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Abstract— In this paper, we propose a novel hybrid QRD-
MCMC MIMO detector that combines the features of a QRD-M
detector and a Markov chain Monte Carlo (MCMC) detector. The
QRD-M algorithm is applied first to obtain initial estimates of the
transmitted signal vector. Subsequently, the QRD-M estimate is
used to initialize one of the Gibbs samplers for MCMC detection.
The MCMC detection reduces the M parameter required by
the QRD-M detector, while the QRD-M initialization effectively
alleviates the well-known high-SNR problem in existing MCMC
detectors. Performance of the QRD-M/MCMC detector is exam-
ined under both an idealized MIMO channel with perfect channel
side information (CSI) and a practical IEEE 802.16e MIMO-
OFDMA system with imperfect CSI. Numerical results show
that, compared to the stand-alone QRD-M or MCMC detectors,
the QRD-MCMC detector achieves superior performance at a
reduced complexity.

I. I NTRODUCTION

The multiple-input multiple-output (MIMO) technology is
one of most significant advancement in the past decade. In this
work, we study the detection problem of spatial multiplexing
MIMO system. The exponentially increasing complexity of
the optimalmaximal a posterior (MAP) detector motivates a
significant amount of research in recent years to develop low-
complexity MIMO detectors. Most of research work can be
classified as four categories: 1) Linear detectors, such as,zero
forcing (ZF) or minimum mean square error (MMSE) detec-
tors; 2) Interference cancelation detectors, such as, Vertical-
Bell Labs Layered Space Time (V-BLAST) [1]; 3) Tree search
detectors, such as, sphere decoding [2] or QR decomposition
with M algorithm (QRD-M) [3] detectors; 4) Markov chain
Monte Carlo (MCMC) detector [4]. Linear detectors usually
have lower complexity at the cost of performance degradation.
Tree search detectors theoretically achieve optimal perfor-
mance by selecting a large sphere (sphere decoding) or the
M parameter (QRD-M). However, the complexity of these
detectors may become prohibitive at low SNR [5]. The MCMC
detector, on the other hand, works well at low SNR, but
encounters some problems at high SNR [6].

In this paper, we propose a new MIMO detector which
is a combination of QRD-M and MCMC. We refer to it
as the QRD-M initialized MCMC (QRD-MCMC) detector.
With the aid of QRD-M, the high SNR problem of existing
MCMC detectors is alleviated. In addition, compared to the

This work is supported in part by Mitsubishi Electric Research Laboratories
and by NSF under grant ECS-0547433.

Space-time
Mapper

…

1d

tNd

1y

MIMO
detector

…

tNy

DeInterleaver

Interleaver

Channel 
Encoder

Interleaver QAM 
Modulator

_

+

SISO 
Decoder

+

2λ e
2λ

e
1λ 1λ

_

Transmitter

Receiver

bs
Space-time

Mapper

…

1d

tNd
Space-time

Mapper

…

1d

tNd

1y

MIMO
detector

…

tNy

MIMO
detector

…

tNy

DeInterleaverDeInterleaver

InterleaverInterleaver

Channel 
Encoder
Channel 
Encoder

Interleaver QAM 
Modulator

QAM 
Modulator

_

++

SISO 
Decoder
SISO 

Decoder
SISO 

Decoder

+++

2λ e
2λ

e
1λ 1λ

_

Transmitter

Receiver

bs

Fig. 1. MIMO spatial multiplexing with SDD and JDD (dash line) system
model.

stand-alone QRD-M detector, QRD-MCMC requires a smaller
M parameter which leads to a reduced complexity. Our
simulation results show that QRD-MCMC can achieve good
performance for a wide range of SNR. Furthermore, through a
detailed complexity analysis, we show that the QRD-MCMC
detector achieves better performance than existing detectors
with reduced complexity.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model. Section III includes
a detailed description of the proposed QRD-MCMC detector.
Complexity analysis is given in IV. Simulation results of
the QRD-MCMC detector are presented in Section V for an
idealized MIMO channel with perfect CSI, and in Section VI
for a practical IEEE 802.16e downlink orthogonal frequency-
division multiple access (OFDMA) system with imperfect CSI.
Conclusions are given in Section VII.

II. SYSTEM DESCRIPTION

We first describe the system model for a point-to-point
MIMO channel. As shown in Fig. 1, a sequence of binary
information bits{si} is first encoded by a channel encoder
of rate R. The interleaved coded bit sequence{bi} is then
mapped to a sequence of QAM symbols. The modulated
symbol stream is then partitioned toNt spatial streams that
are transmitted throughNt transmit antennas. At the receiver
side, MIMO detection and channel decoding are performed to
recover the transmitted bit sequence. In a system that performs
separate detection and decoding (SDD), the MIMO detector
generatesλe

1, which is the extrinsic log-likelihood ratio (LLR)
of each transmitted bit, based ony and pass them to the
soft-input soft-output (SISO) channel decoder for channel
decoding. For a joint detection and decoding (JDD) system,
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Fig. 2. A block diagram of QRM-MCMC detector.

the channel decoder performs one of multiple iterations of
channel decoding to generate the improved LLRs, denoted by
λe

2, to be passed back to the MIMO detector for joint iterative
detection and decoding.

The point-to-point MIMO channel model is given by

y = Hd + n (1)

whered ∈ CNt is the transmitted signal vector,y ∈ CNr is
the received vector andH ∈ CNr×Nt is the channel matrix.
with independent and circular complex Gaussian distributed
entries.n is an Nr × 1 noise vector whose entries are zero
mean independent, circular complex Gaussian random variable
with varianceσ2 = N0/2.

III. QRD-MCMC MIMO DETECTION

In this section, we present a novel MIMO detector that
utilizes both QRD-M and MCMC detection algorithms.

Given y, the extrinsic LLR of a particular bitbk is given
by

λe
1,k = ln P (bk=+1|y)

P (bk=−1|y) = ln

∑

b−k

P (bk=+1,b−k|y)

∑

b−k

P (bk=−1,b−k|y) (2)

whereb−k = (b1, · · · bk−1, bk+1, · · · , bNtMc
); bi ∈ {−1, 1},

and Mc is the number of bits in each constellation symbol.
The optimal MAP detector operates according to (2) which
requires an exponential complexity.

To reduce complexity, suboptimal detectors such as the tree
search detector (e.g. QRD-M detector and sphere decoder) and
the MCMC detector adopt different algorithms to identify a
small set of most likely transmitted vectors based on which
the LLRs are computed. Both the QRD-M detector and the
MCMC detector, however, have certain limitations. It is known
that, while the tree search detector is effective at high SNR, its
complexity becomes prohibitive at low SNR [5]. The MCMC
detector, on the other hand, is effective at low SNR, but
experiences some problems at high SNR [6]. In this work,
we propose a hybrid QRD-MCMC detector that reaps the
benefits of both detectors. A diagram of the QRD-MCMC
detector is shown in Fig. 2. The main idea is to perform QRD-
M detection first, using a smallerM parameter, followed by
MCMC detection. The most likely transmitted vector found by
the QRD-M algorithm is used as one of the initial vectors to

initiate MCMC detection. The QRD-M and MCMC algorithms
complement each other in that the QRD-M ensures that the
MCMC starts from the proper initial vector at high SNR,
therefore alleviating the high SNR problem; and the MCMC
detector effectively reduces theM parameter required by the
QRD-M algorithm, hence reducing the high complexity of
QRD-M detector at low SNR. We note that in related work [6],
a MMSE initialized MCMC (MMSE-MCMC) is proposed to
mitigate the high SNR problem of the previously proposed
random initialized MCMC (RND-MCMC) [4]. Our results
in Section V demonstrate that the proposed QRD-MCMC
outperforms both MMSE-MCMC and RND-MCMC over a
wide range of SNR at reduced complexity.

Detailed implementation of the QRD-MCMC detector is
described as follows:

First, we perform the QR decomposition over the channel
matrix H such thatH = QR, Q ∈ CNr×Nr is a unitary
matrix and

R =

[

T

0Nr−Nt,Nt

]

whereT ∈ CNt×Nt is an upper-triangular matrix. Then we
have

r = QHy = QHHd + QHn = Rd + QHn (3)

where(·)H denotes the Hermitian operator,
For ease of disposition, we assume thatNt = Nr (thus

R = T) hereafter. While most previous work on QRD-M
considers SDD systems, here we present a SISO version of
the QRD-M that is directly applicable to the JDD systems. We
illustrate the QRD-M algorithm using a tree shown in Fig. 3,
assuming thatNt = Nr = 4, Mc = 2 andM = 2. The node
at the top represents the transmitted symbold4. Sinced4 may
take 4 different values, there are 4 branches connected to thed4

node, each representing a possible value ofd4. These branches
are connected to the nodesd3 at the next layer, etc. Hence,
each path in the tree corresponds to a transmitted sequence
(d4, d3, d2, d1). We define the path metric associated with each
path as

|ω|2 =
Nt
∑

k=1

|rk −
Nt
∑

l=k

tk,ldl|
2 − 2σ2

Nt
∑

k=1

p(dk)

=
Nt
∑

k=1

|(rk − tk,kdk) −
Nt
∑

l=k+1

tk,ldl|
2 − 2σ2

Nt
∑

k=1

p(dk)

(4)
whererk, tk,l, dl are the entries ofr,T,d, respectively, and
p(dk) is prior probability of symboldk provided by SISO
decoder.

The QRD-M reduces the tree search complexity by keeping
only M branches that have the smallest accumulated path
metric λi at each tree leveli. For example, as shown in
Fig. 3, at level1, only 2 out of 4 possibled4 with smallest
λ4 = |r4−t4,4d4|

2−2σ2p(d4) associated withd4 are selected.
With each selected̂d4, we updaterk = rk − tk,4d̂4, 1 ≤ k ≤ 3
which are used to compute the accumulated path metricλ3 at
the next level. This computation is carried out level by level
until level 4 to yieldλ1 which equals the path metric defined
in (4). Finally, we obtain two paths with the smallest path
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Fig. 3. A QRD-M detector withNt = 4, Mc = 4, M = 2. λi denotes
the accumulated path metric corresponding to the transmitted sequence
(d4, d3, · · · , d1).

metric. The one signal vector with the minimum metric is use
to initialize the MCMC detection.

Next, for completeness we include a brief description of the
RND-MCMC detector of [4]. The MCMC detector uses Gibbs
sampler to generate a list ofL most likely transmitted vectors,
whereL is the number of iteration in the Gibbs sampler. The
Gibbs sampler works follows:

Generate initial b(0)

for n = 1 to L

generate b
(n)
0 from distribution

p(b0 = b|b
(n−1)
1 , b

(n−1)
2 , · · · , b

(n−1)
NtMc−1,y)

generate d
(n)
1 from distribution

p(b1 = b|b
(n)
0 , b

(n−1)
2 , · · · , b

(n−1)
NtMc−1,y)

...

generate b
(n)
NtMc−1 from distribution

p(bNtMc−1 = b|b
(n)
0 , b

(n)
1 , · · · , b

(n)
NtMc−2,y)

end for

where

p(bi = b|b
(n)
0 , · · · b

(n)
i−1, b

(n−1)
i+1 , · · · , b

(n−1)
NtMc−1,y) ∝

p(y|b
(n)
0 , · · · b

(n)
i−1, bi = b, b

(n−1)
i+1 , · · · , b

(n−1)
NtMc−1, )p(bi = b).

(5)
Here b(0) is the initial bit sequence,b(n)

i is the i-th bit
generated during then-th iteration.

In [4], it is shown that better performance can be achieved
by running multiple Gibbs samplers in parallel. In the QRD-
MCMC detector, we assume that, out ofD parallel Gibbs
samplers, one is initialized using the bit vector with the
minimum path metric found by the QRD-M algorithm, and the
remainingD−1 Gibbs samplers use random initialization. We
will show that the QRD-M initialization effectively helps the
Gibbs sampler to converge to most likely transmitted vectors,
thus leads to better performance.

Once the MCMC detector produces the set of most likely
transmitted vectors, denoted byA, the output LLRs are

computed by applying the max-log algorithm overA.

λe
1,k ≈ ln

max
b−k

∈A−k

P (bk=+1,b−k|y)

max
b−k

∈A−k

P (bk=−1,b−k|y) (6)

where A−k denotes the set of vectors inA with its k-th
element deleted.

IV. COMPLEXITY ANALYSIS

Although QRD-MCMC detector employs both QRD-M
and MCMC algorithms, it can achieve better performance
than the stand-alone QRD-M or MCMC detectors at reduced
complexity due to the following reason:

• With the aid of QRD-M initialization, the MCMC de-
tector starts from good initial vectors, which reduces the
number of required parallel Gibbs samplersD and the
number of iterationsL per Gibbs sampler.

• Due to the use of MCMC, a smallM is sufficient for
the QRD-M detection, leading to reduced complexity and
delay.

• Due to the QR decomposition of the channel matrix,
the computation of path metric in MCMC detection is
reduced at least by half by using (4) instead of

|ω|2 =

Nr
∑

k=1

|yk −

Nt
∑

l=1

hk,ldl|
2 − 2σ2

Nt
∑

k=1

p(dk) (7)

Furthermore, implementation of the Gibbs sampler involves
computation of the path metric of a vectord′ from the path
metric ofd, whered′ andd differs by one bit in symboldm.
Next, we propose an efficient method to compute the path
metric that requires only(Nt + 1) multiplications.

Let us express the path metric associated withd as |ω|2 =
Nt
∑

k=0

γk, whereγk = |ωk|
2 andωk = rk −

Nt
∑

l=k

tk,ldl. Then the

path metric ford′, expressed in terms ofω′, ω′
k and γ′

k can
be computed as follows:

for k = 1 : m
ω′

k = ωk + tk,mdm − tk,md′m = ωk − φ;
γ′

k = γk − 2Re(ωkφ∗) + |φ|2

end

|ω′|2 =
Nt
∑

k=0

γ′
k − 2σ2[p(d′m) − p(dm)]

(8)

where Re(·) is the real part of a complex number, andφ =
{tk,mdm − tk,md′m}. Becauseγk and |φ|2 are predetermined,
only (Nt +1) multiplications are required to compute the new
path metric, which reduces the complexity of the QRD-MCMC
detector. In particular, whenNt = Nr, the complexity of
QRD-MCMC is about half of the complexity of RND-MCMC
due to the QR decomposition. The complexity order of the
QRD-MCMC is O(N2

t DLMc).
In Table I, we compare the complexity of QRD-M, RND-

MCMC, and QRD-MCMC in terms of the number of addi-
tion, comparison, and multiplication required for generating
the set of likely transmitted vectorsA and for computing
the path metric. The complexity of QR decomposition, of
the order ofO(4N3

t ), is not considered here because it is
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TABLE I

COMPLEXITY OF THREE DETECTORS

QRD-M RND-MCMC QRD-MCMC

Add Lc

{

1 + 2Nt + M(N2
t − 1)

}

(1 + Nt)NtD(3LMc + 1) Naq + Nam/2
Compare Lc {9MNt − 5Nt + Nt(M − 3) log

2
M/2} Ncq

Mult 2Lc {1 + (Nt − 1)M} 2(1 + Nt)NtDLMc Nmq + Nmm/2

In Table I,D denotes the number of parallel Gibbs samplers,L denotes the number of iterations per Gibbs sampler,Lc denotes the number
of modulated symbols,Mc = log

2
Lc denotes number of bits per modulated symbol,Naq, Nam Nmq , Nmm denote the number of additions

and multiplications for QRD-M and MCMC,Ncq denotes the number of comparisons for QRD-M.

negligible compared to the computation of path metrics. The
corresponding complexity numbers for the detectors used in
our simulations are given in Table II. The QRD-MCMC has a
lower complexity than QRD-M, while RND-MCMC has the
highest complexity.

TABLE II

COMPLEXITY COMPARISON OF THREE DETECTORS

QRD-M 4x4 M=32 50256
8x8 M=32 127344

RND-MCMC 4x4 D = 8 L = 5 73760
8x8 D = 10 L = 5 331920

QRD-MCMC 4x4 M = 9 D = 6 L = 5 41498
8x8 M = 8 D = 5 L = 5 114284

In Table II,The complexity for 4x4 (antenna) and 8x8 16QAM system
are compared for three detectors. The total operations are computed
by considering one multiplication as 10 additions and one comparison
as 0.5 additions.

V. PERFORMANCE OFMIMO CHANNELS WITH PERFECT

CSI

In this section, the simulation result and comparison with
other state-of-art detectors are given. In all simulations, we
assume Rayleigh fading channel and the receiver knows the
perfect CSI.

First, for various detectors, we examine the quality of the set
of likely transmitted vectorsA by plotting the minimum path
distance overA: min

d′∈A
|y − hd′|2 and comparing it with the

true distance (|y − hd|2), whered is the actual transmitted
vector. As shown in Fig. 4, QRD-MCMC has the smallest
average distance than the other two detectors for a wide range
of SNR. This implies that QRD-MCMC produces the output
LLRs with the best quality. When compared with the true
distance, we note that at low SNR, the minimum distance over
A, produced by various detectors, are smaller than that of the
true distance. This is because when the signal is corrupted by
larger noise, the true distance is likely to be larger than the
minimum distance found by the detectors. As SNR increases,
the true distance becomes more likely the minimum distance,
hence it would lower bound the minimum distance found by
the detectors.

Next, we examine the performance of coded systems em-
ploying various MIMO detectors. In all simulations, a rate
1/2 IEEE 802.16e LDPC code [9] with code length 2304 is
used. In Fig. 5, we compare the performance of QRD-M,
RND-MCMC and QRD-MCMC detectors in 4 transmitters
and 4 receivers 16QAM system for SDD (solid line) and JDD
(dash line) system. For SDD system, one MIMO detection

10 11 12 13 14 15 16

10

12

14

16

18

20

22

24

26

28

30

Eb/N0(dB)

 

 
QR8 MCMC5x5
MMSE MCMC8x5
RND−MCMC8x5
True distance

Fig. 4. Average minimum path metric for different detectorsin 8x8 16QAM
SDD system

7 7.5 8 8.5 9 9.5 10

10
−5

10
−4

10
−3

10
−2

Eb/N0(dB)

B
E

R

 

 

QR32
QR9 MCMC6x5
RND−MCMC8x5
MMSE MCMC8x5
QR32
QR9 MCMC6x5
RND−MCMC8x5
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is performed followed by the 40 LDPC iterations. For JDD
system, 8 outer iterations of joint detection and decoding are
performed and each outer iteration consist of one MIMO
detection followed by 5 LDPC iterations. The number of
parallel Markov chainsD and the number of iterationL per
Markov chain in RND-MCMC and QRD-MCMC detector are
denoted in the figures as MCMCD×L. TheM parameter is
denoted in figures as QRM . Here the parameters are selected
so that QRD-MCMC has lower complexity than QRD-M
(Table II). From Fig. 5, we can see the QRD-MCMC has
the best performance and the RND-MCMC has the worst
performance for both SDD and JDD systems. The gain of
QRD-MCMC is more pronounced in a JDD system. Note
within our simulation range, no error floor has been observed
at high SNR (not shown in the figure) which confirms the
effectiveness of QRD-MCMC over high SNR region.

In Fig. 6, we consider a 16QAM system with 8 transmit and
receive antennas. It is shown that QRD-MCMC outperforms
QRD-M by about 0.4 dB in a SDD system, and by about
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1 dB in a JDD system. We also note that RND-MCMC
performs worse than QRD-M in a SDD system but better
in a JDD system. The performance of MMSE-MCMC for
a SDD system is also plotted Fig. 6 which shows that, the
utilization of MMSE to generate initial candidates achieves
better performance than RND-MCMC, but still worse than
QRD-MCMC.

VI. PERFORMANCE OFMIMO-OFDMA SYSTEM WITH

IMPERFECTCSI

In this section, we apply the QRD-MCMC detector to a
IEEE 802.16e downlink MIMO-OFDMA SDD system and
examine the detector performance under imperfect CSI. A 2-D
MMSE channel estimator is employed for channel estimation
[10]. In turbo decoder, BCJR decoding with 15 iterations is
performed. Detailed system parameters are given in Table III.

TABLE III

SYSTEM PARAMETERS

Parameter Value

Channel bandwidth 10 MHz
Number of subcarriers 1024
Subcarrier permutation PUSC

Cyclic prefix 1/8
Channel coding Convolutional turbo codes

Carrier frequency 2500 MHz
Sampling frequency 11.2 MHz
Multipath channel ITU VehA

MS speed 120 km/hr

We compare the performance of the QRD-MCMC detector
with the optimal max-log MAP detector. Fig. 7 shows that,
under imperfect CSI, the QRD-MCMC6×5 detector performs
only about 0.5 dB worse than the max-log MAP detector. In
order to see the effect of channel estimation error on system
performance, we also plot the performance curves (shown as
the dash lines) of these detectors assuming that perfect CSIis
available at the receiver. In this case, QRD-MCMC performs
very close to the max-log MAP detector. However, we observe
that the performance gap between the case of perfect CSI
and imperfect CSI is more than 7 dB, possibly due to the
fact that under the high mobility scenario considered here,
the pilots in IEEE 802.16e system are insufficient to track
the variation of the channel, and the channel estimation error
rather than white noise dominates performance. We expect

13 14 15 16 17 18 19 20 21 22 23 24
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SNR(dB)
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MAP
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Fig. 7. Performance comparison of 4x4 16QAM MIMO-OFDMA system
using R = 1/2 IEEE 802.16e convolutional turbo codes with perfect and
estimated channel estimation.

that data-aided channel estimation may improve the qualityof
channel estimation thus leading to better performance.

VII. C ONCLUSION

In this paper, we develop a hybrid QRD-MCMC MIMO de-
tector that exploits the advantages of both QRD-M and MCMC
detection. Through a detailed complexity and performance
analysis, we demonstrate that the QRD-MCMC detector yields
superior performance than QRD-M and MCMC detector with
substantial complexity saving. Furthermore, the high SNR
problem of existing MCMC detectors is effectively alleviated
in the QRD-MCMC due to proper initialization using the
QRD-M algorithm. Application to a practical MIMO-OFDMA
system shows QRD-MCMC performs closely to the optimal
MAP detector under imperfect channel CSI. We conclude that
QRD-MCMC is a good competing MIMO detector in terms
of both the performance and complexity.
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