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Abstract platform changes, the code still has to be reoptimized esinc

performance usually does not port.
In this paper, we describe a program generator for physical Contribution of this paper. In this paper, we propose to
layer (PHY) baseband processing in a software-defined ragi@rcome these problems using a program generator for PHYs.
implementation. The input of the generator is a very higifthe generator is based on Spiral [5-8] and automates the pro-
level platform-independent description of the transmiétied duction and optimization of PHY source code. The input to
receiver PHY functionality, represented in a domain-sfiecithe generator is a high-level, platform-independent descr
declarative language called Operator Language (OL). The aibn of the PHY receiver or transmitter functionality, debed
putis performance-optimized and platform-tuned C codé wih a domain-specific mathematical declarative languadedal
single-instruction multiple-data (SIMD) vector intrigsiand Operator Language (OL). The output is highly optimized C
threading directives. The generator performs these opgimicode including SIMD vector intrinsics and threading direc-
tions by restructuring the algorithms for the individuahto tives. Difficult optimizations, such as vectorization, -
ponents at the OL level before mapping to code. This wgtmed at the OL level using a platform-cognizant rewriting
known compiler limitations are overcome. We demonstraigstem that effectively manipulates the algorithm based on
the approach and the excellent performance of the generaggd hardware parameters to obtain a suitable structure- Sim
code on on the IEEE 802.11a (WiFi) receiver and transmittgmy, our generator is able to perform cross-block optiani
PHY for all transmission modes. tions and to efficiently map different parts of the computati

to different data types (e.g., 16-way bytes for Viterbi dding
1 Introduction and 4-way floating point for the fast Fourier transform).

The main contribution of the presented work is to show

. o . i .that the PHY layer can be expressed in OL (which was proto-
A major challenge in implementing software-defined radl(t)s ically introduced in [9]), to include the necessary s
(SDRs) is meeting the real-time demands of the signal psac pica’y ) y P

S . . r multiple data types and cross block optimizations ifie t
ing in the physical layer (PHY). For this reason, most comm nerator, and finally, the generated code, which has extell
SDR platforms are not software-only, but use a hybrid archi-

. L . erformance.
tecture that, besides a digital signal processor (DSP) ena

! 2 We demonstrate the latter for both the transmitter and re-
eral purpose processor (GPP), also includes one or more f'gleolver of IEEE 802.11a (WiFi) on the Intel platforms Core

programmable gate arrays (FPGA). The PHY functionality is

- . . ; and Atom (backends for other architectures are in develop-
then partitioned across these devices, making the mplmnepnent) For example, the generated code achieves real-time
tion, optimization, and maintenance difficult and costly. ) '

: . iFi transmission speeds for all data rates up to 54 Mbps on
Recently, true SDR has come into reach with modern mu);t\{]- off-the-shelf Intel Core based system. Further, we show

core GPPs (e.g., Intel Core [1]), or multi-core DSPs (ele, t'[hat the computer-generated code outperforms the best hand

Sandblaster DSP [2, 3] or Tilera [4]). However, optimizing timized code
the PHY layer for these processors is still very challenging ’

since it requires careful tuning to the memory hierarchg, th

explicit use ofv-way single-instruction multiple-data (SIMD) 2 Background and Prior Work
vector instruction, and efficient threading. Further, wiles

*This work was supported by ONR through the STTR contract N@00 To date most SDR implementations run (fu_”y or partially) on
09-M-0332, by NSF through awards 0325687, 0702386, and br an FPGA [10]. Although FPGAs are reconfigurable, the PHY
through the DOI grant NBCH1050009. implementation still has to be done in Verilog or VHDL just



as for application specific integrated circuits (ASIC). i All SPL constructs have natural interpretations as code. Fo
ference compared to a true software PHY implementationeisample, the formuld/ = A - B, implies the two-step com-
that in an FPGA or ASIC design, the hardware is designedpotationt = Bz;y = At.
match the algorithm, naturally using fine grained paraliali Using SPL, the well-known Cooley-Tukey fast Fourier trans-
and pipelining to achieve high performance. form (FFT) is expressed as

First true software PHY implementations used a single DSP C em .
that is programmed serially [11-13]. Although fully flexi- PFTrm = (DFT), ©1,,) diagt,," (I © DFT,,) L™ .
ble (and easy to program), these could not achieve real-time _ @)
performance for computational intensive PHY standards [ilf Shows thaty = DFT;,,, » can be computed in four steps
WiFi. Recent processors possess multiple cores, eaclatipiccerresponding to the four factors in (1). Two of the steps in-
possessing further parallelism in the form of SIMD vector eX0!Ve the recursive computation of smaller DFTSs.
tensions [1-4, 14, 15]. While these platforms come closedo th Further important building blocks of SPL, and later OL,
computational power needed to run PHY standards like Wi[€ the following matrices parametrized by index mappings.
it also becomes increasingly challenging to implement PHY AN index mappings a function on integer intervals. De-
software that exploits the full computational potential. notee;’ thei-th column basis vector of size i.e., the column

Finally, a quite different kind of SDR platforms has Su,ygctor ofn_elements, vy|th al nz‘_rth position and 0s elsewhere.
faced, using simple radio front-end boards attached to cdfiven an index mapping functiofy gather and scatter matri-
modity personal computers (PCs) [16-18]. These are mo&@pare defined as follows:
of interest for academic test-beds as in [18,19] and runuthe f )

. . o f:4{0,...,n—=1} = {0,...m — 1},

functionality on a PC that commonly features an Intel or simi

lar GPP. Hence the challenges to efficiently utilize the comp G(f) = {e}”(o)| . |e}”(n_1>} ,
tational resources in terms of SIMD and multicore paraihali ' T
are quite similar to the SDR platforms described above. S(f) =G(NHT = {e%ﬂ ... |e7}1(n_1)} ,

OL. OL is a superset of SPL. Where SPL can only describe
3 Operator Language and PHYs transforms, i.e., linear single-input and single-outppéra-

tions, OL removes this restriction and considers more ggner

The operator Language (OL) [9] is a domain-specific declgf5e ators An operator of arity(c, d) is a function that takes

ative mathematical language used to represent certaiseslaga tors as input and producésectors as output. For exam-

of numerical algorithms. OL is an extension or superset I&E ak x n matrix M, the simplest possible SPL formula, is
SPL[5,20,21] to cover non-linear multi-input and multitput ;. 5| viewed as the arity1, 1) operator

operations. The idea behind SPL and OL is to formally repre-
sent algorithm knowledge in a platform-independent way. Ac M : C* — CF.
tual code is generated from this representation using a aumb
of steps that depend on the target platform. We first intreduth® matrix product,, ., - By.»x becomes in OL the operator
SPL and then extend the discussion to OL. composition, e.g.,

SPL. SPL is a language to describe fast algorithms for lin- A 0B .ck _ om
ear transforms, which are functions of the farm- y = Mz mxn = Enxk - :

with a fixed matrix}/. By slight abuse of notation we will The tensor product of matrices generalizes to tensor ptoduc
simply refer toM as transform. An example is the discretgf operators, but in this paper we only need one special case.
Fourier transform (DFT) defined by Namely for any arity(1,1) operatord : C™ — C"; z

M =DFT, = [w]ocijcn, A(z), I ®A is defined as

wherew,, = e~27V=1/n_ An SPL program, or formula, is alk ©4 : chm — Crmy
fast algorithm for a transform/ represented as a factorization — z — (A(xo,...,Tm — 1), ..., A(T(e—1)m> - - Thim—1))-
of M into a product of sparse matrices. . ) _

SPL contains basic matrices such as the identity magrix _ WiFi physical layer in OL. The 802.11a OFDM trans-
diagonal matricesliag,.,,.,(f(m)) with a scalar function mitter (TX) gnd receiver (RX) map data bits into a comp_lex
f, or the stride permutation matrix}, which transposes anPaseband signal and vice versa. Formally, and more prgcisel

n/k x k matrix stored linearized in memory. More complex WIEi 48kmr—6 80k

. . . iIFITX ri 4 c*y 2
SPL formulas are built from other SPL formulas using matrix ke, o 4;: . @)
operators, such as the matrix produtct B or the Kronecker WIFIRX g, : CF — Zp™5 ™0 3)

r A ® B defin . . .
product4 @ £ defined as Namely, if a number, sa#; bits are to be transmitted at a trans-

A®B = [a;Bli;, for A=la;;li;- mission mode characterized by a modulation schememwith



WIFITX o = [Ik. ®(CPINsg4 0 IDFT g4 0 Pltins g4 0 Map 5., © Nt 4gm © PUNCss,, 0 CVENCagyp, - © Sch)] (5)

_ [Ik ®( {GC}(&G;B)} o IDFT g4 0 S(pltg) o(Tus ® My ) 0 G(intasm) o G(djgm) © CVENCsgm.r o(+s).)] (6)

WIFIRX ! ..., = Scr; o VitDec, o DePunGgy,, o [Ik ©(Delntss, o DeMap,g ,, o PItRMey o Eq; o DFTe4 0 CPRm64)] @)

= (+s) o VitDec, o S(djskm) © [Ik ®(S(intasm) o (Iss ® Mg ,,) o G(plt,g) o diag(h) o DFTes 0 G(ho,1) )} (8)
—_—

Rate  Modulation Bits/sc. Code Coded bits/ Data bits/VitDec, andScr.

Mbps m  rater symb.  symb.Npgps All of the blocks, except for the Viterbi decod¥itDec,
6 BPSK 1 12 48 24 can be defined in terms of primitive OL constructs and matri-
9 BPSK 1 3/4 48 36 ces, and most of the blocks are normally computed by defini-
12 QPSK 2 1/2 96 48 tion. The important exceptions are the DFT, and the Viteebi d
18 QPSK 2 34 96 72 coder, for which several alternative fast algorithms efasy.,
24 16-QAM 4 12 192 9 for the DFT the choice of in (1)), which are again expressed
36 16-QAM 4 3/4 192 144 o1
48 64-QAM 6 213 288 192
54 64-QAM 6 34 288 216 Pltins, PItRm, Int, Delnt, Punc andDePuncare all ba-

sically data reorderings or padding operations and thus can
Table 1: Data rates in IEEE 802.11a with corresponding modulatidd€ €xpressed as a gather or scatter with the corresponding in
schemes and coding rates [22]. (sc. = subcarrier; symb. = symbol dex mapping functiomplt, int, andd respectively for pilot re-
moval/insertion, (de)interleaver, and (de)puncturinge pre-
) ) ) cise form is not relevant here. We do show the matrix struc-
{1,2,4,6} bits per subcarrier and coding rates {1/2, 3/4, res of (de)interleaver and (de)puncturer, but in traitga
2/3}, they will take up these to code, these structures are not used.
The modulator and demodulator are defined by the scalar
k= N = 4 4 . .
[€/Nppps + 6] = [¢/(48mr) + 6] ™) functionsM andM~" that mapm hard bits to a complex num-

OFDM symbols, wheréVppps = 48mr is the number of data ber, and, vice-versa, a complex numbentsoft bit estimates.
bits per OFDM symbol, see Table 1. The data bits are ap- Implementation degrees of freedomBefore the OL for-
pended with zero bits to fill exactly ODFM symbols and we Mulas (6) and (8) can be mapped to code, all remaining un-
will always assume the TX and RX operate on this extendgPanded blocks (in bold) must be expressed in primitive OL
bit sequence. constructs. There are multiple ways of doing so that corre-
An important difference of physical layer computation%oond to different computational algorithms and the irdérn

from other types of numerical codes is the diversity of us@§9rees of freedom within the algorithms. Spiral emplogsife

data types, which is also evident above. The transmittesm&@CK driven search to make the best, i.e., fastest choice on

bits (denoted withZ,) to complex (floating point) values (de-th€ given platform. This search effectively performs mati
noted withC), and the receiver vice versa. The actual impl@daptation. In the interest of space, we only briefly discuss
mentation will use one or more additional data types duteg S0Me Of these degrees of freedom next. o
course of computation to optimally use the available veicior ~ 1he tensor product, © A itself is not a primitive con-
struction set. This makes the domain and range specifisatisfuct. It has four alternative implementations: as a loegro
of blocks, as in (2)—(3) very important. A,_ as a parallel loop, as a vecto_rlze_d loop, or via I_oo_p_ ;pgtn
We now translate the entire computation data flow of tkdiscussed below). The parallelization and vectorizatam-
receiver and transmitter PHY as defined in [22] into OL. TH¥emented using special tags, explained in [6,7]. If theden
result is (5) and (7), and the occurring blocks (marked bo|g5oduct is not.vectorllzed, the vectorization is performed “
are defined in Table 2. We show a further decompositiontgnally,” i.e., in A, via rewrite rules (not shown here). An
(6) and (8), where some of the blocks are broken down thelf{eresting twist in the case of both internal and extermal v

selves. Braces show the grouping of operations in the Id@fization, is that the inner subformula of the tensor pridu
implementation. operates on different data types, each having differemicass

Table 2 defines all of the blocks in the receiver and trarf€d vector length, which makes the vectorization more com-
mitter. Most of the blocks are linear, and perform a matr{€x- The equivalent of loop splitting is the transformatio
vector product; the OL definition can thus be interpreted B§4B — (I®A)(I@B). In our experiments, such “vertical”

a matrix. The non-linear blocks alap, DeMap, Pltins, Mplementations always performed better.



Operator Notation Domain — Range Definition

Cyclic prefix insertion  CPlInsg, C% — c®° [ Lis = G(h64’1)]
I6a G(ho,1)
Cyclic prefix removal ~ CPRmgy4 C8 — & [064X16 164] = G(hie,1)
Forward DFT DFTe4 Cco* — & [wi]o<i j<64
Inverse DFT IDFT 64 o4 — o [wer?lo<i,j<64
Pilot tone insertion Pltinsea c*® % (+P) o S(plt,g)
Pilot tone removal PItRmg4 Cco — C*® G(plt,g)
Symbol mapping Map s ., 738 — C*® Lis @ Mim 1
Symbol demapping DeMap,s ,,, C*® —z38™ Lis®@ M, g
. . . . . L3®m, m<2,
Bit interleaving INt 48m 755 — 738 G(intagm) = {(116 (I © 772 LI o,
Bit deinterleaving Delntasm, Z38m — 78™ S(intasm) = (INtagm)”
Puncturing Puncis,, 73 48mr _, 748m G(dhgm) = (Lism/6 @ Sr)
Depuncturing DePundgy,.., Zydh™ — 38 S(dhgkm) = (Liskmys @ Sy ) = (PUNClggpm)”
Convolutional encoding CVENCygm - 738mr _, g 2-A48mr L2m7 [Co Ci]"
Viterbi decoding VitDecy,m,»  Z28kmr — ga8kmr=6
Channel equalization  Eq, Cco — % diag h
(De)Scrambling Scrg 75 — 74 I ®;(+5)
1000 100000 L
Sijg =Tz, S23=L® [85?8}’ S3/a=12® {83?888] » Li = [In,i }
000001

ho,s :i+— b+ is (stridesindex mapping) (+a): X — X + a (“add constant” operator)
M1 ¢ Z5" — C is them-bit modulation operatar M;:g : C — Zgs is the demodulation operator ta 8-bit estimates
R is the inverted channel freq. response, 64-element vectptt, int, d are index mapping functions, not shown here
Co, Cy are the Toeplitz matrices formed from the degree-7 bit polynomials

Table 2: Definition of the block operators used in (5)— (8).

Next, theDFT andIDFT blocks have different vectoriza-  Operator grouping. The underbraces in equations (8)—
tion possibilities [6], different choices of radices in tBeoley- (8) show the operator grouping which was used by the code
Tukey algorithm, and alternative algorithms. generator. Currently, the grouping is guided by rewritesul

For the Viterbi decoder, [23] gives the OL description ofhich can be somewhat ad-hoc, or can be controlled manu-
the standard decoding algorithm. However, there existrotladly by explicitly forcing it. Grouping is very advantageou
algorithms, amenable to parallelization, e.g. [24], wiéolld when the code can be unrolled and resulting temporary lsuffer
provide scaling beyond 2 threads enabled by pipelined pasaalarized.
lelism. In our implementation of the Viterbi decoder we only
consider the degree of unrolling. .. .

The convolutional encoder can be treated as an FIR 14 Opt|m|zed Code Generation

ter on blocks, and most FIR filter breakdown rules in Spiral .
apply. Most importantly, these include different vectation Standard code generation processThe standard code gen-

strategies; less important are FIR blocking rules that awer €ration process in Spiral for SPLZ-SPL is demonstrated in
register reuse. Fig. 1. In this paper, we use O/ -OL, which are extensions,
Alternatively, the convolutional encoder can be group&ytthe co“de generation process Is identical. _
with the adjacent matrices, resulting in a single matrigtge " the "Algorithm generation” block, the required function
product with a less structured matrix. This matrix-vectargp 211ty (in this case the receiver or transmitter) is expanded
uct has several degrees of freedom including different wd(§ the algorithmic breakdown rules as well as the so-called
of blocking for locality, and different vectorization meits Paradigm breakdown rulgswhich will apply the high-level
(tiling into vector-sized diagonals, cyclic diagonalsyertical parallellzgtlorj and vectorization transformations, loase the
stripes). characterization of the target platform. Note that thefptat



Transform (“DFT”)
inputsize (“128”)

also the one that would scale to more than 2 threads) will be
obtained by directly parallelizing the Viterbi decoder qred-

—> | forming further loop fusion with data processing that poee
r—" the Viterbi block. This can be done by implementing algo-
parallelization oo SPL->3-5pL rithms, such as [24].
optimizations loop merging Target platform description. Paradigm breakdown rules
T are guided by the platform knowledge, encapsulated in the
platform backend module. Each backend contains both high-
J, source code (©) level and low-level information about the platform. Thenig
)] level information is a set of basic parameters, such as tive nu
1) ber of threads, threading model, vector length, cachedingth,
Cimplementation: and others. The low-level information supplies additional

DFT_128(*y, *x) { .. }

formation such as the mapping of in-register vector permuta
Figure 1:The code generation process in Spiral. The “Search” blassest 1iONS t0 the machine instructions of the underlying vector i
the performance-driven feedback back loop and enablesringplie space of Struction set architecture, vector instruction mnemaqnrécsl
implgmentation degrees of freedqm and achieve automatedmpiatéining. the syntactic sugaring required for threading and thread sy
;ne;rgfaggﬁzr?o?:ssissi doe';]t%?" instead of SPL y_-SPL, but the code ¢ onization. More details can be found in [6, 7] .
Memory hierarchy information is not explicitly used in
the platform description, with the exception of the cache li
knowledge is used from the very beginning of the code gdangth, which is used by the parallelization to preventeals
eration process, and enables the generator to undertake nsijaring. However, memory hierarchy adaptation is perfdrme
restructuring, if needed. as part of the overall feedback-driven algorithm selecticot
First, the system will apply (5)—(7), next expand them usess, i.e., by iterating over different degrees of freedshich
ing the algorithm rules, such as (1), and identities in T&pleleads to differently structured implementations.
and further restructure the formulas using the paradigralbre  Code generation and optimization.A special Spiral OL
down rules. The process continues until all blocks in botmpiler generates code from OL formulas. OL compiler,
(callednon-terminal} are expanded. This yields (6)—(8) inibriefly explained in [9] is an extension of the SPL compiler,
tially, and then separately processes the non-terminadstiti described in detail in [5, 20, 25].
remain in the formula. To generate optimized code, the OL compiler first converts
Additional loop level restructuring is performed in the ISPOL into Y -OL, a lower level representation. In this stage con-
— > -SPL” block, as explained in [25]. Y"-SPL — Code” structs like® are converted into iterative sums with gather and
block generates the final optimized code, as explained in deatter matrices. Next, initial code is created by usingecod
tail below. Finally, the “Performance Evaluation” measur@eneration rules, as shown in the table belawaridy denote
the runtime of generated code, and closes the performartbe-input and output vectorsjs a temporary vector.)
driven feedback loop that achieves automatic platfornnigini
Note, that here we showode generation timelatform Parametrized matrices(assumelomain(f) = n)
tuning, while other more general tuning modes are possiede(G(f), v, z) for(j=0..n-1) y[j] = x[f(i)];
such agnstallation timeand initialization time (or runtime)
tuning, see [26] for details.
Extensions.We had to extend Spiral to be able to generatede(diag(f),y,z) for(j=0..n-1) y[j] = f(j)*x[j];
optimized code for the formulas (5)—(8). This also requiregherators (assumed : C* — C™)
extensions for dealing with mixed data-type formulas)éiel
and byte-level SIMD vectorization, and mixed vector lengfi?9e(
vectorization. code(Ix ®A,y, x) for(j=0..k-1) code(A,y + mj,z + nj);
For full vectorization, additional rewriting rules for the
vectorization of the modulator, and general bit-matricesev ~ Finally, the compiler applies a set of standard compiler op-
required. timizations, such as loop unrolling, copy propagation stant
Spiral was able to parallelize the transmitter without majéolding, and strength reduction. Many of the latter optiaiz
extensions. The parallelization of the receiver requirsgex tions are enabled by completely unrolling the inner loophwi
cial breakdown rule that exposed the pipeline paralleligm, fixed bounds and small number of iterations. For example, the
mimic the implementation in [27]. This was needed to bred&stest implementation @F T4, is a fully unrolled “flat” im-
the dependency caused by a sequential nature of a Viterbiglementation with no control flow at all. The same holds for
coder. This is not the best and most elegant way to deal witlost other blocks in the PHYs. The degree of such unrolling
this problem. Most probably the fastest implementatiord(anan be controlled, if needed.

code(S(f),y,x) for(j=0..n-1) y[f(j)] = x[jl;

AOB,y,QZ) code(B,t,z); code(A,y,t);
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Figure 3: Comparison of the achievable vs. nominal throughput in the

Figure 2: Composition of runtime per OFDM symbol across different atransmitter and receiver. The hand-written implementatioasBerger [27]
chitectures in a single-threaded receiver. Viterbi decéslthe most compu- and Sora [18]. Implementation marked as “threaded” is botratlee and

tationally demanding block, and its runtime share increaststie nominal vectorized. Even though Atom only achieves real-time at 9 8byith its
data rate. TDP of 2.5W, it provides the best performance per Watt.



In addition, complete loop unrolling eliminates temporamhe processor can process the data fast enough to meet the

array storage thorough scalar replacement, which in sosescaominal (required) data rate (i.e., the real-time boundé$)m

is necessary for optimal performance. Array scalarizagisn If this is the case, the ratio of nominal data rate over actiby

helps when multiple blocks are combined into a single pieadl be approximately equal the CPU load. For example, on

of code through grouping. Core i7, the generated vectorized receiver achieves 84 Fibps
the nominal rate of 54 Mbps, which means that the CPU load
is 54/84 x 100% = 64%. The threaded and vectorized im-

5 Performance Results plementation achieves 115 Mbps,®#/115 x 100% = 46%

) ) CPU load on each of 2 used cores.

Experimental Setup. In our experiments we performed re-  Genera|ly, the achievable data rate grows with the nominal,

ceiver and transmitter .S|mulat|on on a synthetic Cha.nnm’d%ecause the number of data bits per OFDM symbol increases

stored on the hard drive. Thus, the external I/O time frofy, the increased nominal data rate, and hence there is less

main memory to the hypothetical radio card is not aCCO“m&Simputation per data bit. This increase is non-monotorge, b

for. The real world measurements, however, should be quil§se the amount of computation per bit also depends on the

close, as long as external I/O is able to sustain the requifgfie rater (see Table 1). For example, there are drops in

data rate, because it can be efficiently done in the backgtoutyhievable data rates at nominal speeds of 24 Mbps and 48

with data coming to main memory V|a.DMA- Mbps due to reduced, which slightly bumps up the amount

The measured program is the Spiral-generated C99 CB?j@omputation per data bit.

with SIMD vector intrinsics. The code was compiled using - g pnort for different instruction sets. The next genera-

the Intel Compiler icc 11.0. In all cases, the benchmarkewej, instruction set on x86 platforms is AVX, and we already

performed under 64-bit Linux with a 2.6.x series kernel. Hyj,ye 4 validated AVX backend in the generator. However, at

perthreading was not used, since it only degrades perfarenage time AvX hardware was not publicly available from either

for compute-bound workloads such as WiFi. AMD or Intel. Access to pre-release hardware was only pos-

We benchmarked the generated code on three Intel plafe ynder NDA to select Intel customers, and thus runtimes
forms listed below, by comparing the achievable rate based,not pe shown in this paper.

solely on the required baseband processing runtimes (TDP in Notably, the AVX instruction set poses additional chal-

dicates the thermal design power of the processor): lenges. It doubles the available vector length, withouviato
o Intel Core i7-975, 3.33 Ghz, TDP 130W, 4 cores; ing any integer data instructions on the wider vectors. Thus
e Intel Core 2 Quad Q6700, 2.66 Ghz, TDP 95W, 4 COTeS; the most important block of the WiFi receiver, the Viterbt de
e Intel Atom N270, 1.6 Ghz, TDP 2.5W, 1 core. coder, can't benefit, with the additional complications sihg
Benchmarks. The first set of benchmarks analyzes thgiqer fioating point instructions, for blocks such as the DFT
runtime of the receiver and transmitter per symbol, acrd@ss d  tne support of multiple instruction sets is even needed on a
ferent data rates. The recorded runtimes are given in F'gs%gle platform due to the mixture of different data types- E
The bar plots also show the breakdown of runtimes across fh¢ one of our generated PHY implementations uses at least 8-
c_omputatlonal block_s of_the WiFi _Recelver running using integer, 32-bit integer, and 32-bit floating point datpes.
single thread. The Viterbi decoder is the most time consgmigiach gata type requires a distinct set of vector instrustton
block, and requires a larger proportion of the runtime as the\ninylate the data, and the vector length also differs, 16i

data rate increases. At 54 Mbps it is 88% of the runtime &} 8-bit data. 8 for 16-bit data. and 4 for 32-bit data. Fipal
the Core platforms and 82% on the Atom; at 6 Mbps, it is 64 pit_jevel o,perations the vector length is 128.

on the Cores, and 54% on the Atom. The other blocks are still A extension to other shared-memory multi-core vector ar-
important and aggressive optimizations and block fusioas @pjtectures is straightforward, as explained in Sec. 4.
needed to reduce their relative runtime to the current level
The second set of plots in Fig. 3 compares achievable vs.
nominal data rates. In these plots, besides varying the p@t Conclusion
form, we also consider two versions of the generated code,
one that was used in the previous set of plots (denotedAastrue SDR comes into reach, every available performance
“vectorized”), and one that is vectorized and in additioesusoptimization technique has to be used to achieve maximal per
two threads as described in Section 4 (denoted as “threpdefiitmance and real-time. The programming burden hence be-
The generated code outperforms both of the hand-coded @domes considerable since the software developer has to use
plementations [27] and [18] we compared against. The tdifferent vector instruction sets, threading, consideilable
biggest enabling factors are the ability to generate meltp choices, and use a variety of other techniques. A program
gorithmic code alternatives and search within the avalalel generator like Spiral is an attractive solution to this peotn.
grees of freedom, and the ability to combine multiple blocksAs we have demonstrated, the input description is platform-
In Fig. 3, achievable data rate above nominal means thratependent and hence has to be created only once. Mapping



to different processors is done by simply changing platform
parameters and the backend and regenerating the code. This gineering May 2004.

way, migration can be accelerated, while maintaining excél4] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
lent performance. We believe that program generators are an C. Chakrabarti, and K. Flautner, “SODA: A high-performance
important part of a solution to the performance/produttivi

problem that plagues signal processing and communication
applications. [
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