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Abstract- In this paper, we study the design of nonbinary
low-density parity-check (LDPC) cycle codes over Galois field
GF(q). First, we construct a special class of nonbinary LDPC
cycle codes with low error floors. Our construction utilizes the
cycle elimination algorithm to remove short cycles in the normal
graph and to select nonzero elements in the parity-check matrix
to reduce the number of low-weight codewords generated by
short cycles. Furthermore, we show that simple modifications of
such codes are parallel sparse encodable (PSE). The PSE code,
consisting of a quasi-cyclic (QC) LDPC cycle code and a simple
tree code, has the attractive feature that it is not only linearly
encodable, but also allows parallel encoding which can reduce the
encoding time significantly. We provide a systematic comparison
between nonbinary coded systems and binary coded systems.
For the MIMO channel considered, our results show that the
proposed nonbinary system employing the PSE code outperforms
not only the binary LDPC code specified in the 802.16e standard,
but also the optimized binary LDPC code obtained using the
EXIT chart methods.

I. INTRODUCTION

In this work, we consider a special class of nonbinary
LDPC codes with the property that each column of the parity-
check matrix contains exactly two nonzero elements. The
binary counterpart of such codes are called "cycle" codes in
the literature [1]. A distinguished feature of cycle codes is
that they are linearly encodable. However, binary cycle codes
usually do not perform well due to poor minimum distance
spectrum. When the size of the Galois field is sufficiently
large, [2] shows that the hamming weight spectrum of the
random ensembles of nonbinary cycle codes asymptotically
approach the classical binomial distribution of the Shannon
equiprobable random ensembles. This makes nonbinary cycle
codes good candidates for both optimum maximum likelihood
(ML) and iterative decoding. Our results show that nonbinary
LDPC cycle codes achieve excellent performance over MIMO
channels. To reduce encoding complexity, we propose a class
of nonbinary codes called the parallel sparse encodable (PSE)
codes, each consisting of a quasi-cyclic (QC) LDPC cycle
code and a simple tree code. The encoding complexity of the
parallel sparse codes is O(mdc), where m is the number of
checks in the LDPC code, and d, is the degree of check node.
The QC structure of such codes facilitates parallel encoding
which results in significant reduction of encoding time.

The contributions of this paper are summarized as follows:
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(1) We construct a special class of QC nonbinary LDPC
cycle codes with low error floors. Our construction starts with
a mother base matrix with large girth. Then we utilize the
cycle elimination algorithm to remove short cycles in the
normal graph and to select nonzero elements in the parity-
check matrix to reduce the number of low-weight codewords
generated by short cycles. Our construction reduces the error
floor of nonbinary codes significantly.

(2) We propose the use of QC nonbinary LDPC cycle code
for MIMO channels. Starting from any base QC nonbinary
LDPC cycle code, which in general is not sparse encodable,
we construct a PSE code which allows not only linear-time
encoding but also parallel implementation. For PSE codes, our
encoding method has a much lower complexity than that of
the encoding method in [3]. Furthermore, we show that the
PSE code achieves a performance that is very close to the
base code at a much reduced encoding complexity. Compared
to other nonbinary LDPC codes in the literature, such as
the randomly constructed LDPC codes and the algebraically
constructed codes in [4], the proposed PSE code is much more
amenable for implementation due to its simple structure.

(3) Our results show that the proposed joint detection and
decoding (JDD) system employing the nonbinary PSE code
over GF(16) outperforms the JDD system employing the best
optimized binary LDPC code in [5] by 0.38 dB. Due to its
highly irregular degree sequence, the encoding complexity
of the optimized binary LDPC code is also higher than
that of the proposed PSE encodable code. When compared
with a more practical QC binary LDPC code defined in the
802.16e standard [6] that is amenable for implementation, the
proposed JDD system employing the PSE code achieves a
larger performance gain of 0.6 dB.

II. SYSTEM MODEL
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Fig. 1. A schematic block diagram of JDD system.

Fig. 1 shows a block diagram of the nonbinary LDPC coded
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MIMO system. Assume that a LDPC code over GF(q) is
used, where q = 2P. At the transmitter side, a sequence of
information bits {bi} is mapped to a sequence of nonbinary
symbols in GF(q) (every p bits are mapped to a single
nonbinary symbol) through a bit-to-symbol mapper g, before
passing to the nonbinary LDPC encoder. Let t denote the
number of transmit antennas. At the output of the LDPC
encoder, every group of no coded nonbinary symbols s =

{s1, ,0Sno} C GF(q) is mapped to a group of t constellation
symbols x = (xi,--- , xt) = (s) through the mapper q.
Given the constellation size M = 2m0, we have p. no = t mo.
The sequence of constellation symbols is then passed to the
transmit filter and sent through the t transmit antennas. At the
receiver side, optimal maximum aposterior probability (MAP)
detection is performed to compute the prior probabilities for
each group of t transmitted constellation symbols. These prior
probabilities will then be passed (after the mapper -1) to the
LDPC decoder for iterative decoding. After a finite number of
decoding iterations, hard decisions on the nonbinary symbols
are made at the output of LDPC decoder, which are then
demapped to the sequence of estimated information bits.
When no > 1, the prior probabilities of the group of no

nonbinary symbols are dependent because they are mapped
to complex symbols that are transmitted simultaneously. For
such systems, it is necessary to pass soft information about
the dependent symbols from the LDPC decoder back to the
MAP detector to produce updated symbol-wise probabilities.
This corresponds to a JDD system that performs joint detection
and decoding. As shown in Fig. 1, the JDD system requires a
feedback loop from the channel decoder to the MAP detector
to allow iterative exchange of soft information.

Next, we explain how the MAP detector shown in Fig. 1
works. The channel model is given by

y = Hx+n (1)

where x eCt x 1 denotes the complex transmitted signal vector,
y C Cr 1 denotes the complex received signal vector, r is the
number of receive antennas, H C Cert denotes the channel
fading matrix with independent and identically distributed
(i.i.d.) entries that are complex Gaussian distributed with zero
mean and unit variance, n C Cr 1 denotes the vector of zero
mean, complex Gaussian white noise with variance a2 per
dimension. We assume that the channel matrix is known to
the receiver but not to the transmitter.

Given each received signal vector y, we perform MAP
detection to determine the a posterior probabilities (APP)
of each nonbinary symbol sp j = 1, no, by comput-
ing the log-likelihood-ratio vector (LLRV) over GF(q). Let
{f°, a1, , I}q-I denote elements in GF(q). The LLRV of sj
is defined by z = {zo, z1,.. zq- I}, where zi ln[P(sj
O)IP(sj = ai)]. From equation (1) we have

in
Es ,j=o exp[- Iy -Hq(s) |2/ (2a2)]P(s)
ES:ZSj=: i exp[-IIy -H(s) I2 I(2g2)]P(S)

where 11 * 112 denotes the norm square of a vector and P(s)
denotes the prior probabilities of s which are passed from the
LDPC decoder. Subsequently, these LLRV values are passed
to the LDPC decoder for iterative decoding.

III. CONSTRUCTION OF QUASI-CYCLIC NONBINARY LDPC
CYCLE CODES

In this section, we describe the construction of nonbinary
QC cycle codes. The code construction consists of several
steps. First, we use cage graphs to construct a binary mother
matrix with large girth. Second, we replace each "1" in the
mother matrix with a binary circulant permutation matrix to
yield a binary QC code. Here, we apply the cycle elimination
(CE) algorithm to design the shifting coefficients of the
permutation matrices such that shorts cycles in the parity-
check matrix are removed. Third, we obtain the nonbinary QC
cycle code from the binary QC code by replacing each binary
permutation matrix by a nonbinary, 8-multiplied circulant
permutation matrix. We show that a modified version of the
CE algorithm can be applied to choose the appropriate nonzero
elements in the permutation matrices. This reduces the number
of low-weight codewords generated by the remaining cycles of
the parity-check matrix. Next, we elaborate on each of these
steps in detail.

A. Construction of the mother matrix

In order to obtain a QC cycle code with large girth, we
first design a mother matrix with the maximal girth possible
for a given code length. It is well known that a cycle code
can be represented by normal graphs [1], [7], where each
row of the parity-check matrix H corresponds to a vertex and
each column corresponds to an edge whose two end vertices
correspond to the two rows with nonzero elements in that
column. This motivates us to use cage graphs to construct
mother matrices with large girths. A (k, g) cage graph is a
graph that has the minimal number of vertices for a specified
vertex degree k and girth g [8]. Hence, a cage graph has the
largest girth among graphs with the same number of vertices.
A list of known cage graphs is presented in [8]. However,

cage graphs are not available for arbitrary code lengths. In
our construction, we apply some simple search methods to
expand existing cage graphs to graphs with the desired number
of vertices, while keeping the girth as large as possible. For
example, assume that we want to construct a GF(16) (2, 4)
QC code of length 600, ( = 15. The number of vertices in
the corresponding normal graph is 20. From the table in [8],
we select a (4, 5) cage graph with 19 vertices. By slightly
modifying the selected cage graph, we can construct a mother
matrix with 20 vertices and still keep the girth to be 5. This
is the largest girth possible for this code length.

B. Design of binary circulant permutation matrices through
cycle elimination
Once the mother matrix is constructed, we replace each "1"

in the mother matrix by a circulant permutation matrix pai
to obtain a binary QC cycle code. Here pai is a circulant
permutation matrix obtained by shifting the identity matrix to
the right by ai positions. We then search for appropriate cyclic
shift coefficients {ai} using similar approaches as described
in [9] [10].
The following property [9] relates the cycles of the mother

code to the cycles of the QC code. To avoid confusion, we
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refer to a cycle in the mother matrix as a block cycle. Let
pal1 pa2 . .. pa2li pal be a chain of permutation

matrices corresponding to a 21-block-cycle. Here pai and
pai+l are located in either the same column block or the same
row block of H and both pai and pai+2 are located in the
distinct column blocks and row blocks. If r is the least positive
integer such that

21

r E(-1)'-'ai =_ 0 mod (,(3)
i=l

then the block-cycle leads to a cycle (in H) of length 21r.
This property implies that, in order to eliminate a cycle of

length 21r, we should avoid those cyclic shift coefficients {ai}
that satisfy equation (3). Based on this idea, in [10], a cycle
elimination (CE) algorithm is developed to search for proper
cyclic shift coefficients to eliminate cycles of length less than
some specified value. For each block cycle detected in the
mother matrix, a constraint r 21 (-1) aia 0 mod C is
generated and added to a constraint set. Subsequently, a search
procedure is executed to find the cyclic shifts {ai} to meet all
the constraints in the constraint set.

C. Selection of nonzero elements over GF(q)
After the previous two steps, we obtain a binary QC cycle

code with most of its short cycles removed. In the next
step, we replace the binary circulant permutation matrix with
a /3-multiplied circulant permutation matrix. Analog to the
binary case, each row of the /3-multiplied circulant permutation
matrix is the right cyclic-shift of the row above it multiplied
by 13 and the first row is the right cyclic-shift of the last
row multiplied by 13, where 3 = ax, oa is the primitive
element of GF(q), C is the size of circulant matrix, A =

(q- 1)/( and C (q- 1). The nonzero element d in the first
row of the circulant matrix is randomly chosen from GF(q).
The /-multiplied circulant permutation matrix defined here
generalizes the a-multiplied circulant permutation matrix in
[4]. Our construction allows flexible choices of C and code
lengths (integer multiples of 0, while [4] assumes C = q -
and the code length is restricted to integer multiples of q- 1.

For nonbinary cycle codes, carefully chosen nonzero el-
ements can reduce the number of low weight codewords
generated by short cycles. This is a direct consequence of the
following lemma.
Lemma 3.1: Given the normal graph of a cycle code, if

there exists a cycle of length w and its parity check matrix is
rank-deficient, then there must exist a codeword of weight w.

The proof of Lemma 3.1 is omitted here for brevity. Similar
results are also presented in [I I] where a full rank condition
(FRC) is introduced. The FRC is shown to be equivalent to
the following equation:

(FRC) :11/32i+1 #11/32i, (4)
1

where {p3i} denote nonzero elements in a cycle, and /3i and
3±i+1 are located in either the same column or the same row of
H, and both p3i and /3i+2 are located in distinct columns and
rows. When the nonzero elements in a cycle are chosen such

that the FRC is satisfied, the low weight codeword generated
by this cycle can be eliminated.

Let pi = aPi, then equation (4) can be written as

(5)S (P2i+1 -P2i) #y 0 mod (q- 1).

Searching for the nonzero elements that satisfy the FRC
may have high complexity when the code length is large. In
the following, we show that, by utilizing the special structure
of QC codes, the FRC can be simplified using /-multiplied
circulant permutation matrix.

Theorem 3.2: Let pali pa2 , ... , pa2l , pal be
the chain of permutation matrices corresponding to a 21-block-
cycle and the block-cycle leads to a cycle of length 21r. Then
the FRC over the cycle is equivalent to:

21

r E (- 1)1-'pi # 0 mod (q- 1),
i=l

(6)

where Pi corresponds to the power of the nonzero element in
the first row of pai.

Proof We follow similar proofs of Proposition 3 in [9].
Without loss of generality, we assume that Pal and pa2 are
located in the same row block, and pa2 and Pa3 are in the
same column block and so on. Considering a cycle of length
21r starting from the j-th row of Pal, where the power of
the nonzero element is ((pi + jA) mod (q- 1)). Since P2 is
located in the same row block as Pal, the nonzero element in
the cycle at pa2 has the power of ((p2 +jA) mod (q- 1)). The
nonzero element in the j-th row at pa2 is located in the ((j +
a2) mod ()-th column. Hence, the nonzero element of pa3 in
the cycle is located in the ((j + a2- a3) mod C-th row, and it
has the power of ((p3 + (j + a2-a3)A) mod (q- 1)) (since
(A = q 1). Continuing this process, it is straightforward
to check that the nonzero element of the cycle which comes
across pal the second time is ((pi + (j + a2- a3 + ... +
a21- ai)A) mod (q -1)). Repeating this process r - times
until it returns to the j-th row of pal. Hence, the FRC can
be written as

21 21

r()1-1pi + rA E)1-1ai 7y 0 mod (q-1), (7)

Since it is a cycle of length 21r, substituting (3) into (7) yields
(6).

U
It is clear the FRC has a similar form as (3). Therefore,
with minor modifications, we can apply the cycle elimination
algorithm to eliminate low weight codewords.
We summarize our code construction process as follows:
1) Given the size of the mother matrix, select a cage graph

of similar size to construct a mother matrix.
2) Identify all the cycles of length 1 < 19. Transform each

cycle to a constraint and add it to the constraint list.
3) Apply the cycle elimination algorithm to search for

shifting coefficients {ai} such that all the constraints in
this list are satisfied.

4) The remaining cycles that are not eliminated are trans-
formed to constraints and added to the constraint list.
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5) Apply the cycle elimination algorithm to search for the
power coefficients {pi} such that all the constraints in
the new list are satisfied.

We apply the procedure above to construct a regular LDPC
cycle code over GF(16). The size of the circulant matrix is 15
and the code length is 600 GF(16) symbols. The girth of the
code is 16 (in tanner graph). In addition, we also construct
another nonbinary LDPC code over GF(16) based on the PEG
construction. For the PEG construction, 60.4% of variable
nodes have a local girth of 16, 36.3% of variable nodes have
a local girth of 14 and 3.3% of variable nodes have a local
girth of 12. Both codes will be used in the simulation section.

IV. PARALLEL SPARSE ENCODABLE NONBINARY LDPC
CYCLE CODES

In this section we show that, by exploiting the QC structure
of nonbinary cycle codes, we can obtain a class of nonbinary
LDPC codes that allows not only linear-time sparse encoding
from parity check matrix but also efficient parallel implemen-
tation. We refer to this class of codes as PSE codes in contrast
to the general LDPC codes which are encoded from the dense
generator matrices. Performance of the PSE codes proposed
here will be examined in Section V.

A. Parity-check matrix based encoding of binary cycle codes

Even though it is well-known that binary cycle codes are
linearly encodable [1], here we provide a novel proof for this
important fact. The encoding method described in the proof
will be extended to the encoding of nonbinary cycle codes in
Section IV-B.

Theorem 4.1: Binary cycle codes are linearly encodable.
Proof: Since the normal graph of a binary cycle code,

denoted by N(H), must be a union of several connected graph,
without loss of generality, it is sufficient to consider a single
connected graph G. Assume that H has n columns and m
rows, then G has n edges and m vertices. It is well-known
that every connected graph contains a spanning tree, with any
specified vertex as a its root [12]. Starting from an arbitrary
vertex co in G, let Tr(G) denote a spanning tree of G with
co as the root. Since G contains m vertices, there must be a
total of mr-1 edges in Tr(G). Let b1, b2,. , bn-m+1 denote
edges in G but not in Tr(G). The encoding process proceeds
as follows: let b1, b2, , bn-m+1 correspond to information
bits of the code, then the values of the edges in Tr(G) that
are incident to the leaves can be computed since only one
edge is unknown at each leaf. Subsequently, by removing all
the edges whose values are previously computed, we obtain
a new tree. This way we can compute all the edge values
level by level until all the edges incident to co are computed.
We claim that the check equation corresponding to co is then
automatically satisfied. This is because the summation of all
rows in the parity-check matrix of a cycle code equals zero,
which means that if all the other mr-1 checks are satisfied,
then the remaining check is also satisfied. In other words, the
vertex co is a redundant check for the binary cycle code and
removing it does not change the code structure. 0

The proof above shows that the encoding process of binary
cycle codes is equivalent to solving the parity-check equations
row by row sequentially with a re-arranged order of the rows
in H. We refer to this encoding algorithm as sparse encoding.
The codes that can be encoded using sparse encoding are
called sparse encodable codes.

B. Parallel sparse encoding of nonbinary cycle codes
Unfortunately, nonbinary cycle codes are not sparse encod-

able in general. The proof of Theorem 4.1 shows that the root
vertex co must be redundant in order for the code to be sparse
encodable. This is not necessarily true for nonbinary codes.
Therefore, in order to realize sparse encoding for nonbinary
cycle codes, one option is to change the code constraint
associated with the root vertex co. Based on this idea, we
propose a novel sparse encoding method for nonbinary QC
LDPC cycle codes. Since this method utilizes the QC structure
of the LDPC cycle code to facilitate parallel encoding, we
refer to it as parallel sparse encoding. We will show that,
starting from any base QC nonbinary LDPC cycle code, we
can obtain a PSE code consisting of a QC subcode, modified
from the base code, and a simple tree subcode. Simulation
results in Section V demonstrate that the resulting parallel
sparse code achieves a comparable performance to the base
code with much reduced encoding time.
The parallel sparse encoding procedure. Assume that the

parity-check matrix of the base QC code, H, with dimensions
rm x n, is composed of permutation circulant submatrices of
dimensions C x C. We first show that the normal graph N(H)
consists of C disjoint spanning trees that are isomorphic. We
build the spanning trees using the C vertices corresponding to
the first C rows of H as roots. Suppose that we have formed
C disjoint isomorphic trees each with k levels. Then at the
(k + 1)-th level, we first add all the edges that are incident to
the leaves to each of the C trees. If cycles appear, we will then
remove some of these newly added edges while keeping all the
new leaves reachable. We say that a vertex in N(H) connects
to a circulant submatrix of H if part of its corresponding row
belongs to that circulant submatrix. The cycles of H can be
categorized as two types: type-I cycle paths that do not cross
the vertices connecting to the same circulant submatrix more
than twice, and type-II cycle paths that go through several
vertices connecting to the same circulant submatrix before
returning to the starting vertex. For type-I cycles, we simply
remove the same set of edges (under the isomorphism) from
each tree. For type-II cycles, we remove the edges that connect
different trees to break the connected graph into ¢ disjoint
trees. Due to the QC structure of the code, the isomorphism
among the C trees is still kept after adding the new edges.
Therefore, we obtain C disjoint trees of (k + 1) levels. The
trees grow in this way until all the vertices have been reached.
After the spanning trees are built, we let the edges not included
in the trees be the information symbols. Subsequently, we can
perform sparse encoding as described in Theorem 4.1 over
each disjoint tree in parallel.
The encoding procedure above leads to a modified version

of the base QC code. Note that the check equations corre-
sponding to the C root vertices are not satisfied after the values
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of all edges incident to these vertices are computed. To offer
additional protection on the symbols corresponding to these
edges, we add a simple tree code on top of the QC code.
Hence, the resulting code is a combination of a QC code and a
small tree code. Next, we illustrate the parallel sparse encoding
method through an example.
Example 4.1: Consider a base QC LDPC cycle code with

n = 18, m = 12, and C = 3. The parity check matrix H is
defined by the mother matrix Hm and the cyclic shift matrix
P in (8). Namely, H is obtained by replacing each zero in Hm
by a C x C zero matrix, and replacing each 1 located in the i-th
row and j-th column of Hm by a cyclic permutation matrix
obtained by shifting a C x C identity matrix to the right by Pj
positions. Here Pij is the (i, j)-th element of P.

Hm (

1

0
0

0
1
1
0

0
0
1
1

1
0
0
1

1
0
1
0

0
1
0
1 p

00

0 0 0

0 0 0

000

Fig. 2. Normal graph representation of a PSE code

Fig. 2 shows the normal graph of the PSE code based on the
QC code defined by H. The top half of the graph corresponds
to a two-level tree subcode, and the bottom half corresponds to
the QC code. Note that {co, ci, c2} and {bo, bl, b2} correspond
to equivalent (under the isomorphism) rows and columns.
Following the parallel sparse procedure described above, we
can identify C = 3 disjoint isomorphic spanning trees. The
i-th tree consists of vertices {c, ci, ci , c' } with c' as the
root and edges {b', b', b'}. In order to form disjoint trees, the
remaining edges in the graph, represented by the dash lines, are
removed to eliminate cycles. Specifically, {b', b' } are removed
to eliminate the type-I cycles ci )Ci- -C-c3 ci and ci -
CZ c' c'; and b is removed to eliminate the type-Il cycle
0 0 1

5

C0 C1 C3 C0 c1 C3 0 C1 C3 CO.
These 9 removed edges correspond to information symbols,
from which the values of coded symbols can be computed.
Note that without the tree subcode, the three root vertices
{c,0 cI}c2} are not necessarily satisfied. Hence, we add four
additional coded symbols {b6, b7, b8, bg} and checks {C4, C5}
to offer stronger protection. The values of these additional
coded symbols are also computed from the bottom to the top.
The resulting PSE code has a rate of 9/22 = 0.409.

C. Encoding complexity of sparse encodable codes

As discussed above, the sparse encoding solves row equa-
tions of H sequentially. Its overall complexity is md, multi-
plications and m(d -1) additions over GF(q), where d, is the
degree of check nodes. Hence, the encoding process requires
m[dcTi + (dc-1)T2] clock cycles, where TI, T2 are the clock
cycles required for a multiplication and an addition over GF(q),
respectively. For parallel sparse encoding, the overall encoding
time is further reduced to (um/t) [dcT1 + (dc -1)T2] for the
encoding of QC subcode, plus the encoding time of the tree
subcode, which is typically much smaller than the encoding
time of the QC subcode. Compared to the generator matrix
based encoding scheme, which has a complexity of O(n2),
the parallel sparse encoding schemes achieve significant com-
plexity saving since H is a sparse matrix. In [3], Lin et al.
proposes an encoder for QC LDPC codes which utilizes the
C structure to reduce the density of the generator matrix

with encoding time of ([((n -m)/( + 1)T1 + ((n -nm)/()T2]
clock cycles. In general, since dc is typically much smaller
than C, when the code rate is not too low, we will have
dc < (n/m- 1)( so that the proposed parallel sparse encoder
has a much lower complexity and shorter encoding time than
the encoder in [3]. For instance, for a PSE code constructed
from a rate 1/2 QC GF(16) cycle code with dc = 4, n = 600,
and C = 15, the parallel sparse encoder saves about 60% in
complexity and encoding time compared to the encoder in [3].
In [13], a modified PEG algorithm is proposed to construct
sparse encodable codes. However, since the codes constructed
in [13] are not QC, parallel encoding is not applicable which
results in a higher encoding complexity than the proposed
parallel sparse encoder.

V. NUMERICAL RESULTS

In this section, we examine the performance ofLDPC cycle
codes in MIMO channels. We first compare the performance
of the proposed nonbinary QC cycle codes constructed from
the CE algorithm with a code constructed from the PEG
algorithm, which is not QC, and with a QC code constructed
from the QPP algorithm [14]. Then we provide a performance
comparison between nonbinary coded systems employing the
PSE codes and binary coded systems employing an optimized
binary LDPC code or a QC code in the 802.16e standards.
We have constructed three codes. The first code, labeled

as CE I, is constructed by applying CE only once to find
good shift coefficients. The second code, labeled as CE II,
is constructed by applying CE twice to find both good shift
coefficients and nonzero elements. Both codes have rate 1/2
and code length 600 symbols. From CE II, we construct a PSE
code with 624 coded symbols and 315 information symbols.
It consists a QC subcode and a 4-level tree subcode. We label
it as CE III.

Fig. 3 presents the bit-error-rate (BER) and block-error-rate
(BLER) performance curves of CE I, CE II codes for a MIMO
channel with two transmit and two receive antennas. The
channel matrix has i.i.d. Rayleigh entries and is independent
over time. The 16 QAM modulation is used. Performance
curves of the nonbinary QC code constructed from the QPP
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Fig. 3. Performance comparisons of LDPC cycles code
on CE, QPP, and PEG constructions

algorithm and the nonbinary code constructe
algorithm are also shown. To ensure the accur
results. we collect at least 100 error blocks for,- -1 Wo-V1>W1 .-- 1-.. .. ..- 11HII IIW

performance curve. Fig. 3 shows that the CE I code performs
closely to the PEG code. Both codes have relatively high error

floor. In contrast, the CE II code has a significantly lower error

floor and it achieves over 0.2 dB gain in BLER at high SNR.
The QC code constructed using the QPP algorithm has the
worst performance and the highest error floor. This justifies
the effectiveness of our construction algorithm.
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Fig. 4. Performance comparisons nonbinary and binary coded system

In Fig. 4, we compare the performance of nonbinary and
binary LDPC coded systems. For the binary coded system we
use an irregular code whose degree distribution is optimized
for MIMO channel using EXIT chart [5]. Since irregular codes
are usually harder to implement in practice, we also consider
a QC code which is included in an IEEE802.16e standard
that has lower encoding and decoding complexity. Both codes
have a code length of 2304. Fig. 4 shows that, while the CE III
code has a much lower encoding complexity as discussed in
Section IV-C, it has only about 0.1 dB performance degradation
compared to the CE II code. When comparing with binary
coded system, at BER = 10-4, the CE III code performs about
0.38 dB and 0.6 dB better than the best optimized irregular

code and the IEEE802.16 code respectively.

x VI. CONCLUSION
......................

............................................

In this paper, we propose a class of nonbinary LDPC
cycle codes for MIMO channels which demonstrates superior
performance than the best optimized binary LDPC code.

...

By exploiting the QC structure of nonbinary cycle codes,
a novel parallel sparse encoding method is developed to

.......... .........

................... facilitate parallel implementation in addition to linear-time
.........................

encoding. The cycle elimination algorithm is applied to the

code construction to remove the short cycles and to choose
the nonzero elements in the parity-check matrix such that the

5.9 6 6-1 number of low weight codewords can be reduced. The codes
constructed using the proposed approach achieve lower error

-s over GF(16) based floors than those constructed using the PEG algorithm and

the QPP algorithm. In [15], we also show that the proposed
nonbinary coded system has a lower receiver complexity than

d from the PEG that of the binary coded system. Therefore, we conclude that

racy of numerical the proposed PSE nonbinary codes are good candidates for
each Doint in the MIMO channels in both performance and complexity.
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