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Outline

• MIMO detection
• Channel estimation
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Receiver block diagram
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Receiver design

• Receiver design is challenging
– Synchronization
– Channel estimation
– MIMO detection
– Channel decoding

• Balance between performance and complexity



5

2011/7/16

Detection in MIMO

• Consider frequency selective channel, OFDM is used to
convert the frequency selective channel to a number of
parallel flat fading channels. Accordingly, each subcarrier
channel has the following model:
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Receiver structure

Channel
Decoder

MIMO
Detector

y  ?d
(soft)

• Separate detection and decoding (SDD) : no feedback
from channel decoder
• Joint detection and decoding (JDD) : exchange soft
information between detector and decoder
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MIMO detection

• Maximal likelihood (ML) detection or Maximum a
posteriori (MAP) is optimal

• Optimal detection usually has exponential complexity and
is computation infeasible for practical system

• Low complexity sub-optimal detectors
– MMSE, SIC, VBLAST …

• Approximate optimal detectors
– Sphere decoding, MCMC …
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Hard output VS. Soft output

• Hard output detector make hard decision after
detection
– ML:

• Soft output detector generate soft message, usually
log likelihood ratio (LLR). It will be used by soft
channel decoder
– MAP:
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ML detection

• The ML detection solves optimally the closest lattice point problem,
i.e., finds d which minimizes

• The problem can be solved with exhaustive search, i.e., checking all
possible symbol vectors and selecting the closest point
– Computationally very heavy and often not practical

2minargˆ Hdyd
d
ML
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Low complexity detection

• Zero-forcing detector:
– Estimate of d = Q{(H*H)-1H*y}

• MMSE detector:
– Estimate of d = Q{(H*H+2I)-1H*y}

• VBLAST/Successive Interference Canceller (SIC)
detector:
– Detects the streams with highest SNR, subtract the detected

streams, and continue with the successive detection and
cancellation of the rest of the streams.

• Sphere decoding
– Limit the search to a sphere around the most likely symbols
– The radius of the sphere can be adjusted to achieve a tradeoff of

complexity and performance
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Low complexity detection

• ZF has lowest complexity but worst performance
• VBLAST is ordered version of ZF or MMSE
• Sphere decoding and Markov chain Monte Carlo (MCMC)

is a class of algorithms that have potential to achieve ML
performance at relatively lower complexity

• Sphere decoding is more popular and extensively studied
in the literature
– Easy to understand and more flexibility to improve
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Sphere decoding
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Tree search
• Sequential sphere decoding –Depth-First Search (DFS)

– Variable throughput with average polynomial complexity but
exponential at low SNR

– Can be optimum
• K-best sphere decoding (QRM-MLD) – Breadth-First

Search (BFS)
– Fixed number of visited nodes, constant throughput
– Sub-optimal
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Sequential sphere decoding

The parameter r decide the complexity and accuracy of
Algorithm, different SNR need to decide r.
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QRM-MLD

• At level 1, select M path
as survival path with
minimal discard other
path

• At level 2, From the
survival nodes of level 2,
select M path with minimal

and discard other
path

• …...

1

M = 2

21  
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Complexity of QRM-MLD

• Need preprocessing QR decomposition,
• At each layer (except root layer), MMc square euclidian

distance calculations are needed to find M minimal
distance from MMc path where Mc is the number of
symbols in a constellation

• The complexity of QRM-MLD depends on the parameter
M,

• If M is too large, the complexity is very high; if M is too
small, good candidates have been discarded before the
process proceeds to the lowest layer, note that M is also
increase with the dimension of problem to preserve
performance.

)( 3
tNO

)( cMMO
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QRM-MLD with ASESS

• A modified QRM-MLD with lower complexity proposed
by NTT DoCoMo

• Reduce the number of multiplications by replacing the
Euclidian distance calculation with quadrant detection
for selecting candidates

• After candidates are selected, the real Euclidian
distance is calculated for the selected candidates only
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QRM-MLD with ASESS
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Performance

4x4 16QAM 8/9 Turbo code
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Complexity

From: “Adaptive selection of surviving symbol replica candidates based on
maximum reliability in QRM-MLD for OFCDM MIMO multiplexing” Globecom04
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Other tree based detectors

• Following the same framework
– Modifications of the algorithm to marginally reduce the complexity

but requiring additional operations or the calculation of limiting
thresholds

– Simplifications of the algorithm for specific constellation types
– Adapting dynamically select M
– A combination of the sequential SD and the QRM-MLD
– Utilize the information of discarded paths
– ……
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MCMC
• Markov chain Monte Carlo (MCMC) detector [1]

– Proposed by wireless communication lab of University of Utah
• The idea is to find those terms with significant contributions

(important vectors) efficiently
– Similar to sphere decoding, but completely different approach

• MCMC detector finds important vectors using Markov chain Monte
Carlo
– Create Markov chain with state space: d and stationary distribution

P(d|Y)
– Run Markov chain using Gibbs sampler
– After Markov chain converge, the samples are generated according to

P(d|Y). Those samples with large P(d|Y) generated with high
probabilities

[1] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, “Markov chain Monte Carlo algorithms for
CDMA and MIMO communication systems,” IEEE Trans. Signal Processing
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Gibbs sampler

• Run full Markov chain is impossible because of huge
number of states

d 
d1

d2

d3







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







State d3 d2 d1

S0 -1 -1 -1

S1` -1 -1 +1

S2 -1 +1 -1

S3 -1 +1 +1

S4 +1 -1 -1

S5 +1 -1 +1

S6 +1 +1 -1

S7 +1 +1 +1



24

2011/7/16

Gibbs sampler

• Gibbs sampler limit the states jumping with only one
variable change for each state jumping

a0

a1 a2 a3
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Gibbs sampler
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MCMC

• The samples generated by Gibbs sampler are used to
compute the soft message for soft decoder

• To accelerate Markov train converge, L independent
parallel Gibbs samplers are runned and each Gibbs
sampler run I iterations

• Complexity : per subcarrier per
symbol

rtc NNMLI )log(2
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High SNR problem

• At high SNR, MCMC takes long time to converge, leads
performance degradation, this is because of the
multimodal property of channel PDF at high SNR

P(y|d)

d
Low SNR

P(y|d)

d
High SNR

State will get
stuck here
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Solutions

• Multimodal problem exists in many MCMC algorithm.
• No general method to overcome it
• For MIMO detection, one solution is to generate initial

candidates using other low complexity detector (warm
start)

• Forced state jump
• Joint detection and decoding
• All these solutions are experimental, no theoretical results

available yet
• Still need more study to improve
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Performance

4x4 16QAM with ½  convolutional code
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Joint detection and decoding

• JDD system achieve better performance than SDD
system with higher complexity (More than 2dB)

• MAP detection

where

k  ln P(bk  1 | y)
P(bk  1 | y)

 ln
P(bk  1 | y,bk )

b  k

 P(bk | y)

P(bk  1 | y,bk )
b  k

 P(bk | y)

bk  [b1 b2 bk1bk1 bN ],bk  [b1 b2 bk1 1 bk1 bN ]

and bk  [b1 b2 bk1 1 bk1 bN ]

Problem: the number of combinations that b-k takes is 2N-1!
Important observation: Most of the terms in
the numerator and denominator are
insignificant. We may just need to sum those
terms with significant contributions
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Low complexity JDD

• Most of previous detector can be applied to JDD system
with minor modification

• List sphere decoding and MCMC can achieve near
optimal MAP performance

• JDD with strong channel codes usually can achieve near
capacity performance but at the cost of higher delay,
lower throughput and higher complexity
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Sphere decoding VS. MCMC (JDD)

4x4 16QAM ½ turbo code [2]
[2] H. Zhu, B. Farhang-Boroujeny, B. and R-R. Chen, "On performance of sphere
decoding and Markov chain Monte Carlo detection methods,"

8x8 16QAM ½ turbo code [2]
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Sphere decoding VS. MCMC (JDD)
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Sphere decoding VS. MCMC (JDD)

• Sphere decoding finds important vectors by limiting the
search to sphere.
– Exponential complexity at low SNR
– Complexity is increased quickly with the dimension of problem

• MCMC finds important vectors using the P(d|Y)
– Works very well at low SNR
– Complexity is independent of SNR
– Complexity is increase not too much with the dimension of

problem
– At high SNR, need the help of ZF or MMSE
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Some thoughts

• Combine sphere decoding and MCMC
– Combine QRM-MLD and MCMC

• Use QRM-MLD with a small M to generate initial candidates
• Not necessary increase the complexity of MCMC because upper-

triangular matrix can reduce half of Euclidian distance calculation
which is most computation extensive part
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Hybrid QRD-MCMC
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Results

Performance comparison of 4x4 16QAM SDD and JDD systems
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Results

Performance comparison of 8x8 16QAM SDD and JDD systems
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Complexity
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Imperfect channel estimation

• In practice, channel is unknown, the accuracy of channel
estimation influence performance of the detection greatly
– Channel estimation for MIMO-OFDM is more challenging

• Doppler frequency caused time selective
• Multipath caused frequency selective
• Need to track the variance at 2-D
• For high speed UE, the channel can change during even one symbol

which will cause ICI
– Optimal pilot structure for MIMO-OFDM need to be studied
– Low complexity channel estimation algorithm should be studied
– Joint channel estimation and detection

• Combined with iterative coding can achievement very good
performance but with higher delay, lower throughput and higher
complexity
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MIMO-OFDMA system in 802.16e
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Pilot structure
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Results

Performance comparison of 4x4 16QAM MIMO-OFDMA system using
R = 1/2 IEEE 802.16e convolutional turbo codes with perfect and 2D
MMSE channel estimation.
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Imperfect channel estimation

• In practice, channel is unknown, the accuracy of channel
estimation influence performance of the detection greatly
– Channel estimation for MIMO-OFDM is more challenging

• Doppler frequency caused time selective
• Multipath caused frequency selective
• Need to track the variance at 2-D
• For high speed UE, the channel can change during even one symbol

which will cause ICI
– Optimal pilot structure for MIMO-OFDM need to be studied
– Low complexity channel estimation algorithm should be studied
– Joint channel estimation and detection

• Combined with iterative coding can achievement very good
performance but with higher delay, lower throughput and higher
complexity
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Interference

• Internal interference
– ICI caused by frequency offset

• Loss of synchronization
• Phase noise if the oscillators
• Relatively less challenging since frequency offset parameter is

constant over all the subcarriers and can be tracked iteratively
– ICI caused by fast fading channel

• Channel change too fast and is not constant over one OFDM symbol
• Need more complexity algorithm to compensate

• External interference
– Impulse noise
– Narrowband interference can be modeled as Gaussian noise
– Synchronous and asynchronous interferences
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Challenges

• Good detector should achieve good performance and
complexity tradeoff

• Imperfect channel estimation and/or synchronization may
have bad effect on the performance of detector

• More simulations should be performed under more
practical channel models
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Thank you !


