Efficient Markov Chain Monte Carlo Algorithms For MIMO and ISI channels

Rong-Hui Peng

Department of Electrical and Computer Engineering University of Utah

- Efficient MCMC algorithms for communication
 - Application to MIMO channel ([Chen-Peng-Ashikhmin-Farhang], To appear IEEE Trans. Comm.)
 - Application to noncoherent channel ([Chen-Peng], to appear IEEE Trans. Comm.'09)
 - Application to ISI channel and extend to underwater channel ([Peng-Chen-Farhang], *To appear IEEE Trans. Signal Process.*)
 - Achieve near optimal performance with reduced complexity
 - Solve the slow convergence problem
- MIMO-HARQ schemes and combining algorithm ([Peng-Chen], to be *submitted to IEEE Trans. Comm.*)
 - Propose new retransmission scheme
 - Propose new combining algorithm
 - Increase the throughput significantly
 - Applicable to Wimax and LTE

Summary of PhD work

- Nonbinary LDPC codes ([Peng-Chen], IEEE Trans. Wireless Comm.'08)
 - Nonbinary LDPC coded MIMO system, achieve good performance with reduced complexity
 - Code design based on EXIT chart
 - Hardware-friendly construction
 - Low encoding complexity
 - Parallel architecture
 - Low error floor
- Intern at MERL
 - Low complexity MIMO detection algorithm for MIMO-OFDMA
 - Wimax link-level simulation
 - 1 paper, 1 patent

Outline

- Background and motivation
- Introduction to MCMC technology
- MCMC MIMO detection
 - Review of MIMO detection
 - QRD-M and MCMC detector
 - Hybrid MIMO detector
 - Complexity analysis
- MCMC ISI equalization
 - Bit-wise MCMC equalizer
 - Group-wise MCMC equalizer
- Conclusion

Background and motivation

exponential with the dimension of \mathbf{b}_{-k}

Our objective: reduce the complexity but still obtain near optimal performance

- MCMC is a class of algorithms for sampling from probability distributions based on constructing a Markov chain that has the desired distribution as its stationary distribution.
- The state of the chain after a large number of steps is then used as a sample from the desired distribution.
- MCMC is suitable for addressing problems involving highdimensional summations or integrals

Gibbs sampling

- One kind of the MCMC methods.
- The point of Gibbs sampling is that given a multivariate distribution it is simpler to sample from a conditional distribution rather than integrating over a joint distribution.
- Generate an initial sample as start state
- Using conditional distribution as state transition probability
- Each state jumping allows only one variable change
- Return best state seen across all iterations (may not be the last one)
- Stop after a fixed number of iterations
- Solution is sensitive to the starting state, so we typically run the algorithm several times from different starting points

State transition in Gibbs sampling

$$\mathbf{y} = \mathbf{H}\mathbf{d} + \mathbf{n} \qquad \mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

Sampling **d** according to $p(\mathbf{d} | \mathbf{y}, \mathbf{H})$ using conditional PMF $p(d_i | \mathbf{y}, \mathbf{H}, \mathbf{d}_{-i})$

State	d ₃	d ₂	d ₁
S ₀	-1	-1	-1
S ₁ .	-1	-1	+1
S ₂	-1	+1	-1
S ₃	-1	+1	+1
S ₄	+1	-1	-1
S ₅	+1	-1	+1
S ₆	+1	+1	-1
S ₇	+1	+1	+1

2011/7/16

Generate initial $\mathbf{d}^{(0)}$ randomly for n= 1 to *I* generate $d_0^{(n)}$ from distribution $p(d_0 = b | d_1^{(n-1)}, d_2^{(n-1)}, \mathbf{L}, d_{N-1}^{(n-1)}, \mathbf{y})$ generate $d_1^{(n)}$ from distribution $p(d_1 = b | d_0^{(n)}, d_2^{(n-1)}, \mathbf{L}, d_{N-1}^{(n-1)}, \mathbf{y})$ M generate $d_{N-1}^{(n)}$ from distribution $p(d_{N-1} = b | d_0^{(n)}, d_1^{(n)}, \mathbf{L}, d_{N-2}^{(n)}, \mathbf{y})$ end for

- Retains elements of the greedy approach
 - weighing by conditional PDF makes likely to move towards locally better solutions
- Allows for locally bad moves with a small probability, to escape local maxima (with limitations)

ISI channel

• Multipath fading channel

$$y(m) = \sum_{l=0}^{L} h_l(m)d(m-l) + n(m),$$

for $m = 0.1.L$. $N - 1 + L$

ISI channel

In matrix form

 $\mathbf{y} = \mathbf{H}\mathbf{d} + \mathbf{n}$ h_0 0 where 0 $\mathbf{d} \in \mathbf{C}^N$: transmitting vector Μ $\mathbf{y} \in \mathbf{C}^{N+L-1}$: received vector $0 \quad h_L \quad L \quad h_0 \quad 0 \quad L$ 0 M O H = $\mathbf{H} \in \mathbf{C}^{N+L-1 \times N}$: channel matrix 0 Μ $0 \quad \mathbf{L} \quad 0 \quad h_L \quad h_{L-1} \quad \mathbf{L}$ h_0 $\mathbf{n} \in \mathbf{C}^{N+L-1}$: dditive noise vector *N* : Equalizer block length *L* : Channel memory h_L

Detection for ISI channel

- MAP detection is optimal
 - Efficient implementation of MAP detection is Forward backward algorithm (BCJR)
 - Still exponential complexity with channel memory
- Low complexity algorithm
 - MMSE
 - Decision-feedback

- ...

• Transition probability

$$P(b_{k} = a | \overline{\mathbf{b}}_{k}, \mathbf{y}) \propto p(\mathbf{y} | \mathbf{b}^{a}) P(b_{k} = a)$$

$$= p(\mathbf{y} | \mathbf{d}^{a}) P(b_{k} = a)$$

$$= \prod_{j=0}^{N+L-1} p(y_{j} | \mathbf{d}_{j-L;j}^{a}) P(b_{k} = a)$$

$$= \left\{ \prod_{j=0}^{i-1} p(y_{j} | \mathbf{d}_{j-L;j}^{a}) \prod_{j=i+L+1}^{N+L-1} p(y_{j} | \mathbf{d}_{j-L;j}^{a}) \right\} \prod_{j=i}^{i+L} p(y_{j} | \mathbf{d}_{j-L;j}^{a}) P(b_{k} = a)$$

$$= Cg \prod_{j=i}^{i+L} p(y_{j} | \mathbf{d}_{j-L;j}^{a}) P(b_{k} = a)$$

$$\mathbf{b}^{a} = \{b_{0}^{(n)}, \mathbf{L}, b_{k-1}^{(n)}, a, b_{k+1}^{(n-1)}, \mathbf{L}, b_{M_{b}N-1}^{(n-1)} \},$$

$$\mathbf{d}^{a} \text{ denote the symbol vector corresponding to } \mathbf{b}^{a}$$

$$b_{k} \text{ is mapped to } d_{i}$$

- Computing the a posteriori LLR
 - Accurate posteriori LLR involve computations over the whole block (may be very cumbersome since *N* can be very large)
 - Truncated window to approximate

$$\lambda_{1,k}^{e} = \ln \frac{\sum_{\substack{\mathbf{b}_{i_{1}:i_{2}} \in I_{i_{1}:i_{2}}^{k,0}}} p(\mathbf{y}_{i:i+L} \mid \mathbf{b}_{i_{1}:i_{2}}) \prod_{l=i_{1}}^{i_{2}} P(b_{l})}{\sum_{\mathbf{b}_{i_{1}:i_{2}} \in I_{i_{1}:i_{2}}^{k,1}} p(\mathbf{y}_{i:i+L} \mid \mathbf{b}_{i_{1}:i_{2}}) \prod_{l=i_{1}}^{i_{2}} P(b_{l})} - \lambda_{2,k}^{e}$$

I $_{i_1:i_2}$ the set which truncate sequences in I with bits $\{b_k, i_1 \le k \le i_2\}$

Severe ISI channel

$$h_{1}[n] = 0.227\delta[n] + 0.46\delta[n - 1] + 0.066\delta[n - 2] + 0.46\delta[n - 3] + 0.227\delta[n - 4]$$
$$h_{2}[n] = (2 + 04i)\delta[n] + (15 + 18i)\delta[n - 1] + \delta[n - 2] + (12 - 13i)\delta[n - 3] + (08 + 16)\delta[n - 4]$$

Severe ISI channel

- Our solution
 - Grouping (blocking) the highly correlation variables in Gibbs sampler
 - 1st iteration: \bigcirc \bigcirc

Shift grouping different adjacent symbols over iterations to speed up the mixing rate of Gibbs sampler

Transition probability

• Grouping multiple variables allow a large sample space containing $r = 2^{M_b G}$ values

P = G + L + 1

$$\mathbf{\hat{y}}_{i:i+P} = \mathbf{y}_{i:i+P} - \mathbf{H}_{i:i+P}^{i-L:i-1} \mathbf{d}_{i-L:i-1} - \mathbf{H}_{i:i+P}^{i+G:i+P} \mathbf{d}_{i+G:i+P} + \mathbf{n}_{i:i+P}$$
$$= \mathbf{H}_{i:i+P}^{i+G:i+P} \mathbf{d}_{i:i+G-1} + \mathbf{n}_{i:i+P}$$

- Can be thought as received signals of a MIMO channel with *G* transmit antenna *and P*+1 receive antenna
- Can apply QRD-M to find $r_0 = r$ samples with large APPs
- Gibbs sampler randomly chooses one sample from r_0 samples

Simulation results

Performance of the channel with strong ISI

20

Summary of results

- MCMC equalizer for ISI channel is studied
- Near optimal performance can be obtained
- Slow convergence is mainly caused by high posterior correlation
- QRD-M algorithm is applied to reduce the complexity of group-wise MCMC equalizer
- Parallel implementation is proposed

Conclusions

- Efficient MCMC algorithms for MIMO and ISI channel are studied
 - For MIMO, MCMC works well at low SNR region
 - For ISI, MCMC works well for moderate ISI
- Solutions for slow convergence are proposed
 - For MIMO, use QRD-M as good start point
 - For ISI,
 - Use group-wise Gibbs sampler to group high correlated variables
 - Use QRD-M to reduce the complexity of group-wise Gibbs sampler
- Future work
 - Study the sensitivity of proposed MIMO detector with more practical channel model
 - Study the time-varing ISI channel and adaptive grouping scheme for group-wise MCMC
 - Hardware implementation of MCMC

Motivation

- Optimal binary code has been designed to approach channel capacity.
 - Long codes
 - Irregular
- Nonbinary LDPC code design has been studied for AWGN and shows better performance than binary codes.
 - Shorter codes
 - More regular

- Apply nonbinary LDPC codes to fading channels and MIMO channels and provide comparison with optimal binary LDPC coded systems
- Propose modified nonbinary LDPC decoding algorithm.
- Extend EXIT chart to nonbinary code design
- Propose parallel sparse encodable nonbinary code with low encoding and decoding complexity

Introduction of binary LDPC codes

- A subclass of linear block codes
- Specified by a parity check matrix (n-k) × n
 n: code length k: length of information sequence

$$\mathbf{x}_{1} \quad \mathbf{x}_{2} \qquad \mathbf{\Lambda} \qquad \mathbf{x}_{7}$$

$$c_{1} \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{H}\mathbf{x}^{T} = \mathbf{0}$$

$$c_{1} : x_{1} + x_{2} + x_{3} + x_{5} = 0$$

$$c_{2} : x_{2} + x_{3} + x_{4} + x_{6} = 0$$

$$c_{3} : x_{1} + x_{3} + x_{4} + x_{7} = 0$$

2011/7/16

• For nonbinary codes, the ones in parity check matrix are replaced by nonzero elements in GF(q)

$$\mathbf{H} = \begin{bmatrix} 3 & 7 & 1 & 0 & 3 & 0 & 0 \\ 0 & 2 & 5 & 6 & 0 & 3 & 0 \\ 4 & 0 & 2 & 7 & 0 & 0 & 5 \end{bmatrix}$$

Application to fading channels

Channel model

$$\mathbf{X} = \sqrt{\frac{\rho}{M}} \mathbf{H} \mathbf{S} + \mathbf{V}$$

Assume each entry of channel matrix is independent, follows Rayleigh fading, and is known by receiver

Separate detection and decoding: the detection is performed only once.

Performance comparison

Performance comparison of GF(256) SDD, GF(16) JDD and binary JDD system 29

Construction of Parallel sparse encodable codes

- Motivation
 - Low encoding complexity
 - Allow parallel implementation
- Parallel sparse encodable (PSE) codes =
 - Qausi cyclic (QC) cycle codes + tree codes
 - QC codes: parallel implementation
 - Cycle code: Low encoding complexity

Quasi-cyclic construction

• Quasi-cyclic structure

$$\mathbf{H} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} & \Lambda & \mathbf{A}_{1,n} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} & \Lambda & \mathbf{A}_{2,n} \\ \mathbf{M} & \mathbf{M} & \mathbf{O} & \mathbf{M} \end{bmatrix}$$

- $A_{i,j}$ is a circulant: each row is a right cycle-shift of the row above it and the first row is the right cycle-shift of the last row
- The advantage of QC structure
 - Allow linear-time encoding using shift register
 - Allow partially parallel decoding
 - Save memory

A new QC structure for GF(q)

• A_{*i*,*j*} is a nonbinary multiplied circulant permutation matrix

$$\mathbf{A}_{i,j} = \begin{pmatrix} \mathbf{K} & \mathbf{0} & \delta_{i,j} & \mathbf{0} & \Lambda & \Lambda & \mathbf{0} \\ \Lambda & & \mathbf{0} & \delta_{i,j} \beta & \mathbf{0} & \Lambda & \mathbf{M} \\ \mathbf{M} & \Lambda & \Lambda & \mathbf{0} & \delta_{i,j} \beta^2 & \mathbf{0} & \mathbf{M} \\ \mathbf{M} & & & \mathbf{M} & \mathbf{0} & \mathbf{0} \\ \mathbf{M} & & & & \mathbf{M} & \mathbf{0} & \mathbf{0} \\ \mathbf{O} & \mathbf{M} & \mathbf{M} & & & \mathbf{M} & \mathbf{0} \\ \Lambda & \delta_{i,j} \beta^{q'-2} & \mathbf{0} & \Lambda & & & \mathbf{0} \end{pmatrix}$$

GF(q') \subset GF(q); β is a primitive element of GF(q') $\delta_{i,j}$ is randomly choosen from { $\alpha^0, \alpha^1, \Lambda, \alpha^{(q-1/(q'-1)-1)}$ } α is a primitive element of GF(q) ^{2011/7/16}

- With degree 2 variable nodes only
- Can be represented by normal graph, every vertex imposes one linear constraint
 - Columns => edges; rows => vertices

$$\mathbf{H}_{m} = \begin{pmatrix} b_{0} & b_{1} & \dots & b_{5} \\ c_{0} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ c_{3} \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} \end{pmatrix}$$

Parity check matrix

- (1) Find the spanning tree: b_0, b_3, b_4
- 2 Information bits => Edges outside SP $b_1=1, b_2=1, b_5=0$

(3) Compute coded bits

$$b_3=b_2+b_5=1$$

 $b_4=b_2+b_1=0$

$$b_0 = b_1 + b_5 = 1$$

For binary code: check c_0 is always satisfied. $b_0+b_3+b_4=0$

Not work for nonbinary cycle codes! Why?

Encoding of PSE codes

- Parity check matrix based encoding
- Parallel encoding for QC cycle subcode
- Much lower encoding complexity than normal LDPC codes using generator matrix based encoding because the generator matrix is usually dense

Simulation results

Performance comparison of PSE codes over GF(256) with QPP (QC) codes and PEG (non-QC) codes

Thank you !