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Abstract—In this paper, we propose a novel hybrid QRD- o

s b " j
MCMC MIMO detector that combines the features of a QRD-M Ejd
Ny

detector and a Markov chain Monte Carlo (MCMC) detector. The

QRD-M algorithm is applied first to obtain initial estimates of the T’msm‘“‘*’f i
transmitted signal vector. Subsequently, the QRD-M estimge is p—

used to initialize one of the Gibbs samplers for MCMC detectn. “— Decodet |

The MCMC detection reduces the M parameter required by : ;

the QRD-M detector, while the QRD-M initialization effectively Yoreee

alleviates the well-known high-SNR problem in existing MCMC
detectors. Performance of the QRD-M/MCMC detector is exam-
ined under both an idealized MIMO channel with perfect chanrel , . o .
side information (CSI) and a practical IEEE 802.16e MIMO- Fig. 1. MIMO spatial multiplexing with SDD and JDD (dash l)ngystem
OFDMA system with imperfect CSI. Numerical results show model.

that, compared to the stand-alone QRD-M or MCMC detectors,

the QRD-MCMC detector achieves superior performance at a .
reduced complexity. stand-alone QRD-M detector, QRD-MCMC requires a smaller

M parameter which leads to a reduced complexity. Our
simulation results show that QRD-MCMC can achieve good
[. INTRODUCTION performance for a wide range of SNR. Furthermore, through a
The multiple-input multiple-output (MIMO) technology is detailed complexity analysis, we show that the QRD-MCMC
one of most significant advancement in the past decade.dn tftector achieves better performance than existing degect
work, we study the detection problem of spatial multiplexinWith reduced complexity.
MIMO system. The exponentially increasing complexity of The remainder of the paper is organized as follows. In
the 0pt|ma|rnax| mal a posterior (MAP) detector motivates a Section I, we introduce the system model. Section Il ines
significant amount of research in recent years to develop lo@ detailed description of the proposed QRD-MCMC detector.
complexity MIMO detectors. Most of research work can b&omplexity analysis is given in IV. Simulation results of
classified as four categories: 1) Linear detectors, sucheas, the QRD-MCMC detector are presented in Section V for an
forcing (ZF) or minimum mean square error (MMSE) deteddealized MIMO channel with perfect CSI, and in Section VI
tors; 2) Interference cancelation detectors, such asjceért for a practical IEEE 802.16e downlink orthogonal frequency
Bell Labs Layered Space Time (V-BLAST) [1]; 3) Tree searcHivision multiple access (OFDMA) system with imperfect CSI
detectors, such as, sphere decoding [2] or QR decompositfg@nclusions are given in Section VIL.
with M algorithm (QRD-M) [3] detectors; 4) Markov chain
Monte Carlo (MCMC) detector [4]. Linear detectors usually [I. SYSTEM DESCRIPTION
have lower complexity at the co§t of perfo.rmance qlegradatio We first describe the system model for a point-to-point
Tree search detgctors theoretically achieve optlm.al perfwo channel. As shown in Fig. 1, a sequence of binary
mance by selecting a large sphere (sphere degodmg) O itYormation bits{s;} is first encoded by a channel encoder
éVé tep(?t:)arrsnr?:;r/ lggc:Roaw_gﬂz;roTi)l;Ni'[?\Yeegt fg\?v gilme[Ex'_tryhg];wtgﬁﬂs f rate R. The interleaved coded bit sequenfig} is then
' apped to a sequence of QAM symbols. The modulated

detector, on the other hand, vyorks well at low SNR, b% mbol stream is then partitioned 19, spatial streams that
encoun_ters some problems at high SNR [6]. ._are transmitted throughy, transmit antennas. At the receiver
. In this Paper, We propose a new MIMO detector Wh'p ide, MIMO detection and channel decoding are performed to
s a combination of QRD-M and MCMC. We refer to " recover the transmitted bit sequence. In a system thatipesfo

\6/1\7'trt1hteh QRS“? 'nggl'l\zﬂeoihMiMﬁ S(CI\DIED-MbCIMC) ?ete.ci.or'separate detection and decoding (SDD), the MIMO detector
! € aid of QRD-M, the hig problem ot existing enerates\§, which is the extrinsic log-likelihood ratio (LLR)

MCMC detectors is alleviated. In addition, compared to th each transmitted bit, based gn and pass them to the

This work is supported in part by Mitsubishi Electric Res#araboratories SOﬁ'inPUt SOft'Ou_tpUt (SISO_) channel deC_Oder for channel
and by NSF under grant ECS-0547433. decoding. For a joint detection and decoding (JDD) system,

Receiver



MIMO detector initiate MCMC detection. The QRD-M and MCMC algorithms
complement each other in that the QRD-M ensures that the
MCMC starts from the proper initial vector at high SNR,
i therefore alleviating the high SNR problem; and the MCMC
To detector effectively reduces the parameter required by the

LLR i channel

. Pre-
: >l
: | Processing .| QRD-

.  sotomon unit % decoder QRD-M algorithm, hence reducing the high complexity of
[ ] i B R QRD-M detector at low SNR. We note that in related work [6],

1 i a MMSE initialized MCMC (MMSE-MCMC) is proposed to
camel P oR mitigate the high SNR problem of the previously proposed
S L] Do aon random initialized MCMC (RND-MCMC) [4]. Our results
in Section V demonstrate that the proposed QRD-MCMC
Fig. 2. A block diagram of QRM-MCMC detector. outperforms both MMSE-MCMC and RND-MCMC over a

wide range of SNR at reduced complexity.
Detailed implementation of the QRD-MCMC detector is
the channel decoder performs one of multiple iterations déscribed as follows:
channel decoding to generate the improved LLRs, denoted byFirst, we perform the QR decomposition over the channel
\$, to be passed back to the MIMO detector for joint iterativmatrix H such thatH = QR, Q € CV~*Nr is a unitary
detection and decoding. matrix and
The point-to-point MIMO channel model is given by R { T }

On
y =Hd +n (1) No—Ne,Ne

where T € CN+*Nt js an upper-triangular matrix. Then we

whered € CM: is the transmitted signal vectay, € CVr is have

the received vector antll € CV~*Nt is the channel matrix.
Wlth. mdependent and cm;ular complex Gaus&gn distribute r=Q"y = Q"Hd + Qn=Rd + Qn A3)
entries.n is an NV, x 1 noise vector whose entries are zero

mean independent, circular complex Gaussian random Varialwhere (-)* denotes the Hermitian operator,

with variances? = Ny /2. For ease of disposition, we assume thét = N, (thus
R = T) hereafter. While most previous work on QRD-M
I1l. QRD-MCMC MIMO DETECTION considers SDD systems, here we present a SISO version of
In this section, we present a novel MIMO detector thdf'® QRD-M that is directly applicable to the JDD systems. We
utilizes both QRD-M and MCMC detection algorithms. |IlustraFe the QRD-M algorithm using a tree shown in Fig. 3,
Giveny, the extrinsic LLR of a particular bib;, is given assuming thatV; = N, = 4, M. = 2 and M = 2. The node
by at the top represents the transmitted symholSinced, may

take 4 different values, there are 4 branches connecteé th th
Ne oy Pla=tly) g B node, each representing a possible valué,ofThese branches
Lk = M Pl=—1y) ~ 2 Pe==1b_xly) (2) are connected to the nodds at the next layer, etc. Hence,
- each path in the tree corresponds to a transmitted sequence
(dy, ds, d2, d1). We define the path metric associated with each
whereb_j, = (b1, bk—1,bxr1, - bz ); bi € {=1,1}, path as
and M, is the number of bits in each constellation symbol. N, N, N,
The loptlmal MAP deFector opergtes according to (2) which W2 =3 |rk = 3 teadi|? — 202 S pldy)
requires an exponential complexity. e =k N k=1 N
To reduce complexity, suboptimal detectors such as the tree & ! 9 9 oL
search detector (e.g. QRD-M detector and sphere decodér) an ,CZZ:I [k = thdi) = l:%—l tradi|” = 20 kglp(dk)
the MCMC detector adopt different algorithms to identify a 4)
small set of most likely transmitted vectors based on whiskherer,t,;,d; are the entries of, T, d, respectively, and
the LLRs are computed. Both the QRD-M detector and thedy.) is prior probability of symbold; provided by SISO
MCMC detector, however, have certain limitations. It is Wmo decoder.
that, while the tree search detector is effective at high SR~ The QRD-M reduces the tree search complexity by keeping
complexity becomes prohibitive at low SNR [5]. The MCMQonly M branches that have the smallest accumulated path
detector, on the other hand, is effective at low SNR, bmetric \; at each tree level. For example, as shown in
experiences some problems at high SNR [6]. In this workjg. 3, at levell, only 2 out of 4 possibled, with smallest
we propose a hybrid QRD-MCMC detector that reaps the = |ry—t4 4ds|> —20%p(d,) associated witld, are selected.
benefits of both detectors. A diagram of the QRD-MCM@Vith each selected,, we updater;, = ry —tk,4c24,1 <k<3
detector is shown in Fig. 2. The main idea is to perform QRBvhich are used to compute the accumulated path majriat
M detection first, using a smalle¥/ parameter, followed by the next level. This computation is carried out level by leve
MCMC detection. The most likely transmitted vector found bwntil level 4 to yield\; which equals the path metric defined
the QRD-M algorithm is used as one of the initial vectors tm (4). Finally, we obtain two paths with the smallest path

> P(by=+1,b_kly)




LL:As=[ry =t ~20°p(d,) computed by applying the max-log algorithm ovér

SortingA,, selec2 outof 4 max  P(bi=+1,b_1|y)

Updater, =1, —t, &,kz 23 e~ b_r€A_k
P k=T k,424 1 Al,k ~ In max  Pon=—1,b_xy) (6)
L2:45 =1y ~ty,dy| ~20°p(d;) + A, Pk EA_k
Sorting/;,, selec2 of 8
Updater, = 1, —t, ;dg,k =12 where A_, denotes the set of vectors id with its k-th

L34, =|r, ~t,, 0| ~207p(d,) + Ay element deleted.

Sorting/,, selec2of 8
IV. COMPLEXITY ANALYSIS

Although QRD-MCMC detector employs both QRD-M
and MCMC algorithms, it can achieve better performance
than the stand-alone QRD-M or MCMC detectors at reduced
Fig. 3. A QRD-M detector withVy = 4, M. = 4, M = 2. \; denotes complexity due to the following reason:
the accumulated path metric corresponding to the trareunigequence o With the aid of QRD-M initialization, the MCMC de-
(d,d3,- -+, dv). tector starts from good initial vectors, which reduces the
number of required parallel Gibbs sampldpsand the
number of iterationd. per Gibbs sampler.

metric. The one signal vector with the minimum metric is use « Due to the use of MCMC, a small/ is sufficient for

to initialize the MCMC detection. the QRD-M detection, leading to reduced complexity and

Next, for completeness we include a brief description of the delay. N .
RND-MCMC detector of [4]. The MCMC detector uses Gibbs * Dué to the QR decomposition of the channel matrix,
sampler to generate a list & most likely transmitted vectors, the computation of path metric in MCMC detection is
whereL is the number of iteration in the Gibbs sampler. The ~reduced at least by half by using (4) instead of

Gibbs sampler works follows: N, Ny N
W =" lye = Y haadi* =202 p(d)  (7)
Generate initial b® k=1 =1 k=1

for n=1to0 L Furthermore, implementation of the Gibbs sampler involves
computation of the path metric of a vectdf from the path

Updater, =r, —tkvzaz, k=1

L4:A = ‘H —tudl‘2 -20%p(d,) + 4,
Sorting/,,select2of 8

generat e bg") fromdistribution

be — plpnD) pn=D) pn=1) metric ofd, whered’ andd differs by one bit in symbodl,,,.
p(bo = b LR .NtMCTPY) Next, we propose an efficient method to compute the path
generate d; frolm distri 1but| on metric that requires onlyN; + 1) multiplications.
p(by = blp§™ 05"V ,bg\Z&C),l,y) Let us express the path metric associated wliths |w|? =
. Ny Ny
; S Yk, Wherey, = |wi|? andwy, = 7, — 3 tr.d;. Then the
(n) ; ; ; k=0 . . 1=k
generate by, , fromdistribution path metric ford’, expressed in terms aof’,w} and~; can
p(bn,ar.—1 = blby”, B, - 7b§\7f?j\4c_27}’) be computed as follows:

end for for k=1:m
w;g =wr + tk,mdm - tk,md;n = Wk — ¢;
where zj,g = Y — 2Re(wr¢*) + |]? ®)
en
bz‘:bb(ﬂ),"'b(n)7b(-n_l),"' 7b(n—l) ,y) o N
plbi = blbg™, - Bovbin o DoY) W= 3 2 = 20%[p(dl,) — pldn)]
p(Y|b0 y 'bifp bi = b7 bi+1 P abNt]uC_17 )p(bi = b)- k=0

(5) i
Here b s t-he initial pit s_equencebz(.”) is the i-th bit ?gli:z:f)tkljnzlr:}_re;elczagéec;: 3nc§||;1|glz>:en;22(ee{,e?rﬁ%:ed’
generated during the-th iteration. only (N;+ 1) multiplications are required to compute the new
In [4], it is shown that better performance can be achievegth metric, which reduces the complexity of the QRD-MCMC
by running multiple Gibbs samplers in parallel. In the QRDgetector. In particular, whedN; = N,, the complexity of
MCMC detector, we assume that, out &f parallel Gibbs QRD-MCMC is about half of the complexity of RND-MCMC
samplers, one is initialized using the bit vector with thgue to the QR decomposition. The complexity order of the
minimum path metric found by the QRD-M algorithm, and th¢yRD-MCMC is O(N2DLM.,).
remainingD —1 Gibbs samplers use random initialization. We |n Table 1, we compare the complexity of QRD-M, RND-
will show that the QRD-M initialization effectively help$i¢ pMcMC, and QRD-MCMC in terms of the number of addi-
Gibbs sampler to converge to most likely transmitted ve;tokjon, comparison, and multiplication required for geniemgt
thus leads to better performance. the set of likely transmitted vectorsl and for computing
Once the MCMC detector produces the set of most likethe path metric. The complexity of QR decomposition, of
transmitted vectors, denoted by, the output LLRs are the order of O(4N}?), is not considered here because it is



TABLE |
COMPLEXITY OF THREE DETECTORS

| T QRD-M [ RND-MCMC [ QRD-MCMC |
Add Lo {1+2Ni+ M(N? - 1)} (1+ Ny)N:D(BLM. + 1) Nag + Nam /2
Compare|| Lc{9IMN; —5N; + N¢(M — 3)log, M/2} Neg
Mult 2L {1+ (N; — 1)M7} 2(1+ Ny)N: DL M. Ning + Nonm /2

In Table I, D denotes the number of parallel Gibbs samplérslenotes the number of iterations per Gibbs samlerienotes the number
of modulated symbols). = log, L. denotes number of bits per modulated symBél,, Nom Nmg, Nmm denote the number of additions
and multiplications for QRD-M and MCMCIV,, denotes the number of comparisons for QRD-M.

(© QR8 MCMC5x5
B MMSE MCMCB8x5

negligible compared to the computation of path metrics. The 3

. . . RND-MCMC8x5
corresponding complexity numbers for the detectors used in 2 True distance
2
2:

our simulations are given in Table 1l. The QRD-MCMC has a
lower complexity than QRD-M, while RND-MCMC has the
highest complexity.

TABLE I
COMPLEXITY COMPARISON OF THREE DETECTORS
QRD-M 4x4 M=32 50256
8x8 M=32 127344
RND-MCMC XAD=8L=5 73760

8x6D=10L=5 331920 = - - - =

QRD-MCMC || x4 M =9 D=6 L =5 | 41498 EB/NOGE)

8x8 M =8 D=5 L =5 | 114284

] Fig. 4. Average minimum path metric for different detector8x8 16QAM
In Table 11, The complexity for 4x4 (antenna) and 8x8 16QAMEN SDD system

are compared for three detectors. The total operationsanputed
by considering one multiplication as 10 additions and ormagarison
as 0.5 additions.

V. PERFORMANCE OFMIMO CHANNELS WITH PERFECT

CSli oy
In this section, the simulation result and comparison with  ** [S8reicmcses | ™ =
other state-of-art detectors are given. In all simulations prdivrviivsol B
assume Rayleigh fading channel and the receiver knows the | 428k evces
perfect CSI. e 5 )

55
First, for various detectors, we examine the quality of e s EBINO(E)

of likely transmitted vectorsd by plotting the minimum path g 5 performance comparison of 4x4 16QAM SDD and JDD syste
distance overA: 61%13‘ ly — hd’|? and comparing it with the
true distance |y — hd|?), whered is the actual transmitted
vector. As shown in Fig. 4, QRD-MCMC has the smalless performed followed by the 40 LDPC iterations. For JDD
average distance than the other two detectors for a widesrasystem, 8 outer iterations of joint detection and decodisy a
of SNR. This implies that QRD-MCMC produces the outpuyterformed and each outer iteration consist of one MIMO
LLRs with the best quality. When compared with the trudetection followed by 5 LDPC iterations. The number of
distance, we note that at low SNR, the minimum distance ovearallel Markov chaingd) and the number of iteratiof per
A, produced by various detectors, are smaller than that of th&rkov chain in RND-MCMC and QRD-MCMC detector are
true distance. This is because when the signal is corrupteddenoted in the figures as MCMD x L. The M parameter is
larger noise, the true distance is likely to be larger tham tlklenoted in figures as QR. Here the parameters are selected
minimum distance found by the detectors. As SNR increases, that QRD-MCMC has lower complexity than QRD-M
the true distance becomes more likely the minimum distand@gable Il). From Fig. 5, we can see the QRD-MCMC has
hence it would lower bound the minimum distance found bipe best performance and the RND-MCMC has the worst
the detectors. performance for both SDD and JDD systems. The gain of
Next, we examine the performance of coded systems e@RD-MCMC is more pronounced in a JDD system. Note
ploying various MIMO detectors. In all simulations, a ratavithin our simulation range, no error floor has been observed
1/2 IEEE 802.16e LDPC code [9] with code length 2304 igt high SNR (not shown in the figure) which confirms the
used. In Fig. 5, we compare the performance of QRD-Mffectiveness of QRD-MCMC over high SNR region.
RND-MCMC and QRD-MCMC detectors in 4 transmitters In Fig. 6, we consider a 16QAM system with 8 transmit and
and 4 receivers 16QAM system for SDD (solid line) and JDBeceive antennas. It is shown that QRD-MCMC outperforms
(dash line) system. For SDD system, one MIMO detectid@RD-M by about 0.4 dB in a SDD system, and by about
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Fig. 6. Performance comparison of 8x8 16QAM SDD and JDD syste  Fig. 7. Performance comparison of 4x4 16QAM MIMO-OFDMA syst

using R = 1/2 IEEE 802.16e convolutional turbo codes with perfect and
estimated channel estimation.

1 dB in a JDD system. We also note that RND-MCMC

performs worse than QRD-M in a SDD system but bettef s ja1a_aided channel estimation may improve the quatity
in a JDD system. The performance of MMSE-MCMC fOl.p5ne| estimation thus leading to better performance.
a SDD system is also plotted Fig. 6 which shows that, the

utilization of MMSE to generate initial candidates achive
better performance than RND-MCMC, but still worse than
QRD-MCMC.

VIl. CONCLUSION

In this paper, we develop a hybrid QRD-MCMC MIMO de-
tector that exploits the advantages of both QRD-M and MCMC
detection. Through a detailed complexity and performance
analysis, we demonstrate that the QRD-MCMC detector yields
superior performance than QRD-M and MCMC detector with

In_this sectiog, Wel_ akpply the QRD-MCMC detector todgubstantial complexity saving. Furthermore, the high SNR
IEEE_802'166 ownlink MIMO-OFDMA _SDD system an problem of existing MCMC detectors is effectively allewdt
examine the detector performance under imperfect CSI. A 2-

) , AN the QRD-MCMC due to proper initialization using the
MMSE channel estimator is employed for channel est|mat|Q51RD_M algorithm. Application to a practical MIMO-OFDMA

[10]. In turbo de_coder, BCJR decoding with _15 itgrations i§ystem shows QRD-MCMC performs closely to the optimal
performed. Detailed system parameters are given in Table W Ap getector under imperfect channel CSI. We conclude that
QRD-MCMC is a good competing MIMO detector in terms
of both the performance and complexity.

VI. PERFORMANCE OFMIMO-OFDMA SYSTEM WITH

IMPERFECTCSI

TABLE IlI
SYSTEM PARAMETERS
| Parameter [ Value
Channel bandwidth 10 MHz [1
Number of subcarriers 1024
Subcarrier permutation] PUSC
Cyclic prefix 1/8
Channel coding Convolutional turbo codeg [2]
Carrier frequency 2500 MHz
Sampling frequency 11.2 MHz
Multipath channel ITU VehA [3]
MS speed 120 km/hr

[4]

We compare the performance of the QRD-MCMC detector
with the optimal max-log MAP detector. Fig. 7 shows that,[5]
under imperfect CSI, the QRD-MCMEx 5 detector performs
only about 0.5 dB worse than the max-log MAP detector. Ing
order to see the effect of channel estimation error on system
performance, we also plot the performance curves (shown as
the dash lines) of these detectors assuming that perfectsCSi;
available at the receiver. In this case, QRD-MCMC performs
very close to the max-log MAP detector. However, we observ&
that the performance gap between the case of perfect C ]
and imperfect CSI is more than 7 dB, possibly due to the
fact that under the high mobility scenario considered her
the pilots in IEEE 802.16e system are insufficient to traqio]
the variation of the channel, and the channel estimatioor err
rather than white noise dominates performance. We expect
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