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Outline

« MIMO detection
« Channel estimation
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Receiver block diagram
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Receiver design

* Receiver design is challenging
— Synchronization
— Channel estimation
— MIMO detection
— Channel decoding

« Balance between performance and complexity
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Detection in MIMO

« Consider frequency selective channel, OFDM is used to
convert the frequency selective channel to a number of
parallel flat fading channels. Accordingly, each subcarrier
channel has the following model:

y=Hd+n
where
d € C" is a vector of transmit symbols
y € C"" is a vector of received signal
H e C"" is the channel gain matrix

N .« .
n € C" 1s an additive noise vector

N,, N, 1s the number of transmit antenna and receive antenna
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Receiver structure

-------------------------------------

Y
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Detector (soft) Decoder

 Separate detection and decoding (SDD) : no feedback

from channel decoder
* Joint detection and decoding (JDD) : exchange soft
information between detector and decoder
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MIMO detection

« Maximal likelihood (ML) detection or Maximum a
posteriori (MAP) is optimal

« Optimal detection usually has exponential complexity and
IS computation infeasible for practical system

* Low complexity sub-optimal detectors
— MMSE, SIC, VBLAST ...

« Approximate optimal detectors
— Sphere decoding, MCMC ...
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Hard output VS. Soft output

« Hard output detector make hard decision after

detection
— ML: mgxP(yld)

« Soft output detector generate soft message, usually
log likelihood ratio (LLR). It will be used by soft

channel decoder

— MAP:
ZP(bk =+1Lb_, |y) nl}aXP(bk =+1Lb_, |y)

ﬂ, _lnP(bk:+1|Y)_1 b_;

" =In ~In—
P(b,=-1ly) 2 P(b,=-Lb_|y)  maxP(b,=-1b_|y)
b, *

where
d=(b,b,,A >bN,Mc); b, =(,A b .0, ,A 9bNtMc); b, e {-LI}

2011/7/16



ML detection

« The ML detection solves optimally the closest lattice point problem,
i.e., finds d which minimizes

d y = arg mdinHy - HdH2

« The problem can be solved with exhaustive search, i.e., checking all
possible symbol vectors and selecting the closest point

— Computationally very heavy and often not practical

~
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Low complexity detection

« Zero-forcing detector:
— Estimate of d = Q{(H*H) 'H*y}
« MMSE detector:
— Estimate of d = Q{(H*H+52l) TH*y}
 VBLAST/Successive Interference Canceller (SIC)
detector:

— Detects the streams with highest SNR, subtract the detected
streams, and continue with the successive detection and
cancellation of the rest of the streams.

« Sphere decoding
— Limit the search to a sphere around the most likely symbols

— The radius of the sphere can be adjusted to achieve a tradeoff of
complexity and performance
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Low complexity detection

« ZF has lowest complexity but worst performance
« VBLAST is ordered version of ZF or MMSE

* Sphere decoding and Markov chain Monte Carlo (MCMC)
IS a class of algorithms that have potential to achieve ML
performance at relatively lower complexity

« Sphere decoding is more popular and extensively studied
In the literature

— Easy to understand and more flexibility to improve
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Sphere decoding

7 =[y-Hd|" =y - QRd|’ =[Q"y-Rd[ (¥, <N,)

Q"y R d
_ 21 _ - < —| m A
ZN:¢+1 - B
e B N

i = |an_iz1]?

2011/7/16



Tree search
« Sequential sphere decoding —Depth-First Search (DFS)

— Variable throughput with average polynomial complexity but
exponential at low SNR
— Can be optimum

« K-best sphere decoding (QRM-MLD) — Breadth-First
Search (BFS)

— Fixed number of visited nodes, constant throughput

— Sub-optimal
. Breadth first %

-

53
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Sequential sphere decoding
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The parameter  decide the complexity and accuracy of
Algorithm, different SNR need to decide 7.
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QRM-MLD

« Atlevel 1, select M path
as survival path with
minimal A, discard other
path

 Atlevel 2, From the
survival nodes of level 2,
select M path with minimal

A4 +4, and discard other
path
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Complexity of QRM-MLD

» Need preprocessing QR decomposition, o(N?)

» At each layer (except root layer), MM_ square euclidian
distance calculations are needed to find M minimal
distance from MM, path where M, is the number of
symbols in a constellation

* The complexity of QRM-MLD depends on the parameter
M, O(MM )

« If Mis too large, the complexity is very high; if M is too
small, good candidates have been discarded before the
process proceeds to the lowest layer, note that M is also

iIncrease with the dimension of problem to preserve
performance.
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QRM-MLD with ASESS

* A modified QRM-MLD with lower complexity proposed
by NTT DoCoMo

* Reduce the number of multiplications by replacing the
Euclidian distance calculation with quadrant detection
for selecting candidates

« After candidates are selected, the real Euclidian
distance is calculated for the selected candidates only

2011/7/16



QRM-MLD with ASESS
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Performance
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Complexity

NuMBER oF REAL MULTIPLICATIONS PER FRAME REQUIRED FOR SIGNAL SEPARATION

Signal separation method Required numbe r of Example of total required number
multiplications per frame for 1-Gbps data rate (N, =4, C=

Operation 16 (16QAM), N, = 768, N, = 48)
Full MLLD Generation of symbol replica candidates 4N_2CN,_, »1.9x 10+10

Calculation of squared Euclidian distances 2N C=N_.N;
Original QR decomposition of channel matrix H 4N_2N_, »6.1 x 10*” when S, ;=16
QRM-MLD T : - 2

Multiplication of Q" to received signal vector | 4 N, >N_, N, »4.7 x 10+ when S, ; = 12

Generation of symbol replica candidates 4N, (N, +1)/2)CN_, .

Calkulation of squared Euclidian distances 204 ‘\irjs,m )CN,., N, »3.3x10* when S, ;=8

m=1

Proposed QR decomposition of channel matrix H 4N,> N, »1.8 x 10" when S, =16, S,, =61
QRM-MLD Multiplication of Q! to received signal vector | 4N, 2N_, N, »1.0 x 10*” whenS, = 16, S, , = 28

Generation of symbol replica candidates 4N, ,(N,,+1)/2)CN_, »>7.8x 10% when S, , = 16

. . =1: i - Nm!r
Calculation of squared Euclidian distances ) {Z SN, N,
m=l

MMSE MMSE weight generation 42N, 2+N, (N, +1?)N_ | >7.8x10%

Signal separation using MMSE weight 4N_,>2N_ N,

Calculation of squared Euclidian distances ZN_ CNN,

From: “Adaptive selection of surviving symbol replica candidates based on
maximum reliability in QRM-MLD for OFCDM MIMO multiplexing” Globecom04
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Other tree based detectors

* Following the same framework

— Modifications of the algorithm to marginally reduce the complexity
but requiring additional operations or the calculation of limiting
thresholds

— Simplifications of the algorithm for specific constellation types
— Adapting dynamically select M

— A combination of the sequential SD and the QRM-MLD

— Utilize the information of discarded paths
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MCMC
« Markov chain Monte Carlo (MCMC) detector [1]
— Proposed by wireless communication lab of University of Utah
« Theidea is to find those terms with significant contributions
(important vectors) efficiently
— Similar to sphere decoding, but completely different approach
« MCMC detector finds important vectors using Markov chain Monte
Carlo
— Create Markov chain with state space: d and stationary distribution
P(d[Y)
— Run Markov chain using Gibbs sampler

— After Markov chain converge, the samples are generated according to
P(d|Y). Those samples with large P(d|Y) generated with high
probabilities

[1] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, “Markov chain Monte Carlo algorithms for
CDMA and MIMO communication systems,” IEEE Trans. Signal Processing
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Gibbs sampler

* Run full Markov chain is impossible because of huge

number of states
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Gibbs sampler

* Gibbs sampler limit the states jumping with only one
variable change for each state jumping

»
men \1
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Gibbs sampler

Generate initial d” randomly
forn=1to/

generate d" from distribution p(d, =b|d"",d{"" A ,dl(\}}\z)_l,y)

generate d" from distribution p(d, =b|dy",d}" " A ,dy," ,,y)

M

generate d\y, _, from distribution p(d,,, , =b|dy"”,d{" A ,d};; ,,y)
end for

where p(d, =b|d{",A d),d5" A ,d§ L y)

i—1°*i+1

o p(y|dy” A d"),d, =b,d" A ,dy,",)pd, =b)

i+l

M . 1s the # of bits per constellation symbol
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MCMC

 The samples generated by Gibbs sampler are used to
compute the soft message for soft decoder

» To accelerate Markov train converge, L independent
parallel Gibbs samplers are runned and each Gibbs
sampler run [/ iterations

 Complexity :2L1log(M ,)N,N, per subcarrier per
symbol
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High SNR problem

« At high SNR, MCMC takes long time to converge, leads
performance degradation, this is because of the
multimodal property of channel PDF at high SNR

State will get
stuck here

P(y|d)? | P(y|d)}

W

d
Low SNR High SNR
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Solutions

* Multimodal problem exists in many MCMC algorithm.
* No general method to overcome it

* For MIMO detection, one solution is to generate initial
candidates using other low complexity detector (warm
start)

* Forced state jump
» Joint detection and decoding

« All these solutions are experimental, no theoretical results
available yet

« Still need more study to improve
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Performance

4 by 4 MIMO system
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Joint detection and decoding

« JDD system achieve better performance than SDD
system with higher complexity (More than 2dB)

* MAP detection
> P(b,=+1]y,b_)P(b,, |y)
i PO=Y)

¢ nP(bk =—1ly) D P(b,=-1]y,b_)P(b,_]|y)

where b = b, L b_b, L b,db,=[b b, L b 1b, L bl
andb,_=[b b, L b_ —1b. L b
Problem: the number of combinations that b, takes is 2N-!!

Important observation: Most of the terms in
the numerator and denominator are
insignificant. We may just need to sum those
terms with significant contributions
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Low complexity JDD

* Most of previous detector can be applied to JDD system
with minor modification

 List sphere decoding and MCMC can achieve near
optimal MAP performance

« JDD with strong channel codes usually can achieve near
capacity performance but at the cost of higher delay,
lower throughput and higher complexity

2011/7/16



Sphere decoding VS. MCMC (JDD)
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[2] H. Zhu, B. Farhang-Boroujeny, B. and R-R. Chen, "On performance of sphere
decoding and Markov chain Monte Carlo detection methods,"
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Sphere decoding VS. MCMC (JDD)

TABLE 1
COMPLEXITY STUDY OF SD AND MCMC DETECTORS

SNR  Channel L, Ns or No. of

(dB) size Nmax , Nmin Operations
MCMC 5.6 4 % 4 10, 10 1.32 x 108
SD 5.6 4% 4 100, 10 1.16 x 108
MCMC 6.5 8 x 8 20, 20 9.72 x 108
SD 6.5 8 X 8 400, 10 1.40 x 1010
SD 6.5 8 X 8 800, 10 1.69 x 1010
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Sphere decoding VS. MCMC (JDD)

« Sphere decoding finds important vectors by limiting the
search to sphere.
— Exponential complexity at low SNR
— Complexity is increased quickly with the dimension of problem

« MCMC finds important vectors using the P(d|Y)
— Works very well at low SNR
— Complexity is independent of SNR

— Complexity is increase not too much with the dimension of
problem

— At high SNR, need the help of ZF or MMSE

2011/7/16



Some thoughts

« Combine sphere decoding and MCMC
— Combine QRM-MLD and MCMC

« Use QRM-MLD with a small M to generate initial candidates

» Not necessary increase the complexity of MCMC because upper-
triangular matrix can reduce half of Euclidian distance calculation

which is most computation extensive part
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Hybrid QRD-MCMC
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Results

BER
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Performance comparison of 4x4 16QAM SDD and JDD systems

2011/7/16



Results
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Performance comparison of 8x8 16QAM SDD and JDD systems
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Complexity

QRD-M 4x4 M=32 50256
8x8 M=32 127344

RND-MCMC dxd [V =8 L = 73760
8x8 D=10 L = 5 331920

QRD-MCMC x4 M =9D=6L=5 | 41498
8x8 M =8 0D =5L =5 | 114284
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Imperfect channel estimation

 In practice, channel is unknown, the accuracy of channel
estimation influence performance of the detection greatly

— Channel estimation for MIMO-OFDM is more challenging
» Doppler frequency caused time selective
« Multipath caused frequency selective
* Need to track the variance at 2-D

« For high speed UE, the channel can change during even one symbol
which will cause IClI

— Optimal pilot structure for MIMO-OFDM need to be studied
— Low complexity channel estimation algorithm should be studied

— Joint channel estimation and detection

« Combined with iterative coding can achievement very good
performance but with higher delay, lower throughput and higher
complexity
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MIMO-OFDMA system in 802.16e

SYSTEM PARAMETERS

Parameter Value
Channel bandwidth 10 MH=z
Number of subecarriers 1024
Subcarrier permutation PUSC
Cyclic prefix 1/8

Channel coding

Conwvolutional turbo codes

Cammer frequency

2500 MHz

Sampling frequency

11.2 MH=z

Multipath channel

ITU VehA

MS speed

120 km'hr
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Pilot structure
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Results
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Performance comparison of 4x4 16QAM MIMO-OFDMA system using
R = 1/2 IEEE 802.16¢ convolutional turbo codes with perfect and 2D
MMSE channel estimation.
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Imperfect channel estimation

 In practice, channel is unknown, the accuracy of channel
estimation influence performance of the detection greatly

— Channel estimation for MIMO-OFDM is more challenging
» Doppler frequency caused time selective
« Multipath caused frequency selective
* Need to track the variance at 2-D

« For high speed UE, the channel can change during even one symbol
which will cause IClI

— Optimal pilot structure for MIMO-OFDM need to be studied
— Low complexity channel estimation algorithm should be studied

— Joint channel estimation and detection

« Combined with iterative coding can achievement very good
performance but with higher delay, lower throughput and higher
complexity
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Interference

* |Internal interference

— |ICl caused by frequency offset
» Loss of synchronization
* Phase noise if the oscillators

» Relatively less challenging since frequency offset parameter is
constant over all the subcarriers and can be tracked iteratively

— |ICl caused by fast fading channel
« Channel change too fast and is not constant over one OFDM symbol
* Need more complexity algorithm to compensate
« External interference
— Impulse noise
— Narrowband interference can be modeled as Gaussian noise
— Synchronous and asynchronous interferences
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Challenges

« (Good detector should achieve good performance and
complexity tradeofft

* Imperfect channel estimation and/or synchronization may
have bad effect on the performance of detector

* More simulations should be performed under more
practical channel models
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Thank you |
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