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Summary of PhD work

• Efficient MCMC algorithms for communication
– Application to MIMO channel ([Chen-Peng-Ashikhmin-Farhang], To

appear IEEE Trans. Comm.)
– Application to noncoherent channel ([Chen-Peng], to appear IEEE Trans.

Comm.’09)
– Application to ISI channel and extend to underwater channel ([Peng-

Chen-Farhang], To appear IEEE Trans. Signal Process.)
– Achieve near optimal performance with reduced complexity
– Solve the slow convergence problem

• MIMO-HARQ schemes and combining algorithm ([Peng-Chen], to be
submitted to IEEE Trans. Comm.)
– Propose new retransmission scheme
– Propose new combining algorithm
– Increase the throughput significantly
– Applicable to Wimax and LTE
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Summary of PhD work

• Nonbinary LDPC codes ([Peng-Chen], IEEE Trans. Wireless
Comm.’08)
– Nonbinary LDPC coded MIMO system, achieve good performance

with reduced complexity
– Code design based on EXIT chart
– Hardware-friendly construction

• Low encoding complexity
• Parallel architecture
• Low error floor

• Intern at MERL
– Low complexity MIMO detection algorithm for MIMO-OFDMA
– Wimax link-level simulation
– 1 paper, 1 patent
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Outline

• Background and motivation
• Introduction to MCMC technology
• MCMC MIMO detection

– Review of MIMO detection
– QRD-M and MCMC detector
– Hybrid MIMO detector
– Complexity analysis

• MCMC ISI equalization
– Bit-wise MCMC equalizer
– Group-wise MCMC equalizer

• Conclusion
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Background and motivation
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Markov Chain Monte Carlo

• MCMC is a class of algorithms for sampling from
probability distributions based on constructing a Markov
chain that has the desired distribution as its stationary
distribution.

• The state of the chain after a large number of steps is
then used as a sample from the desired distribution.

• MCMC is suitable for addressing problems involving high-
dimensional summations or integrals

X
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Gibbs sampling

• One kind of the MCMC methods.
• The point of Gibbs sampling is that given a multivariate distribution it

is simpler to sample from a conditional distribution rather than
integrating over a joint distribution.

• Generate an initial sample as start state
• Using conditional distribution as state transition probability
• Each state jumping allows only one variable change
• Return best state seen across all iterations (may not be the last one)
• Stop after a fixed number of iterations
• Solution is sensitive to the starting state, so we typically run the

algorithm several times from different starting points
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State transition in Gibbs sampling
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Gibbs sampler
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Why Gibbs sampling works

• Retains elements of the greedy approach
– weighing by conditional PDF makes likely to move towards locally

better solutions

• Allows for locally bad moves with a small probability, to
escape local maxima (with limitations)
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ISI channel

• Multipath fading channel
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ISI channel

• In matrix form
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Detection for ISI channel

• MAP detection is optimal
– Efficient implementation of MAP detection is Forward backward

algorithm (BCJR)
– Still exponential complexity with channel memory

• Low complexity algorithm
– MMSE
– Decision-feedback
– …
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Bit-wise MCMC detector

• Transition probability
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Bit-wise MCMC detector

• Computing the a posteriori LLR
– Accurate posteriori LLR involve computations over the whole

block (may be very cumbersome since N can be very large)
– Truncated window to approximate
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Severe ISI channel

• For channels with severe ISI,
bit-wise MCMC suffers from
slow convergence problem

• We found slow convergence
problem for ISI channel is
mainly caused by high
posterior correlation
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Severe ISI channel

• Our solution
– Grouping (blocking) the highly correlation variables in Gibbs

sampler

1st iteration:

2nd iteration:

3rd iteration:

4th iteration:

Shift grouping different adjacent symbols over iterations
to speed up the mixing rate of Gibbs sampler
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Transition probability

• Grouping multiple variables allow a large sample space
containing              values
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Transition probability

• Can be thought as received signals of a MIMO channel
with G transmit antenna and P+1 receive antenna

• Can apply QRD-M to find           samples with large APPs
• Gibbs sampler randomly chooses one sample from

samples
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Simulation results

Performance of the channel with strong ISI
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Summary of results

• MCMC equalizer for ISI channel is studied
• Near optimal performance can be obtained
• Slow convergence is mainly caused by high posterior

correlation
• QRD-M algorithm is applied to reduce the complexity of

group-wise MCMC equalizer
• Parallel implementation is proposed
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Conclusions

• Efficient MCMC algorithms for MIMO and ISI channel are studied
– For MIMO, MCMC works well at low SNR region
– For ISI, MCMC works well for moderate ISI

• Solutions for slow convergence are proposed
– For MIMO, use QRD-M as good start point
– For ISI,

• Use group-wise Gibbs sampler to group high correlated variables
• Use QRD-M to reduce the complexity of group-wise Gibbs sampler

• Future work
– Study the sensitivity of proposed MIMO detector with more practical

channel model
– Study the time-varing ISI channel and adaptive grouping scheme for

group-wise MCMC
– Hardware implementation of MCMC
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Motivation

• Optimal binary code has been designed to approach channel capacity.
– Long codes
– Irregular

• Nonbinary LDPC code design has been studied for AWGN and shows
better performance than binary codes.

– Shorter codes
– More regular
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Contribution

• Apply nonbinary LDPC codes to fading channels and MIMO channels
and provide comparison with optimal binary LDPC coded systems

• Propose modified nonbinary LDPC decoding algorithm.
• Extend EXIT chart to nonbinary code design
• Propose parallel sparse encodable nonbinary code with low encoding

and decoding complexity
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Introduction of binary LDPC codes

• A subclass of linear block codes
• Specified by a parity check matrix (n-k)×n

n: code length k: length of information sequence
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Definition of nonbinary LDPC codes

• For nonbinary codes, the ones in parity check matrix are replaced by
nonzero elements in GF(q)


















5007204
0306520
0030173

H



2011/7/16
27

Application to fading channels

• Channel model

VHSX 
M
ρ

Assume each entry of channel matrix is independent, follows
Rayleigh fading, and is known by receiver
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System block diagram

Separate detection and decoding: the detection is performed
only once.
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Performance comparison

Performance comparison of GF(256) SDD, GF(16) JDD and binary JDD
system

GF16
JDD

GF256
SDD

Binary
JDD

802.16e

Performance:
GF256>GF16>
binary>802.16e

Complexity:
GF16<GF256
802.16e<binary
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Construction of Parallel sparse encodable codes

• Motivation
– Low encoding complexity
– Allow parallel implementation

• Parallel sparse encodable (PSE) codes =
Qausi cyclic (QC) cycle codes + tree codes
– QC codes: parallel implementation
– Cycle code: Low encoding complexity
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Quasi-cyclic construction

• Quasi-cyclic structure

• Ai,j is a circulant: each row is a right cycle-shift of the row above it and the first
row is the right cycle-shift of the last row

• The advantage of QC structure
– Allow linear-time encoding using shift register
– Allow partially parallel decoding
– Save memory
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A new QC structure for GF(q)
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Cycle codes

• With degree 2 variable nodes only
• Can be represented by normal graph, every vertex imposes one linear

constraint
– Columns => edges; rows => vertices
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H based encoding of cycle codes

① Find the spanning tree:
b0, b3, b4

② Information bits =>
Edges outside SP
b1=1, b2=1, b5=0

③ Compute coded bits
b3=b2+b5=1
b4=b2+b1=0
b0=b1+b5=1
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0 1

1

1 0
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Not work for nonbinary cycle codes! Why?

For binary code: check c0 is always satisfied.
b0+b3+b4=0
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PSE codes
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Encoding of PSE codes

• Parity check matrix based encoding
• Parallel encoding for QC cycle subcode
• Much lower encoding complexity than normal LDPC codes using

generator matrix based encoding because the generator matrix is
usually dense
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Simulation results

Performance comparison of PSE codes over GF(256)
with QPP (QC) codes and PEG (non-QC) codes
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Thank you !


