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Background — MCMC methods

e Markov Chain Monte Carlo (MCMC) is a statistical method to generate
random samples from arbitrary distributions.

e Previous work on MCMC methods for signal processing and communica-
tion (Doucet-Wang'05):

¢ Bit-counting: use MCMC simulations to determine the frequency
over which a bit occurs.

¢+ Many samples are needed.

¢+ Requires a burning period to allow Markov chain to converge.
e Our proposed MCMC methods:

¢ Do not use bit-counting
¢ No burning period is needed

¢+ Require very few samples even for large systems



Background— comparisons of suboptimal detectors

e Linear detectors: zero-forcing (ZF), minimum mean square error (MMSE):
low complexity, limited performance

e List Sphere Decoding (LSD) detectors (Hochwald-Brink’03), Soft-in Soft-
out (SISO)-LSD (Vikalo-Hassibi-Kailath’04):

¢ Use tree search to find a sample set B containing likely samples.
¢ Excellent performance at high SNR
¢ Variable complexity

¢+ Exponential complexity at low SNR
e MCMC detectors:

¢ Use Gibbs sampler to find

¢+ Constant complexity

¢ Excellent performance at low SNR
+ High SNR problem



System diagram- Joint MIMO detection and channel
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MIMO channel model

e Channel Model:

y = \/’tEHd+n, (1)

¢ : ttransmit and r receive antenna

¢ p: SNR per receive antenna.

¢ H: r by t channel fading matrix, i.i.d. complex Gaussian CN(0, 1);
¢d=(dy,---,d)": transmitted signal vector

+y=(yy, - ,¥)": received signal vector

¢ n: i.i.d. CN(0, 1) distributed entries;

e Assumes coherent detection: receiver knows H perfectly.

e Noncoherent MCMC detector (Chen-Peng’09)



Optimal detector

ed=(dy---,d)" & b=(bgby--,bk1)", where K = tM,.
o 1=(Ao, -+ ,Ak_1)", 4 is LLR of the i-th bit provided by channel decoder.
e Given y and A, the LLR of bit by is

Y, P(bx = 1, byly, 2)
Ploe =1y, ) _, B

Plbc = -1ly,d) Y P(by = -1, bly, A)
by

where by = (Do, - - - b1, b1, -+, bk_1); by € {1, =1},

(2)

yk = In

e Optimal detector has exponential complexity 2¥.



Bitwise MCMC (b-MCMC) MIMO detector

e Gibbs sampler — an example: t = 2, QPSK

X1 | TX2
by | by | by | bs
b@ | 1 [-1]1]| 1 |random initialization

1st -1/-1/1/|1 update bg
iteration -1/ 1,11 update by
-1/ 11| 1 update b,
b® 5| -1[1]1]-1 update bs
2nd -1111|-1 update by
iteration -1/-111|-1 update by
-1/-1/1|-1 update by
b@ - -1]-111] 1 update bs

e Run Q Gibbs sampler in parallel, with | iterations each.

e Sample set B = {b®, b ... bQ)} Remove redundant samples.



b-MCMC MIMO detector — Compute LLR

e Max-Log:
P(bk = 1ly, 1)
LLRk = In
<~ T P(o, = -1ly. 1)
~  max {—“y—\/EHd(b)“2+}ATb}— max {—“y—\/EHd(b)“2+}/lTb}.
(b: be B | t 2 (b: be B | t 2
e Expanded set:
-1 11 -1
5= -1 -11 1
then the expanded set for bit by is
-1/1/1/-1
1 (1/(1)-1
0_ _ @0 0
B =rgai =%V 8a
1 ]-1/1]|1




b-MCMC MIMO detector — Compute LLR

e Log-MAP-table-tb (Chen-Peng-Ashikhmin-Farhang’08):

LLRe~In )’ e><p{—Hy—\EHd(b)H2+%fb}

{b: be B}
> _— (3)
B [P LT
In ' exp ”y \/;Hd(b)H +>Ab}.
{b: be B}
To further reduce complexity,
IN(e’! + €2) = max (61, 52) + In(1 + e92791)) @

= max(d1, 62) + fe(l61 — 62l),
Compared to Max-Log

¢ better performance

¢ less samples



b-MCMC MIMO detector — Simulation results
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Figure 1. Performance of turbo and LDPC coded TX8 64QAM systems [ Chen-Peng-Ashikhmin-Farhang’ 08].

e Compare Max-Log, Log-MAP-tb b-MCMC, Max-Log LSD (Hochwald-Brink'03),
Max-Log-SISO LSD (Vikalo-Hassibi-Kailath’04) and their Log-MAP versions

e Log-MAP-tb 10x10 MCMC performs the best in performance and complexity
e Within 1.8 dB of capacity at 24 bits/channel use.
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MCMC MIMO detectors for high SNR

To alleviate high SNR problems:

e Assume a larger noise variance than actual noise variance (Farhang-Zhu-
Shi'06).

e Initialize one of the Gibbs sampler using ZF or MMSE solutions (Mao-
Amini-Farhang’07).

e Constrained MCMC (Akoum-Peng-Chen-Farhang’09):

Re= max (= [y \ra®)) - max [y~ 2rao)). ©

4 First find ML solution b,(\ﬁl))L.

s 1 Y

MLk = L b,(\?L achieves the first maximum.

4+ N-ML solution: the vector that attains the second maximum.

¢ run constrained MCMC for each bit k to obtain good approximations
of N-ML.
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MCMC equalizers for frequency selective channels

Yo Y1 Y. Y3 Y4 Ys Ye Y7

Channel Model;

L
Vo= MXpi+Z, N=01-- N+L-1,
=0

e L: channel memory

e h: channel gain of |-th tap

e {Xp,  ,Xn_1}: transmitted symbols
e {Vo, - ,Yn_1}: received signals

e {Z,}: i.i.d. channel noise CN(O, Npo/2).

(6)
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MCMC equalizers — Gibbs sampler

Group MCMC (g-MCMC) (Peng-Chen-Farhang’09):
e Inside Gibbs sampler, update G,ax Symbols at a time.

e g-MCMC performs better than b-MCMC for channels with strong ISI.

An example: Assume L = 2, Gax = 2, QPSK modulation.
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MCMC equalizers —compute LLR

Compute LLR for bit by:

S p(iielbi,) .ﬁ P(by)

bll:IZEBiliiz

Yk = In »
Z p(yi:i+L|bi1:i2) H P(bl)
biliizegikﬁi =i

e Bit k is mapped to symbol X;

e Vii.L. received signals that are affected by by.

e Vyii,L depends only on bits {by, iy = Mp(i — L) <1 < Mp(i + L) =i5}.

(7)
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MCMC equalizers —simulation results

A channel with strong ISI
hy[n] = 0.2276[Nn] + 0.465[n — 1] + 0.6886[n — 2] + 0.466[n — 3] + 0.2276[n — 4]
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Figure 2: Performance comparisons of MAP, MM SE, g-MCMC equalizers for astrong 1Sl channel [Chen-Peng-Farhang' 09].

e g-MCMC significantly outperforms MMSE equalizer (Tuchler-Singer-Koetter'02)
e b-MCMC does not work for such channel with strong ISI.
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Conclusions and future work

e MCMC detectors are capable of achieving excellent performance at low
complexity for both MIMO channels and frequency selective channels.

e Amicable for hardware implementation (Laraway-Farhang’09)
e MCMC equalizers allow for parallel implementation (Peng-Chen-Farhang’09)

e Ongoing research:

¢+ MCMC detectors for continuously time-varying channels and chan-
nels with imperfect channel state information.

+ Applications of MCMC equalizers to underwater acoustic channels.

¢ Theoretical analysis of MCMC techniques.
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