Low-complexity hybrid QRD-MCMC MIMO detection

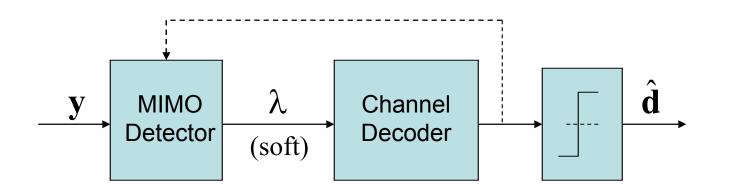
Rong-Hui Peng, Koon Hoo Teo, Jinyun Zhang and Rong-Rong Chen

Mitsubishi Electric Research Laboratories Department of Electrical and Computer Engineering University of Utah

Outline

- Channel model
- Review of MIMO detection
- QRD-M and MCMC detector
- Hybrid MIMO detector
- Complexity analysis
- Application to IEEE802.16e system
- Conclusion

Channel model


• Consider a MIMO Rayleigh fast fading channels.

 $\mathbf{y} = \mathbf{H}\mathbf{d} + \mathbf{n}$

where

 $\mathbf{d} \in \mathbf{C}^{N_t}$ is a vector of transmit symbols $\mathbf{y} \in \mathbf{C}^{N_r}$ is a vector of received signal $\mathbf{H} \in \mathbf{C}^{N_r \times N_t}$ is the channel gain matrix $\mathbf{n} \in \mathbf{C}^{N_r}$ is an additive noise vector N_t, N_r is the number of tx and rx antennas

Receiver structure

- Separate detection and decoding (SDD) : no feedback from channel decoder
- Joint detection and decoding (JDD) : exchange soft information between detector and decoder

MIMO detection

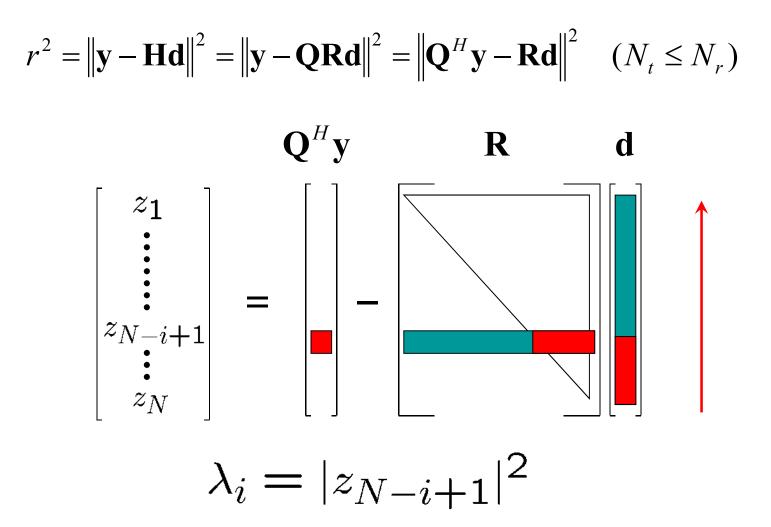
- Maximal likelihood (ML) detection or Maximum a posteriori (MAP) is optimal
- Optimal detection usually has exponential complexity and is computation infeasible for practical system
- Low complexity sub-optimal detectors
 - ZF, MMSE, VBLAST ...
- Approximate optimal detectors
 - Tree search based (sphere decoding, QRD-M)
 - Markov chain Monte Carlo (MCMC) based

• Soft output detector generate soft message, usually log likelihood ratio (LLR). It will be used by soft channel decoder

$$- \text{ MAP:} \\ \lambda_{k} = \ln \frac{P(b_{k} = +1 | \mathbf{y})}{P(b_{k} = -1 | \mathbf{y})} = \ln \frac{\sum_{\mathbf{b}_{-k}} P(b_{k} = +1, \mathbf{b}_{-k} | \mathbf{y})}{\sum_{\mathbf{b}_{-k}} P(b_{k} = -1, \mathbf{b}_{-k} | \mathbf{y})} \approx \ln \frac{\max P(b_{k} = +1, \mathbf{b}_{-k} | \mathbf{y})}{\max P(b_{k} = -1, \mathbf{b}_{-k} | \mathbf{y})}$$

where

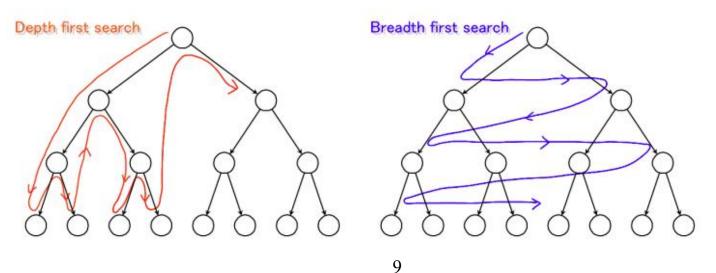
$$\mathbf{d} = (b_1, b_2, \Lambda, b_{N_t M_c}); \quad \mathbf{b}_{-k} = (b_1, \Lambda, b_{k-1}, b_{k+1}, \Lambda, b_{N_t M_c}); \quad b_i \in \{-1, 1\}$$


Low complexity detection

• Approximate optimal detectors

$$\lambda_{k} = \ln \frac{P(b_{k} = +1 | \mathbf{y})}{P(b_{k} = -1 | \mathbf{y})} = \ln \frac{\sum_{\mathbf{b}_{-k}} P(b_{k} = +1, \mathbf{b}_{-k} | \mathbf{y})}{\sum_{\mathbf{b}_{-k}} P(b_{k} = -1, \mathbf{b}_{-k} | \mathbf{y})}$$
$$\approx \ln \frac{\max_{\mathbf{I}_{-k}} P(b_{k} = +1, \mathbf{b}_{-k} | \mathbf{y})}{\max_{\mathbf{I}_{-k}} P(b_{k} = -1, \mathbf{b}_{-k} | \mathbf{y})}$$
where $\mathbf{I}_{-k} \subset \mathbf{b}_{-k}$

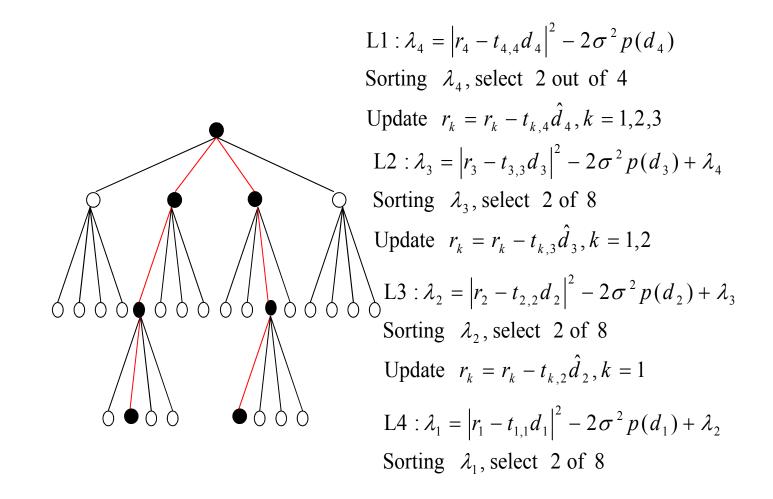
The searching is performed over a small subset (*Important set*) instead of a large full set.


7

2011/7/16

Sphere decoding VS. QRD-M

- Sphere decoding [1]: Depth-First Search (DFS)
 - Search the tree inside the sphere
 - Variable throughput with average polynomial complexity but exponential at low SNR
- QRD-M [2]: Breadth-First Search (BFS)
 - At each layer, select *M* minimal paths
 - Fixed number of visited nodes, constant throughput



2011/7/16

- B. M. Hochwald and S. ten Brink, "Achieving near-capacity on a multiple antenna channel," *IEEE Trans. Commun.*, vol. 51, no. 3, pp. 389–399, Mar. 2003.
- [2] K. J. Kim and J. Yue, "Joint channel estimation and data detection algorithms for MIMO-OFDM systems," in *Thirty-Sixth Asilomar Conference* on Signals, Systems and Computers, 2002, pp. 1857–1861.

10

QRD-M

QRD-M in a 4x4 QPSK system

11

2011/7/16

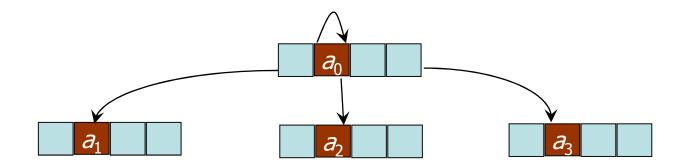
- Need preprocessing QR decomposition, $O(N_t^3)$
- At each layer (except root layer), MM_c square euclidian distance calculations are needed to find M minimal distance from MM_c path where M_c is the number of symbols in a constellation
- The complexity of QRD-M depends on the parameter M,
- If M is too large, the complexity is very high; if M is too small, promising candidates have been discarded before the process proceeds to the lowest layer

MCMC

- MCMC detector [3] finds important sets using Markov chain Monte Carlo
 - Create Markov chain with state space: d and stationary distribution P(d|Y)
 - Run Markov chain using Gibbs sampler
 - After Markov chain converge, the samples are generated according to P(d|Y). Those samples with large P(d|Y) generated with high probabilities

[3] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, "Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems," IEEE Trans. Signal Processing

Gibbs sampler


 Run full Markov chain is impossible because of huge number of states

	$\mathbf{d} = \mathbf{d}$	$ \begin{array}{c c} d_1 \\ d_2 \\ d_3 \end{array} $	_	
State	d ₃	d ₂	d ₁	
S ₀	-1	-1	-1	
S ₁ `	-1	-1	+1	
S ₂	-1	+1	-1	
S ₃	-1	+1	+1	1 P
S_4	+1	-1	-1	
S_5	+1	-1	+1	
S_6	+1	+1	-1	
S ₇	+1	+1	+1	

2011/7/16

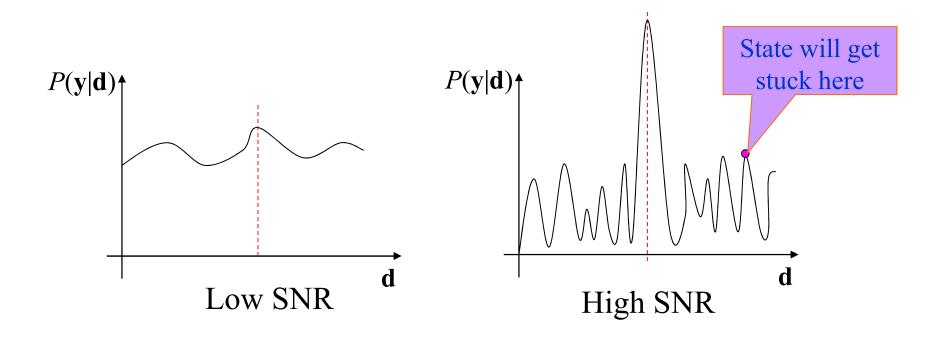
Gibbs sampler

• Gibbs sampler limit the states jumping with only one variable change for each state jumping

15

Gibbs sampler

Generate initial $\mathbf{d}^{(0)}$ randomly for n = 1 to Igenerate $d_0^{(n)}$ from distribution $p(d_0 = b | d_1^{(n-1)}, d_2^{(n-1)}, \Lambda, d_{NM_c-1}^{(n-1)}, \mathbf{y})$ generate $d_1^{(n)}$ from distribution $p(d_1 = b | d_0^{(n)}, d_2^{(n-1)}, \Lambda, d_{NM_c-1}^{(n-1)}, \mathbf{y})$ M


generate $d_{NM_c-1}^{(n)}$ from distribution $p(d_{NM_c-1} = b \mid d_0^{(n)}, d_1^{(n)}, \Lambda, d_{NM_c-2}^{(n)}, \mathbf{y})$ end for

where
$$p(d_i = b \mid d_0^{(n)}, \Lambda \mid d_{i-1}^{(n)}, d_{i+1}^{(n-1)}, \Lambda, d_{NM_c-1}^{(n-1)}, \mathbf{y})$$

 $\propto p(\mathbf{y} \mid d_0^{(n)}, \Lambda \mid d_{i-1}^{(n)}, d_i = b, d_{i+1}^{(n-1)}, \Lambda, d_{NM_c-1}^{(n-1)}, p(d_i = b))$
 M_c is the # of bits per constellation symbol

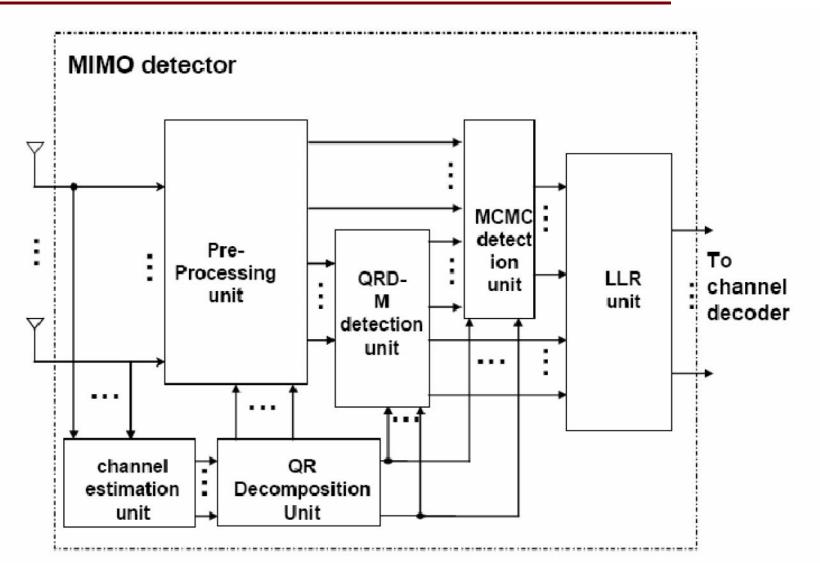
MCMC

- The samples generated by Gibbs sampler are used to compute the soft message for soft decoder
- To accelerate Markov chain converge, *L* independent parallel Gibbs samplers are runned and each Gibbs sampler run *I* iterations

 At high SNR, MCMC takes long time to converge, leads performance degradation, this is because of the multimodal property of channel PDF at high SNR

2011/7/16

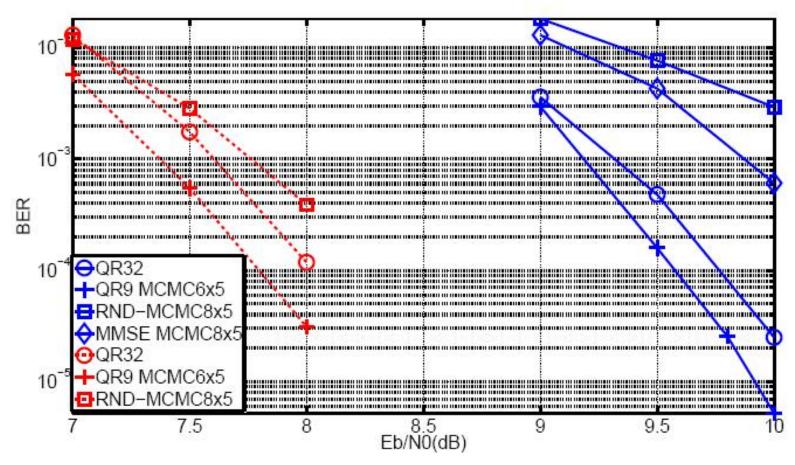
Solutions


- Multimodal problem exists in many MCMC algorithm.
- No general method to overcome it
- For MIMO detection, one solution is to generate initial candidates using other low complexity detector (warm start)

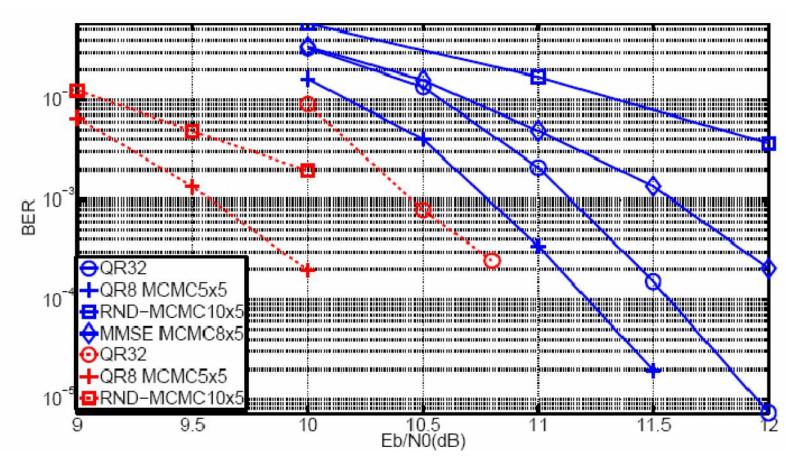
- Tree search based detection pruning paths on the tree
 - Exponential complexity at low SNR
 - Complexity is increased quickly with the dimension of problem
- MCMC finds important vectors using the P(d|Y)
 - Works very well at low SNR
 - Complexity is independent of SNR
 - Complexity is increased not too much with the dimension of problem
 - At high SNR, need the help of ZF or MMSE

Hybrid QRD-MCMC

- Combine QRD-M and MCMC
 - A QRD-M with a small M is running first to generate initial important sets
 - The bit sequence with minimal path metric will be used to initialize one of L parallel MCMC
 - The important set produced by the QRD-M detector is incorporated by the MCMC detector
 - MCMC is running to generate refined important set
 - The soft message is computed using refined import set


Hybrid QRD-MCMC

22


2011/7/16

Results

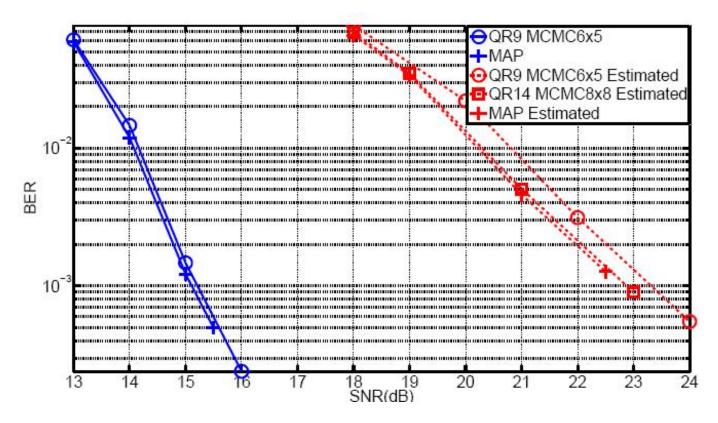
Performance comparison of 4x4 16QAM SDD and JDD systems

Results

Performance comparison of 8x8 16QAM SDD and JDD systems

Complexity

- With the aid of QRD-M initialization, the MCMC detector starts from good initial vectors, which reduces the number of required parallel Gibbs samplers D and the number of iterations L per Gibbs sampler.
- Due to the use of MCMC, a small M is sufficient for the QRD-M detection, leading to reduced complexity and delay.
- Due to the QR decomposition of the channel matrix, the operations needed to compute path metric in MCMC detection can be reduced at least by 1/2


Complexity

QRD-M	4x4 M=32	50256
	8x8 M=32	127344
RND-MCMC	4x4 D = 8 L = 5	73760
	8x8 D = 10 L = 5	331920
QRD-MCMC	4x4 M = 9 D = 6 L = 5	41498
	8x8 M = 8 D = 5 L = 5	114284

SYSTEM PARAMETERS

Parameter	Value
Channel bandwidth	10 MHz
Number of subcarriers	1024
Subcarrier permutation	PUSC
Cyclic prefix	1/8
Channel coding	Convolutional turbo codes
Carrier frequency	2500 MHz
Sampling frequency	11.2 MHz
Multipath channel	ITU VehA
MS speed	120 km/hr

Results

Performance comparison of 4x4 16QAM MIMO-OFDMA system using R = 1/2 IEEE 802.16e convolutional turbo codes with perfect and 2D MMSE channel estimation.

Conclusion

- A hybrid MIMO detector is proposed: concatenation of QRD-M and MCMC
- The proposed detector reaps the advantages of QRD-M and MCMC
 - Work at wide range of SNR
 - Better performance and lower complexity
- Application to a practical IEEE802.16e system shows near optimal performance and is a good competing MIMO detector

Thank you !

30