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Channel model

• Consider a MIMO  Rayleigh fast fading channels.
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Receiver structure

Channel
Decoder

MIMO
Detector

y  d̂
(soft)

• Separate detection and decoding (SDD) : no feedback from
channel decoder
• Joint detection and decoding (JDD) : exchange soft
information between detector and decoder
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MIMO detection

• Maximal likelihood (ML) detection or Maximum a
posteriori (MAP) is optimal

• Optimal detection usually has exponential complexity and
is computation infeasible for practical system

• Low complexity sub-optimal detectors
– ZF, MMSE, VBLAST …

• Approximate optimal detectors
– Tree search based (sphere decoding, QRD-M)
– Markov chain Monte Carlo (MCMC) based
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Optimal MAP detection

• Soft output detector generate soft message, usually
log likelihood ratio (LLR). It will be used by soft
channel decoder
– MAP:
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Low complexity detection

• Approximate optimal detectors

The searching is performed over a small subset (Important set) instead
of a large full set.
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Tree search based detection
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Sphere decoding VS. QRD-M

• Sphere decoding [1]: Depth-First Search (DFS)
– Search the tree inside the sphere
– Variable throughput with average polynomial complexity but

exponential at low SNR
• QRD-M [2]: Breadth-First Search (BFS)

– At each layer, select M minimal paths
– Fixed number of visited nodes, constant throughput
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QRD-M
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Complexity of QRD-M

• Need preprocessing QR decomposition,
• At each layer (except root layer), MMc square euclidian

distance calculations are needed to find M minimal
distance from MMc path where Mc is the number of
symbols in a constellation

• The complexity of QRD-M depends on the parameter M,
• If M is too large, the complexity is very high; if M is too

small, promising candidates have been discarded before
the process proceeds to the lowest layer
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MCMC

• MCMC detector [3] finds important sets using Markov
chain Monte Carlo
– Create Markov chain with state space: d and stationary

distribution P(d|Y)
– Run Markov chain using Gibbs sampler
– After Markov chain converge, the samples are generated

according to P(d|Y). Those samples with large P(d|Y) generated
with high probabilities

[3] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, “Markov chain Monte Carlo
algorithms for CDMA and MIMO communication systems,” IEEE Trans.
Signal Processing
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Gibbs sampler

• Run full Markov chain is impossible because of huge
number of states

d 
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Gibbs sampler

• Gibbs sampler limit the states jumping with only one
variable change for each state jumping

a0

a1 a2 a3
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Gibbs sampler
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MCMC

• The samples generated by Gibbs sampler are used to
compute the soft message for soft decoder

• To accelerate Markov chain converge, L independent
parallel Gibbs samplers are runned and each Gibbs
sampler run I iterations
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High SNR problem

• At high SNR, MCMC takes long time to converge, leads
performance degradation, this is because of the
multimodal property of channel PDF at high SNR

P(y|d)

d
Low SNR

P(y|d)

d
High SNR

State will get
stuck here



2011/7/16
19

Solutions

• Multimodal problem exists in many MCMC algorithm.
• No general method to overcome it
• For MIMO detection, one solution is to generate initial

candidates using other low complexity detector (warm
start)
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Tree search VS. MCMC

• Tree search based detection pruning paths on the tree
– Exponential complexity at low SNR
– Complexity is increased quickly with the dimension of problem

• MCMC finds important vectors using the P(d|Y)
– Works very well at low SNR
– Complexity is independent of SNR
– Complexity is increased not too much with the dimension of

problem
– At high SNR, need the help of ZF or MMSE



2011/7/16
21

• Combine QRD-M and MCMC
– A QRD-M with a small M is running first to generate initial

important sets
– The bit sequence with minimal path metric will be used to initialize

one of L parallel MCMC
– The important set produced by the QRD-M detector is

incorporated by the MCMC detector
– MCMC is running to generate refined important set
– The soft message is computed using refined import set

Hybrid QRD-MCMC
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Hybrid QRD-MCMC
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Results

Performance comparison of 4x4 16QAM SDD and JDD systems
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Results

Performance comparison of 8x8 16QAM SDD and JDD systems
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Complexity

• With the aid of QRD-M initialization, the MCMC detector
starts from good initial vectors, which reduces the number
of required parallel Gibbs samplers D and the number of
iterations L per Gibbs sampler.

• Due to the use of MCMC, a small M is sufficient for the
QRD-M detection, leading to reduced complexity and
delay.

• Due to the QR decomposition of the channel matrix, the
operations needed to compute path metric in MCMC
detection can be reduced at least by 1/2
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Complexity
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Application in 802.16e
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Results

Performance comparison of 4x4 16QAM MIMO-OFDMA system using
R = 1/2 IEEE 802.16e convolutional turbo codes with perfect and 2D
MMSE channel estimation.
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Conclusion

• A hybrid MIMO detector is proposed: concatenation of
QRD-M and MCMC

• The proposed detector reaps the advantages of QRD-M
and MCMC
– Work at wide range of SNR
– Better performance and lower complexity

• Application to a practical IEEE802.16e system shows
near optimal performance and is a good competing MIMO
detector
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Thank you !


