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Channel model

« Consider a MIMO Rayleigh fast fading channels.

where

y=Hd+n

d € C" is a vector of transmit symbols
y e C"" is a vector of received signal
H e C""" is the channel gain matrix

N - o . .
n < C" 1s an additive noise vector

N,, N, 1s the number of tx and rx antennas
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Receiver structure

_____________________________________
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Detector (soft) Decoder

 Separate detection and decoding (SDD) : no feedback from

channel decoder
« Joint detection and decoding (JDD) : exchange soft
information between detector and decoder
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MIMO detection

« Maximal likelihood (ML) detection or Maximum a
posteriori (MAP) is optimal

« Optimal detection usually has exponential complexity and
IS computation infeasible for practical system

* Low complexity sub-optimal detectors
— ZF, MMSE, VBLAST ...

* Approximate optimal detectors
— Tree search based (sphere decoding, QRD-M)
— Markov chain Monte Carlo (MCMC) based
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Optimal MAP detection

« Soft output detector generate soft message, usually
log likelihood ratio (LLR). It will be used by soft
channel decoder

— MAP:
P(b, =+Lb_, |y) _
_1n PG =41y bz ' ) maxP(b, =+1b_ |y)

A = =1In ~In
Pb,=—1y) D P(b,=—1b_|y) maxP(b, =—1b_; [y)
b, -

where
d=(b,b,,A 9bMMC ) b, =bL.A D _,b A 9bMMC ); b el-Ll}
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Low complexity detection

« Approximate optimal detectors

ZP(bk =+Lb_, |y)
_lnP(bk :+1|y) :ln b_;

P =-1ly) Y P, =-1b_]y)

max P(b, =+1b_, |y)

~ |n
max P(b,=-1b_, |y)

whereI , cb_,

The searching is performed over a small subset (Important set) instead
of a large full set.
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Tree search based detection
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Sphere decoding VS. QRD-M

« Sphere decoding [1]: Depth-First Search (DFS)
— Search the tree inside the sphere
— Variable throughput with average polynomial complexity but
exponential at low SNR

 QRD-M [2]: Breadth-First Search (BFS)

— At each layer, select M minimal paths
— Fixed number of visited nodes, constant throughput

Breadth first %

-
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QRD-M

2
L1:4, =|r, —t,,d,| -20°p(d,)
Sorting A,, select 2 out of 4
Update r, =7, — tk’4a?4,k =1,2,3
L2:4, = | —1,,d,[ 202 p(d)) + 4,

/\ Sorting A,, select 2 of 8
Update 7, =r, - tk,3c?3,k =1,2
L3:4, = |r, ~1,,d,[ 202 p(d,) + 2,

Sorting A,, select 2 of 8

~

Update r, =r, -t ,d,, k=1

L4:4 =|n-1,d,[ -20p(d) + 4,
Sorting A, select 2 of 8

QRD-M 1n a 4x4 QPSK system
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Complexity of QRD-M

* Need preprocessing QR decomposition, O(N)

» At each layer (except root layer), MM_ square euclidian
distance calculations are needed to find M minimal
distance from MM, path where M, is the number of
symbols in a constellation

* The complexity of QRD-M depends on the parameter M,

« If Mis too large, the complexity is very high; if M is too
small, promising candidates have been discarded before
the process proceeds to the lowest layer
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MCMC

« MCMC detector [3] finds important sets using Markov
chain Monte Carlo
— Create Markov chain with state space: d and stationary
distribution P(d|Y)
— Run Markov chain using Gibbs sampler

— After Markov chain converge, the samples are generated
according to P(d|Y). Those samples with large P(d|Y) generated
with high probabilities

[3] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, “Markov chain Monte Carlo
algorithms for CDMA and MIMO communication systems,” IEEE Trans.
Signal Processing
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Gibbs sampler
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Gibbs sampler

» Gibbs sampler limit the states jumping with only one
variable change for each state jumping

»
men \1
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Gibbs sampler

Generate initiald® randomly
forn=1to/

generated,” fromdistributon p(d, =b|d"™",dy" " A ,d}y,,",,y)

generated” fromdistributon p(d, =b|d",d)" ™" A ,d](v”AZ)_l,y)

M

generatedy,, _, fromdistribution p(d,, , =b|dy"”,d{"” A ,dy,, _,,y)
end for

wherep(d, =b|d",A d"),d" " A ,d" L y)

-1 >+l >

o< p(y|d" A d7,d, =b,d" " A ,dG", ) pd, =Db)

i+l

M . 1s the # of bits per constellaion symbol
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MCMC

« The samples generated by Gibbs sampler are used to
compute the soft message for soft decoder

* To accelerate Markov chain converge, L independent
parallel Gibbs samplers are runned and each Gibbs
sampler run / iterations
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High SNR problem

« At high SNR, MCMC takes long time to converge, leads
performance degradation, this is because of the
multimodal property of channel PDF at high SNR

State will get
stuck here

P(y|d)? P(yld)t

W

d: : d:
Low SNR High SNR

18
2011/7/16



Solutions

« Multimodal problem exists in many MCMC algorithm.
* No general method to overcome it

* For MIMO detection, one solution is to generate initial
candidates using other low complexity detector (warm

start)

19
2011/7/16



Tree search VS. MCMC

* Tree search based detection pruning paths on the tree
— Exponential complexity at low SNR
— Complexity is increased quickly with the dimension of problem

« MCMC finds important vectors using the P(d|Y)
— Works very well at low SNR
— Complexity is independent of SNR

— Complexity is increased not too much with the dimension of
problem

— At high SNR, need the help of ZF or MMSE
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Hybrid QRD-MCMC

e Combine QRD-M and MCMC

— A QRD-M with a small M is running first to generate initial
important sets

— The bit sequence with minimal path metric will be used to initialize
one of L parallel MCMC

— The important set produced by the QRD-M detector is
incorporated by the MCMC detector

— MCMC is running to generate refined important set
— The soft message is computed using refined import set

21
2011/7/16



Hybrid QRD-MCMC
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Results
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Results
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Complexity

« With the aid of QRD-M initialization, the MCMC detector
starts from good initial vectors, which reduces the number
of required parallel Gibbs samplers D and the number of
iterations L per Gibbs sampler.

* Due to the use of MCMC, a small M is sufficient for the
QRD-M detection, leading to reduced complexity and
delay.

* Due to the QR decomposition of the channel matrix, the
operations needed to compute path metric in MCMC
detection can be reduced at least by 1/2
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Complexity

2011/7/16

QRD-M 4x4 M=32 50256
8x8 M=32 127344
RND-MCMC dxd [V =8 L = 73760
8x8 D=10 L = 5 331920
QRD-MCMC x4 M =9D=6L=5 | 41498
8x8 M =8 0D =5L =5 | 114284
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Application in 802.16e

SYSTEM PARAMETERS

Parameter Value
Channel bandwidth 10 MHz
Number of subcarmers 1024
Subcarrier permutation PUSC
Cyclic prefix 1/8

Channel coding

Convolutional tarbo codes

Carmnier frequency

2500 MHz

Sampling frequency 11.2 MH=z
Multipath channel ITU VehA
MS speed 120 km/hr
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Results
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Conclusion

* A hybrid MIMO detector is proposed: concatenation of
QRD-M and MCMC

* The proposed detector reaps the advantages of QRD-M
and MCMC
— Work at wide range of SNR
— Better performance and lower complexity

* Application to a practical IEEE802.16e system shows
near optimal performance and is a good competing MIMO
detector
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