Further study of Advanced MIMO receiver

Ronghui Peng

10/5/2008

Outline

- MIMO detection
- Channel estimation

Receiver block diagram

Receiver design

- Receiver design is challenging
 - Synchronization
 - Channel estimation
 - MIMO detection
 - Channel decoding
- Balance between performance and complexity

Detection in MIMO

• Consider frequency selective channel, OFDM is used to convert the frequency selective channel to a number of parallel flat fading channels. Accordingly, each subcarrier channel has the following model:

$\mathbf{y} = \mathbf{H}\mathbf{d} + \mathbf{n}$

where

 $\mathbf{d} \in \mathbf{C}^{N_t}$ is a vector of transmit symbols

 $\mathbf{y} \in \mathbf{C}^{N_r}$ is a vector of received signal

 $\mathbf{H} \in \mathbf{C}^{N_r \times N_t}$ is the channel gain matrix

 $\mathbf{n} \in \mathbf{C}^{N_r}$ is an additive noise vector

 N_t, N_r is the number of transmit antenna and receive antenna

Receiver structure

• Separate detection and decoding (SDD) : no feedback from channel decoder

• Joint detection and decoding (JDD) : exchange soft information between detector and decoder

MIMO detection

- Maximal likelihood (ML) detection or Maximum a posteriori (MAP) is optimal
- Optimal detection usually has exponential complexity and is computation infeasible for practical system
- Low complexity sub-optimal detectors
 - MMSE, SIC, VBLAST ...
- Approximate optimal detectors
 - Sphere decoding, MCMC ...

Hard output VS. Soft output

Hard output detector make hard decision after detection

- ML: $\max_{\mathbf{d}} P(\mathbf{y} \,|\, \mathbf{d})$

 Soft output detector generate soft message, usually log likelihood ratio (LLR). It will be used by soft channel decoder

$$- \text{ MAP:} \lambda_{k} = \ln \frac{P(b_{k} = +1 | \mathbf{y})}{P(b_{k} = -1 | \mathbf{y})} = \ln \frac{\sum_{\mathbf{b}_{-k}} P(b_{k} = +1, \mathbf{b}_{-k} | \mathbf{y})}{\sum_{\mathbf{b}_{-k}} P(b_{k} = -1, \mathbf{b}_{-k} | \mathbf{y})} \approx \ln \frac{\max P(b_{k} = +1, \mathbf{b}_{-k} | \mathbf{y})}{\max P(b_{k} = -1, \mathbf{b}_{-k} | \mathbf{y})}$$

where

$$\mathbf{d} = (b_1, b_2, \Lambda, b_{N_t M_c}); \quad \mathbf{b}_{-k} = (b_1, \Lambda, b_{k-1}, b_{k+1}, \Lambda, b_{N_t M_c}); \quad b_i \in \{-1, 1\}$$

ML detection

• The ML detection solves optimally the closest lattice point problem, i.e., finds **d** which minimizes

$$\hat{\mathbf{d}}_{ML} = \arg\min_{\mathbf{d}} \|\mathbf{y} - \mathbf{H}\mathbf{d}\|^2$$

- The problem can be solved with exhaustive search, i.e., checking all possible symbol vectors and selecting the closest point
 - Computationally very heavy and often not practical

2011/7/16

Low complexity detection

- Zero-forcing detector:
 - Estimate of $\mathbf{d} = \mathbf{Q}\{(\mathbf{H}^*\mathbf{H})^{-1}\mathbf{H}^*\mathbf{y}\}$
- MMSE detector:
 - Estimate of $\mathbf{d} = \mathbf{Q}\{(\mathbf{H}^*\mathbf{H}+\sigma^2\mathbf{I})^{-1}\mathbf{H}^*\mathbf{y}\}$
- VBLAST/Successive Interference Canceller (SIC) detector:
 - Detects the streams with highest SNR, subtract the detected streams, and continue with the successive detection and cancellation of the rest of the streams.
- Sphere decoding
 - Limit the search to a sphere around the most likely symbols
 - The radius of the sphere can be adjusted to achieve a tradeoff of complexity and performance

Low complexity detection

- ZF has lowest complexity but worst performance
- VBLAST is ordered version of ZF or MMSE
- Sphere decoding and Markov chain Monte Carlo (MCMC) is a class of algorithms that have potential to achieve ML performance at relatively lower complexity
- Sphere decoding is more popular and extensively studied in the literature
 - Easy to understand and more flexibility to improve

Sphere decoding

$$r^{2} = \left\| \mathbf{y} - \mathbf{H} \mathbf{d} \right\|^{2} = \left\| \mathbf{y} - \mathbf{Q} \mathbf{R} \mathbf{d} \right\|^{2} = \left\| \mathbf{Q}^{H} \mathbf{y} - \mathbf{R} \mathbf{d} \right\|^{2} \quad (N_{t} \leq N_{r})$$

2011/7/16

Tree search

- Sequential sphere decoding Depth-First Search (DFS)
 - Variable throughput with average polynomial complexity but exponential at low SNR
 - Can be optimum
- K-best sphere decoding (QRM-MLD) Breadth-First Search (BFS)
 - Fixed number of visited nodes, constant throughput
 - Sub-optimal

2011/7/16

Sequential sphere decoding

The parameter r decide the complexity and accuracy of Algorithm, different SNR need to decide r.

QRM-MLD

- At level 1, select M path as survival path with minimal λ_1 discard other path
- At level 2, From the survival nodes of level 2, select M path with minimal $\lambda_1 + \lambda_2$ and discard other path

M = 2

•

Complexity of QRM-MLD

- Need preprocessing QR decomposition, $O(N_t^3)$
- At each layer (except root layer), MM_c square euclidian distance calculations are needed to find M minimal distance from MM_c path where M_c is the number of symbols in a constellation
- The complexity of QRM-MLD depends on the parameter M, $O(MM_c)$
- If M is too large, the complexity is very high; if M is too small, good candidates have been discarded before the process proceeds to the lowest layer, note that M is also increase with the dimension of problem to preserve performance.

QRM-MLD with **ASESS**

- A modified QRM-MLD with lower complexity proposed by NTT DoCoMo
- Reduce the number of multiplications by replacing the Euclidian distance calculation with quadrant detection for selecting candidates
- After candidates are selected, the real Euclidian distance is calculated for the selected candidates only

QRM-MLD with **ASESS**

• z_m': z_m after subtraction of surviving symbol replica component

(d) Symbol ranking

Performance

4x4 16QAM 8/9 Turbo code

2011/7/16

Complexity

NUMBER OF REAL MULTIPLICATIONS PER FRAME REQUIRED FOR SIGNAL SEPARATION

Signal separation method Operation		Required number of multiplications per frame	Example of total required number for 1-Gbps data rate ($N_{ant} = 4$, $C =$ 16 (16QAM), $N_{sub} = 768$, $N_d = 48$)
Full MLD	Generation of symbol replica candidates	$4 N_{ant}^2 C N_{sub}$	► 1.9 x 10 ⁺¹⁰
	Calculation of squared Euclidian distances	2 N _{ant} Cram N _{sub} N _d	
Original	QR decomposition of channel matrix H	$4 N_{ant}^{3} N_{sub}$	>6.1 x 10 ⁺⁷ when $S_{1-3} = 16$
QRM-MLD	Multiplication of \mathbf{Q}^{H} to received signal vector	$4 N_{ant}^2 N_{sub} N_d$	>4.7 x 10 ⁺⁷ when $S_{1,2} = 12$
	Generation of symbol replica candidates	$4 (N_{ant} (N_{ant} + 1) / 2) C N_{sub}$	1-5
	Calculation of squared Euclidian distances	$2 (1 + \sum_{m=1}^{N_{an}-1} S_m) C N_{sub} N_d$	> 3.3 x 10 ⁺⁷ when $S_{1-3} = 8$
Proposed	QR decomposition of channel matrix H	4 Nant ³ N _{sub}	> 1.8 x 10 ⁺⁷ when $S_1 = 16$, $S_{2-4} = 61$
QRM-MLD	Multiplication of \mathbf{Q}^{H} to received signal vector	$4 N_{ant}^2 N_{sub} N_d$	> 1.0 x 10 ⁺⁷ when $S_1 = 16$, $S_{2.4} = 28$
	Generation of symbol replica candidates	$4 (N_{ant} (N_{ant} + 1) / 2) C N_{sub}$	$>7.8 \times 10^{+6}$ when $S_{1.4} = 16$
	Calculation of squared Euclidian distances	$2\left(\sum_{m=1}^{N_{amt}} S_m\right) N_{sub} N_d$	1-4
MMSE	MMSE weight generation	$4 (2 N_{ant}^{3} + N_{ant} (N_{ant} + 1)^{2}) N_{sub}$	≻7.8 x 10 ⁺⁶
	Signal separation using MMSE weight	$4 N_{ant}^2 N_{sub} N_d$	
	Calculation of squared Euclidian distances	2 N _{ant} C N _{sub} N _d	

From: "Adaptive selection of surviving symbol replica candidates based on maximum reliability in QRM-MLD for OFCDM MIMO multiplexing" Globecom04

Other tree based detectors

- Following the same framework
 - Modifications of the algorithm to marginally reduce the complexity but requiring additional operations or the calculation of limiting thresholds
 - Simplifications of the algorithm for specific constellation types
 - Adapting dynamically select M
 - A combination of the sequential SD and the QRM-MLD
 - Utilize the information of discarded paths

—

MCMC

- Markov chain Monte Carlo (MCMC) detector [1]
 - Proposed by wireless communication lab of University of Utah
- The idea is to find those terms with significant contributions (important vectors) efficiently
 - Similar to sphere decoding, but completely different approach
- MCMC detector finds important vectors using Markov chain Monte Carlo
 - Create Markov chain with state space: d and stationary distribution
 P(d|Y)
 - Run Markov chain using Gibbs sampler
 - After Markov chain converge, the samples are generated according to P(d|Y). Those samples with large P(d|Y) generated with high probabilities
- [1] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, "Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems," IEEE Trans. Signal Processing

Gibbs sampler

Run full Markov chain is impossible because of huge number of states

 $\mathbf{d} = \begin{vmatrix} d_1 \\ d_2 \\ d_3 \end{vmatrix}$

State	d ₃	d ₂	d ₁
S ₀	-1	-1	-1
S_{1}	-1	-1	+1
S ₂	-1	+1	-1
S ₃	-1	+1	+1
S ₄	+1	-1	-1
S_5	+1	-1	+1
S ₆	+1	+1	-1
S ₇	+1	+1	+1

2011/7/16

Gibbs sampler

• Gibbs sampler limit the states jumping with only one variable change for each state jumping

Gibbs sampler

Generate initial $\mathbf{d}^{(0)}$ randomly for n = 1 to Igenerate $d_0^{(n)}$ from distribution $p(d_0 = b | d_1^{(n-1)}, d_2^{(n-1)}, \Lambda, d_{NM_c^{-1}}^{(n-1)}, \mathbf{y})$ generate $d_1^{(n)}$ from distribution $p(d_1 = b | d_0^{(n)}, d_2^{(n-1)}, \Lambda, d_{NM_c^{-1}}^{(n-1)}, \mathbf{y})$ M generate $d_{NM_c^{-1}}^{(n)}$ from distribution $p(d_{NM_c^{-1}} = b | d_0^{(n)}, d_1^{(n)}, \Lambda, d_{NM_c^{-2}}^{(n)}, \mathbf{y})$ end for

where
$$p(d_i = b \mid d_0^{(n)}, \Lambda \mid d_{i-1}^{(n)}, d_{i+1}^{(n-1)}, \Lambda \mid d_{NM_c-1}^{(n-1)}, \mathbf{y})$$

 $\propto p(\mathbf{y} \mid d_0^{(n)}, \Lambda \mid d_{i-1}^{(n)}, d_i = b, d_{i+1}^{(n-1)}, \Lambda \mid d_{NM_c-1}^{(n-1)}, p(d_i = b)$

 M_c is the # of bits per constellation symbol

MCMC

- The samples generated by Gibbs sampler are used to compute the soft message for soft decoder
- To accelerate Markov train converge, *L* independent parallel Gibbs samplers are runned and each Gibbs sampler run *I* iterations
- Complexity : $2LI \log(M_c) N_t N_r$ per subcarrier per symbol

High SNR problem

 At high SNR, MCMC takes long time to converge, leads performance degradation, this is because of the multimodal property of channel PDF at high SNR

Solutions

- Multimodal problem exists in many MCMC algorithm.
- No general method to overcome it
- For MIMO detection, one solution is to generate initial candidates using other low complexity detector (warm start)
- Forced state jump
- Joint detection and decoding
- All these solutions are experimental, no theoretical results available yet
- Still need more study to improve

Performance

4x4 16QAM with $\frac{1}{2}$ convolutional code

2011/7/16

Joint detection and decoding

- JDD system achieve better performance than SDD system with higher complexity (More than 2dB)
- MAP detection

$$\lambda_{k} = \ln \frac{P(b_{k} = +1 | \mathbf{y})}{P(b_{k} = -1 | \mathbf{y})} = \ln \frac{\sum_{\mathbf{b}_{-k}} P(b_{k} = +1 | \mathbf{y}, \mathbf{b}_{-k}) P(\mathbf{b}_{k+} | \mathbf{y})}{\sum_{\mathbf{b}_{-k}} P(b_{k} = -1 | \mathbf{y}, \mathbf{b}_{-k}) P(\mathbf{b}_{k-} | \mathbf{y})}$$

where $\mathbf{b}_{-k} = [b_1 \ b_2 \ L \ b_{k-1}b_{k+1} \ L \ b_N], \mathbf{b}_{k+} = [b_1 \ b_2 \ L \ b_{k-1} \ 1 \ b_{k+1} \ L \ b_N]$ and $\mathbf{b}_{k-} = [b_1 \ b_2 \ L \ b_{k-1} \ -1 \ b_{k+1} \ L \ b_N]$

Problem: the number of combinations that \mathbf{b}_{-k} takes is 2^{N-1} !

Important observation: Most of the terms in the numerator and denominator are insignificant. We may just need to sum those terms with significant contributions

2011/7/16

Low complexity JDD

- Most of previous detector can be applied to JDD system with minor modification
- List sphere decoding and MCMC can achieve near optimal MAP performance
- JDD with strong channel codes usually can achieve near capacity performance but at the cost of higher delay, lower throughput and higher complexity

[2] H. Zhu, B. Farhang-Boroujeny, B. and R-R. Chen, "On performance of sphere decoding and Markov chain Monte Carlo detection methods,"

Sphere decoding VS. MCMC (JDD)

TABLE I
COMPLEXITY STUDY OF SD AND MCMC DETECTORS

	SNR (dB)	Channel	$L, N_{\rm s} \text{ or }$	No. of
	(ub)	SIZE	Tymax, Tymin	Operations
MCMC	5.6	4 imes 4	10, 10	$1.32 imes10^8$
SD	5.6	4 imes 4	100, 10	1.16×10^8
MCMC	6.5	8×8	20, 20	$9.72 imes 10^8$
SD	6.5	8×8	400, 10	1.40×10^{10}
SD	6.5	8×8	800, 10	1.69×10^{10}

Sphere decoding VS. MCMC (JDD)

- Sphere decoding finds important vectors by limiting the search to sphere.
 - Exponential complexity at low SNR
 - Complexity is increased quickly with the dimension of problem
- MCMC finds important vectors using the P(d|Y)
 - Works very well at low SNR
 - Complexity is independent of SNR
 - Complexity is increase not too much with the dimension of problem
 - At high SNR, need the help of ZF or MMSE

Some thoughts

- Combine sphere decoding and MCMC
 - Combine QRM-MLD and MCMC
 - Use QRM-MLD with a small M to generate initial candidates
 - Not necessary increase the complexity of MCMC because uppertriangular matrix can reduce half of Euclidian distance calculation which is most computation extensive part

Hybrid QRD-MCMC

Results

Performance comparison of 4x4 16QAM SDD and JDD systems

Results

Performance comparison of 8x8 16QAM SDD and JDD systems

Complexity

QRD-M	4x4 M=32	50256
	8x8 M=32	127344
RND-MCMC	4x4 D = 8 L = 5	73760
	8x8 D = 10 L = 5	331920
QRD-MCMC	4x4 M = 9 D = 6 L = 5	41498
	8x8 M = 8 D = 5 L = 5	114284

Imperfect channel estimation

- In practice, channel is unknown, the accuracy of channel estimation influence performance of the detection greatly
 - Channel estimation for MIMO-OFDM is more challenging
 - Doppler frequency caused time selective
 - Multipath caused frequency selective
 - Need to track the variance at 2-D
 - For high speed UE, the channel can change during even one symbol which will cause ICI
 - Optimal pilot structure for MIMO-OFDM need to be studied
 - Low complexity channel estimation algorithm should be studied
 - Joint channel estimation and detection
 - Combined with iterative coding can achievement very good performance but with higher delay, lower throughput and higher complexity

MIMO-OFDMA system in 802.16e

SYSTEM PARAMETERS

Parameter	Value
Channel bandwidth	10 MHz
Number of subcarriers	1024
Subcarrier permutation	PUSC
Cyclic prefix	1/8
Channel coding	Convolutional turbo codes
Carrier frequency	2500 MHz
Sampling frequency	11.2 MHz
Multipath channel	ITU VehA
MS speed	120 km/hr

Pilot structure

Results

Performance comparison of 4x4 16QAM MIMO-OFDMA system using R = 1/2 IEEE 802.16e convolutional turbo codes with perfect and 2D MMSE channel estimation.

Imperfect channel estimation

- In practice, channel is unknown, the accuracy of channel estimation influence performance of the detection greatly
 - Channel estimation for MIMO-OFDM is more challenging
 - Doppler frequency caused time selective
 - Multipath caused frequency selective
 - Need to track the variance at 2-D
 - For high speed UE, the channel can change during even one symbol which will cause ICI
 - Optimal pilot structure for MIMO-OFDM need to be studied
 - Low complexity channel estimation algorithm should be studied
 - Joint channel estimation and detection
 - Combined with iterative coding can achievement very good performance but with higher delay, lower throughput and higher complexity

Interference

- Internal interference
 - ICI caused by frequency offset
 - Loss of synchronization
 - Phase noise if the oscillators
 - Relatively less challenging since frequency offset parameter is constant over all the subcarriers and can be tracked iteratively
 - ICI caused by fast fading channel
 - Channel change too fast and is not constant over one OFDM symbol
 - Need more complexity algorithm to compensate
- External interference
 - Impulse noise
 - Narrowband interference can be modeled as Gaussian noise
 - Synchronous and asynchronous interferences

Challenges

- Good detector should achieve good performance and complexity tradeoff
- Imperfect channel estimation and/or synchronization may have bad effect on the performance of detector
- More simulations should be performed under more practical channel models

Thank you !

2011/7/16