n ]0≤i,j<n,

whereωn = e−2π
√
−1/n. An SPL program, or formula, is a

fast algorithm for a transformM represented as a factorization
of M into a product of sparse matrices.

SPL contains basic matrices such as the identity matrixIn,
diagonal matricesdiag0≤m<n(f(m)) with a scalar function
f , or the stride permutation matrixLn

k , which transposes an
n/k × k matrix stored linearized in memory. More complex
SPL formulas are built from other SPL formulas using matrix
operators, such as the matrix productA · B or the Kronecker
productA ⊗ B defined as

A ⊗ B = [aijB]i,j , for A = [ai,j ]i,j .

All SPL constructs have natural interpretations as code. For
example, the formulaM = A · B, implies the two-step com-
putationt = Bx; y = At.

Using SPL, the well-known Cooley-Tukey fast Fourier trans-
form (FFT) is expressed as

DFTkm = (DFTk ⊗ Im) diag tkm
m (Ik ⊗DFTm) Lkm

k .
(1)

It shows thaty = DFTkm x can be computed in four steps
corresponding to the four factors in (1). Two of the steps in-
volve the recursive computation of smaller DFTs.

Further important building blocks of SPL, and later OL,
are the following matrices parametrized by index mappings.

An index mappingis a function on integer intervals. De-
noteen

i thei-th column basis vector of sizen, i.e., the column
vector ofn elements, with a 1 ini-th position and 0s elsewhere.
Given an index mapping functionf , gather and scatter matri-
cesare defined as follows:

f : {0, . . . , n − 1} → {0, . . . m − 1},

G(f) =
[

em
f(0)| . . . |e

m
f(n−1)

]

,

S(f) = G(f)T =
[

em
f(0)| . . . |e

m
f(n−1)

]T

.

OL. OL is a superset of SPL. Where SPL can only describe
transforms, i.e., linear single-input and single-output opera-
tions, OL removes this restriction and considers more general
operators. An operator of arity(c, d) is a function that takesc
vectors as input and producesd vectors as output. For exam-
ple, ak × n matrix M , the simplest possible SPL formula, is
in OL viewed as the arity(1, 1) operator

Mk×n : C
n → C

k.

The matrix productAm×n ·Bn×k becomes in OL the operator
composition, e.g.,

Am×n ◦ Bn×k : C
k → C

m.

The tensor product of matrices generalizes to tensor product
of operators, but in this paper we only need one special case.
Namely for any arity(1, 1) operatorA : C

m → C
n; x 7→

A(x), Ik ⊗A is defined as

Ik ⊗A : C
km → C

kn;

x 7→ (A(x0, . . . , xm − 1), . . . , A(x(k−1)m, . . . xkm−1)).

WiFi physical layer in OL. The 802.11a OFDM trans-
mitter (TX) and receiver (RX) map data bits into a complex
baseband signal and vice versa. Formally, and more precisely,

WiFiTX k,m,r : Z
48kmr−6
2 → C

80k, (2)

WiFiRX k,m,r : C
80k → Z

48kmr−6
2 . (3)

Namely, if a number, sayℓ, bits are to be transmitted at a trans-
mission mode characterized by a modulation scheme withm ∈
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WiFiTX k,m,r =
h

Ik ⊗
`
CPIns64 ◦ IDFT 64 ◦ PltIns64 ◦ Map

48,m ◦ Int 48m ◦ Puncr
48m ◦ CvEnc48m,r ◦ Scrsℓ

´i

(5)

=
h

Ik ⊗
`

»
G(h64,1)
G(h0,1)

–

◦ IDFT 64 ◦ S(plt
48

)

| {z }

◦(I48 ⊗M1,m) ◦ G(int48m) ◦ G(dr
48m) ◦ CvEnc48m,r

| {z }
◦(+s).

´i

(6)

WiFiRX h̃
k,m,r = Scrsℓ ◦ VitDecℓ ◦ DePuncr48km ◦

h

Ik ⊗
`
DeInt48m ◦ DeMap

48,m ◦ PltRm64 ◦ Eqh̃ ◦ DFT64 ◦ CPRm64

´i

(7)

= (+s) ◦ VitDecℓ ◦ S(dr
48km)

| {z }
◦

h

Ik ⊗
`
S(int48m) ◦ (I48 ⊗M−1

8,m) ◦ G(plt
48

)
| {z }

◦ diag(h̃) ◦ DFT64 ◦ G(h0,1)
| {z }

´i

(8)

Rate Modulation Bits/sc. Code Coded bits/ Data bits/
Mbps m rater symb. symb.,NDBPS

6 BPSK 1 1/2 48 24
9 BPSK 1 3/4 48 36

12 QPSK 2 1/2 96 48
18 QPSK 2 3/4 96 72
24 16-QAM 4 1/2 192 96
36 16-QAM 4 3/4 192 144
48 64-QAM 6 2/3 288 192
54 64-QAM 6 3/4 288 216

Table 1: Data rates in IEEE 802.11a with corresponding modulation
schemes and coding rates [22]. (sc. = subcarrier; symb. = symbol)

{1, 2, 4, 6} bits per subcarrier and coding rater ∈ {1/2, 3/4,
2/3}, they will take up

k = ⌈ℓ/NDBPS + 6⌉ = ⌈ℓ/(48mr) + 6⌉ (4)

OFDM symbols, whereNDBPS = 48mr is the number of data
bits per OFDM symbol, see Table 1. The data bits are ap-
pended with zero bits to fill exactlyk ODFM symbols and we
will always assume the TX and RX operate on this extended
bit sequence.

An important difference of physical layer computations
from other types of numerical codes is the diversity of used
data types, which is also evident above. The transmitter maps
bits (denoted withZ2) to complex (floating point) values (de-
noted withC), and the receiver vice versa. The actual imple-
mentation will use one or more additional data types during the
course of computation to optimally use the available vectorin-
struction set. This makes the domain and range specifications
of blocks, as in (2)–(3) very important.

We now translate the entire computation data flow of the
receiver and transmitter PHY as defined in [22] into OL. The
result is (5) and (7), and the occurring blocks (marked bold)
are defined in Table 2. We show a further decomposition in
(6) and (8), where some of the blocks are broken down them-
selves. Braces show the grouping of operations in the later
implementation.

Table 2 defines all of the blocks in the receiver and trans-
mitter. Most of the blocks are linear, and perform a matrix
vector product; the OL definition can thus be interpreted as
a matrix. The non-linear blocks areMap, DeMap, PltIns,

VitDec, andScr.
All of the blocks, except for the Viterbi decoderVitDec,

can be defined in terms of primitive OL constructs and matri-
ces, and most of the blocks are normally computed by defini-
tion. The important exceptions are the DFT, and the Viterbi de-
coder, for which several alternative fast algorithms exist(e.g.,
for the DFT the choice ofk in (1)), which are again expressed
in OL.

PltIns, PltRm, Int , DeInt, Punc andDePuncare all ba-
sically data reorderings or padding operations and thus can
be expressed as a gather or scatter with the corresponding in-
dex mapping functionplt, int, andd respectively for pilot re-
moval/insertion, (de)interleaver, and (de)puncturing. The pre-
cise form is not relevant here. We do show the matrix struc-
tures of (de)interleaver and (de)puncturer, but in translating
these to code, these structures are not used.

The modulator and demodulator are defined by the scalar
functionsM andM−1 that mapm hard bits to a complex num-
ber, and, vice-versa, a complex number tom soft bit estimates.

Implementation degrees of freedom.Before the OL for-
mulas (6) and (8) can be mapped to code, all remaining un-
expanded blocks (in bold) must be expressed in primitive OL
constructs. There are multiple ways of doing so that corre-
spond to different computational algorithms and the internal
degrees of freedom within the algorithms. Spiral employs feed-
back driven search to make the best, i.e., fastest choice on
the given platform. This search effectively performs platform
adaptation. In the interest of space, we only briefly discuss
some of these degrees of freedom next.

The tensor productIk ⊗ A itself is not a primitive con-
struct. It has four alternative implementations: as a loop over
A, as a parallel loop, as a vectorized loop, or via loop splitting
(discussed below). The parallelization and vectorizationis im-
plemented using special tags, explained in [6, 7]. If the tensor
product is not vectorized, the vectorization is performed “in-
ternally,” i.e., in A, via rewrite rules (not shown here). An
interesting twist in the case of both internal and external vec-
torization, is that the inner subformula of the tensor product
operates on different data types, each having different associ-
ated vector length, which makes the vectorization more com-
plex. The equivalent of loop splitting is the transformation
I⊗AB → (I⊗A)(I⊗B). In our experiments, such “vertical”
implementations always performed better.
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Operator Notation Domain → Range Definition

Cyclic prefix insertion CPIns64 C
64

→ C
80

"

I16

I64

#

=

"

G(h64,1)

G(h0,1)

#

Cyclic prefix removal CPRm64 C
80

→ C
64

h

064×16 I64

i

= G(h16,1)

Forward DFT DFT64 C
64

→ C
64 [ωij

64
]0≤i,j<64

Inverse DFT IDFT 64 C
64

→ C
64 [ω−ij

64
]0≤i,j<64

Pilot tone insertion PltIns64 C
48

→ C
64 (+P ) ◦ S(plt

48
)

Pilot tone removal PltRm64 C
64

→ C
48 G(plt

48
)

Symbol mapping Map
48,m Z

48m
2 → C

48 I48 ⊗Mm,1

Symbol demapping DeMap
48,m C

48
→ Z

48m
28 I48 ⊗M−1

m,8

Bit interleaving Int 48m Z
48m
2 → Z

48m
2 G(int48m) =

(

L48m
3 , m≤2,

(I16 ⊗i(I6 ⊗Z
m/2

i )) L48m
3 , m>2.

Bit deinterleaving DeInt48m Z
48m
28 → Z

48m
28 S(int48m) = (Int 48m)T

Puncturing Puncr
48m Z

2·48mr
2 → Z

48m
2 G(dr

48m) = (I48m/6 ⊗ Sr)

Depuncturing DePuncr48km Z
48km
28 → Z

2·48kmr
28 S(dr

48km) = (I48km/6 ⊗ ST
r ) = (Puncr

48km)T

Convolutional encoding CvEnc48m,r Z
48mr
2 → Z

2·48mr
2 L2mr

mr [C0 C1]
T

Viterbi decoding VitDeck,m,r Z
2·48kmr
28 → Z

48kmr−6

2

Channel equalization Eqh̃ C
64

→ C
64 diag h̃

(De)Scrambling Scrsℓ Z
ℓ
2 → Z

ℓ
2 Il ⊗i(+s)

S1/2 = I12, S2/3 = I3 ⊗
h

1 0 0 0

0 1 0 0

0 0 1 0

i

, S3/4 = I2 ⊗

»
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

–

, Zn
i =

h
Ii

In−i

i

.

hb,s : i 7→ b + is (strides index mapping), (+a) : X 7→ X + a (“add constant” operator)

Mm,1 : Z
m
2 → C is them-bit modulation operator, M−1

m,8 : C → Z
m
28 is the demodulation operator tom 8-bit estimates

h̃ is the inverted channel freq. response, 64-element vector, plt, int, d are index mapping functions, not shown here.

C0, C1 are the Toeplitz matrices formed from the degree-7 bit polynomials

Table 2: Definition of the block operators used in (5)– (8).

Next, theDFT andIDFT blocks have different vectoriza-
tion possibilities [6], different choices of radices in theCooley-
Tukey algorithm, and alternative algorithms.

For the Viterbi decoder, [23] gives the OL description of
the standard decoding algorithm. However, there exist other
algorithms, amenable to parallelization, e.g. [24], whichcould
provide scaling beyond 2 threads enabled by pipelined paral-
lelism. In our implementation of the Viterbi decoder we only
consider the degree of unrolling.

The convolutional encoder can be treated as an FIR fil-
ter on blocks, and most FIR filter breakdown rules in Spiral
apply. Most importantly, these include different vectorization
strategies; less important are FIR blocking rules that improve
register reuse.

Alternatively, the convolutional encoder can be grouped
with the adjacent matrices, resulting in a single matrix-vector
product with a less structured matrix. This matrix-vector prod-
uct has several degrees of freedom including different ways
of blocking for locality, and different vectorization methods
(tiling into vector-sized diagonals, cyclic diagonals, orvertical
stripes).

Operator grouping. The underbraces in equations (8)–
(8) show the operator grouping which was used by the code
generator. Currently, the grouping is guided by rewrite rules,
which can be somewhat ad-hoc, or can be controlled manu-
ally by explicitly forcing it. Grouping is very advantageous
when the code can be unrolled and resulting temporary buffers
scalarized.

4 Optimized Code Generation

Standard code generation process.The standard code gen-
eration process in Spiral for SPL /

∑

-SPL is demonstrated in
Fig. 1. In this paper, we use OL /

∑

-OL, which are extensions,
but the code generation process is identical.

In the “Algorithm generation” block, the required function-
ality (in this case the receiver or transmitter) is expandedus-
ing the algorithmic breakdown rules as well as the so-called
paradigm breakdown rules, which will apply the high-level
parallelization and vectorization transformations, based on the
characterization of the target platform. Note that the platform
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Algorithm genera�on

SPL→Σ-SPL

loop merging

Σ-SPL→C code

Code op�miza�ons

Performance evalua�on

S
e

a
rc

h

Algorithm knowledge

(breakdown rules)

Pla#orm knowledge

(paradigms)

Transform (“DFT”)

input size (“128”)

C implementa�on: 
DFT_128(*y, *x) { … }

algorithm (SPL)

algorithm (Σ-SPL)

source code (C)

paralleliza�on
loop

op�miza�ons

Spiral
(fixed input size)

Figure 1:The code generation process in Spiral. The “Search” block closes
the performance-driven feedback back loop and enables exploring the space of
implementation degrees of freedom and achieve automated platform tuning.
In this paper, we use OL /

P

-OL instead of SPL /
P

-SPL, but the code
generation process is identical.

knowledge is used from the very beginning of the code gen-
eration process, and enables the generator to undertake major
restructuring, if needed.

First, the system will apply (5)–(7), next expand them us-
ing the algorithm rules, such as (1), and identities in Table2,
and further restructure the formulas using the paradigm break-
down rules. The process continues until all blocks in bold
(callednon-terminals) are expanded. This yields (6)–(8) ini-
tially, and then separately processes the non-terminals that still
remain in the formula.

Additional loop level restructuring is performed in the “SPL
→

∑

-SPL” block, as explained in [25]. “
∑

-SPL→ Code”
block generates the final optimized code, as explained in de-
tail below. Finally, the “Performance Evaluation” measures
the runtime of generated code, and closes the performance-
driven feedback loop that achieves automatic platform tuning.

Note, that here we showcode generation timeplatform
tuning, while other more general tuning modes are possible,
such asinstallation timeand initialization time (or runtime)
tuning, see [26] for details.

Extensions.We had to extend Spiral to be able to generate
optimized code for the formulas (5)–(8). This also required
extensions for dealing with mixed data-type formulas, bit-level
and byte-level SIMD vectorization, and mixed vector length
vectorization.

For full vectorization, additional rewriting rules for the
vectorization of the modulator, and general bit-matrices were
required.

Spiral was able to parallelize the transmitter without major
extensions. The parallelization of the receiver required aspe-
cial breakdown rule that exposed the pipeline parallelism,to
mimic the implementation in [27]. This was needed to break
the dependency caused by a sequential nature of a Viterbi de-
coder. This is not the best and most elegant way to deal with
this problem. Most probably the fastest implementation (and

also the one that would scale to more than 2 threads) will be
obtained by directly parallelizing the Viterbi decoder andper-
forming further loop fusion with data processing that precedes
the Viterbi block. This can be done by implementing algo-
rithms, such as [24].

Target platform description. Paradigm breakdown rules
are guided by the platform knowledge, encapsulated in the
platform backend module. Each backend contains both high-
level and low-level information about the platform. The high-
level information is a set of basic parameters, such as the num-
ber of threads, threading model, vector length, cache line length,
and others. The low-level information supplies additionalin-
formation such as the mapping of in-register vector permuta-
tions to the machine instructions of the underlying vector in-
struction set architecture, vector instruction mnemonics, and
the syntactic sugaring required for threading and thread syn-
chronization. More details can be found in [6,7]

Memory hierarchy information is not explicitly used in
the platform description, with the exception of the cache line
length, which is used by the parallelization to prevent false
sharing. However, memory hierarchy adaptation is performed
as part of the overall feedback-driven algorithm selectionpro-
cess, i.e., by iterating over different degrees of freedom,which
leads to differently structured implementations.

Code generation and optimization.A special Spiral OL
compiler generates code from OL formulas. OL compiler,
briefly explained in [9] is an extension of the SPL compiler,
described in detail in [5,20,25].

To generate optimized code, the OL compiler first converts
OL into

∑

-OL, a lower level representation. In this stage con-
structs like⊗ are converted into iterative sums with gather and
scatter matrices. Next, initial code is created by using code
generation rules, as shown in the table below. (x andy denote
the input and output vectors,t is a temporary vector.)

Parametrized matrices(assumedomain(f) = n)

code(G(f), y, x) for(j=0..n-1) y[j] = x[f(j)];

code(S(f), y, x) for(j=0..n-1) y[f(j)] = x[j];

code(diag(f), y, x) for(j=0..n-1) y[j] = f(j)*x[j];

Operators (assumeA : C
n
→ C

m)

code(A ◦ B, y, x) code(B, t, x); code(A, y, t);

code(Ik ⊗A, y, x) for(j=0..k-1) code(A, y + mj, x + nj);

Finally, the compiler applies a set of standard compiler op-
timizations, such as loop unrolling, copy propagation, constant
folding, and strength reduction. Many of the latter optimiza-
tions are enabled by completely unrolling the inner loops with
fixed bounds and small number of iterations. For example, the
fastest implementation ofDFT64, is a fully unrolled “flat” im-
plementation with no control flow at all. The same holds for
most other blocks in the PHYs. The degree of such unrolling
can be controlled, if needed.
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Figure 2: Composition of runtime per OFDM symbol across different ar-
chitectures in a single-threaded receiver. Viterbi decoder is the most compu-
tationally demanding block, and its runtime share increases with the nominal
data rate.
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Figure 3: Comparison of the achievable vs. nominal throughput in the
transmitter and receiver. The hand-written implementations are Berger [27]
and Sora [18]. Implementation marked as “threaded” is both threaded and
vectorized. Even though Atom only achieves real-time at 9 Mbps, with its
TDP of 2.5W, it provides the best performance per Watt.
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In addition, complete loop unrolling eliminates temporary
array storage thorough scalar replacement, which in some cases
is necessary for optimal performance. Array scalarizationalso
helps when multiple blocks are combined into a single piece
of code through grouping.

5 Performance Results

Experimental Setup. In our experiments we performed re-
ceiver and transmitter simulation on a synthetic channel data,
stored on the hard drive. Thus, the external I/O time from
main memory to the hypothetical radio card is not accounted
for. The real world measurements, however, should be quite
close, as long as external I/O is able to sustain the required
data rate, because it can be efficiently done in the background,
with data coming to main memory via DMA.

The measured program is the Spiral-generated C99 code
with SIMD vector intrinsics. The code was compiled using
the Intel Compiler icc 11.0. In all cases, the benchmarks were
performed under 64-bit Linux with a 2.6.x series kernel. Hy-
perthreading was not used, since it only degrades performance
for compute-bound workloads such as WiFi.

We benchmarked the generated code on three Intel plat-
forms listed below, by comparing the achievable rate based
solely on the required baseband processing runtimes (TDP in-
dicates the thermal design power of the processor):
• Intel Core i7-975, 3.33 Ghz, TDP 130W, 4 cores;
• Intel Core 2 Quad Q6700, 2.66 Ghz, TDP 95W, 4 cores;
• Intel Atom N270, 1.6 Ghz, TDP 2.5W, 1 core.

Benchmarks. The first set of benchmarks analyzes the
runtime of the receiver and transmitter per symbol, across dif-
ferent data rates. The recorded runtimes are given in Fig. 2.
The bar plots also show the breakdown of runtimes across the
computational blocks of the WiFi Receiver running using a
single thread. The Viterbi decoder is the most time consuming
block, and requires a larger proportion of the runtime as the
data rate increases. At 54 Mbps it is 88% of the runtime on
the Core platforms and 82% on the Atom; at 6 Mbps, it is 64%
on the Cores, and 54% on the Atom. The other blocks are still
important and aggressive optimizations and block fusions are
needed to reduce their relative runtime to the current level.

The second set of plots in Fig. 3 compares achievable vs.
nominal data rates. In these plots, besides varying the plat-
form, we also consider two versions of the generated code,
one that was used in the previous set of plots (denoted as
“vectorized”), and one that is vectorized and in addition uses
two threads as described in Section 4 (denoted as “threaded”).
The generated code outperforms both of the hand-coded im-
plementations [27] and [18] we compared against. The two
biggest enabling factors are the ability to generate multiple al-
gorithmic code alternatives and search within the available de-
grees of freedom, and the ability to combine multiple blocks.

In Fig. 3, achievable data rate above nominal means that

the processor can process the data fast enough to meet the
nominal (required) data rate (i.e., the real-time bound is met).
If this is the case, the ratio of nominal data rate over achievable
will be approximately equal the CPU load. For example, on
Core i7, the generated vectorized receiver achieves 84 Mbpsat
the nominal rate of 54 Mbps, which means that the CPU load
is 54/84 × 100% = 64%. The threaded and vectorized im-
plementation achieves 115 Mbps, or54/115 × 100% = 46%
CPU load on each of 2 used cores.

Generally, the achievable data rate grows with the nominal,
because the number of data bits per OFDM symbol increases
with the increased nominal data rate, and hence there is less
computation per data bit. This increase is non-monotonic, be-
cause the amount of computation per bit also depends on the
code rater (see Table 1). For example, there are drops in
achievable data rates at nominal speeds of 24 Mbps and 48
Mbps due to reducedr, which slightly bumps up the amount
of computation per data bit.

Support for different instruction sets. The next genera-
tion instruction set on x86 platforms is AVX, and we already
have a validated AVX backend in the generator. However, at
the time AVX hardware was not publicly available from either
AMD or Intel. Access to pre-release hardware was only pos-
sible under NDA to select Intel customers, and thus runtimes
cannot be shown in this paper.

Notably, the AVX instruction set poses additional chal-
lenges. It doubles the available vector length, without provid-
ing any integer data instructions on the wider vectors. Thus,
the most important block of the WiFi receiver, the Viterbi de-
coder, can’t benefit, with the additional complications of using
wider floating point instructions, for blocks such as the DFT.

The support of multiple instruction sets is even needed on a
single platform due to the mixture of different data types. Ev-
ery one of our generated PHY implementations uses at least 8-
bit integer, 32-bit integer, and 32-bit floating point data types.
Each data type requires a distinct set of vector instructions to
manipulate the data, and the vector length also differs, it is 16
for 8-bit data, 8 for 16-bit data, and 4 for 32-bit data. Finally,
for bit-level operations, the vector length is 128.

An extension to other shared-memory multi-core vector ar-
chitectures is straightforward, as explained in Sec. 4.

6 Conclusion

As true SDR comes into reach, every available performance
optimization technique has to be used to achieve maximal per-
formance and real-time. The programming burden hence be-
comes considerable since the software developer has to use
different vector instruction sets, threading, consider available
choices, and use a variety of other techniques. A program
generator like Spiral is an attractive solution to this problem.
As we have demonstrated, the input description is platform-
independent and hence has to be created only once. Mapping
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to different processors is done by simply changing platform
parameters and the backend and regenerating the code. This
way, migration can be accelerated, while maintaining excel-
lent performance. We believe that program generators are an
important part of a solution to the performance/productivity
problem that plagues signal processing and communication
applications.
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