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Summary of Past work

• Efficient MCMC algorithms for communication
– Application to MIMO channel [Chen-Peng-Ashikhmin-Farhang]
– Application to noncoherent channel [Chen-Peng]
– Application to ISI channel and extend to underwater channel [Peng-Chen-

Farhang]
– Achieve near optimal performance with reduced complexity
– Solve the slow convergence problem

• MIMO-HARQ schemes and combining algorithm [Peng-Chen]
– Propose new retransmission scheme
– Propose new combining algorithm
– Increase the throughput significantly
– Applicable to Wimax and LTE
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Summary of Past work

• Nonbinary LDPC codes [Peng-Chen]
– Nonbinary LDPC coded MIMO system, achieve good performance with

reduced complexity
– Code design based on EXIT chart
– Hardware-friendly construction

• Low encoding complexity
• Parallel architecture
• Low error floor

• Intern at MERL
– Low complexity MIMO detection algorithm for MIMO-OFDMA
– Wimax link-level simulation
– 3G LTE antenna selection
– 1 paper, 1 patent



Summary of Past work

• Consultant at WiderNetworks
– Synchronization and signal detection for 3G LTE driver scanner

• Work at SpiralGen
– Vectorizing physical layer algorithm and map it to multiple-core processor
– Implement physical layer software components in software

communication architecture (SCA)
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Outline

• Background and motivation

• Introduction to MCMC technology

• MCMC MIMO detection

• MCMC ISI equalization

• Conclusion
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Background and motivation
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Reduction in computational cost is essential for application to
future system.
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Our contribution

• Previous work on MCMC methods for signal processing
and communication [Doucet-Wang’05]
– Bit-counting: use MCMC to determine the frequency over which a

bit occurs.
– Many samples are needed.
– Requires a burning period to allow Markov chain to converge.
– Do not consider convergence problem

• Our proposed MCMC methods
– Do not use bit-counting
– No burning period is needed
– Fewer samples even for large systems
– Solve the slow-convergence problem
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Markov Chain Monte Carlo (MCMC)

• MCMC obtains the statistical inference by sampling from
a posterior distribution through Markov chain

• MCMC is suitable for addressing problems involving high-
dimensional summations or integrals

• Instead of evaluating all summation terms (exponential
complexity), average over the samples from the complex
distribution

X

f(x)
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Gibbs sampler

• A MCMC method sampling from a multivariate distribution
Idea: Sample from the conditional of each variable given the settings

of the other variables

Repeatedly:

1) pick i (either at random or in turn)
2) replace by a sample from the conditional

distribution

Gibbs sampling is feasible if it is easy to sample
from the conditional probabilities.

This creates a Markov Chain
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Example: 20 iterations
of Gibbs sampling on a
bivariate Guassian
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Why Gibbs sampling works

• Retains elements of the greedy approach
– weighing by conditional PDF makes likely to move towards locally

better solutions

• Allows for locally bad moves with a small probability, to
escape local maxima
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Limitations

• May have slow convergence problem
– High posterior correlation, hard to move in other directions
– Multi-modal distribution, proposing small changes causes the

move between modes to become rare

P(x)

x

Trapped in
local states

High posterior correlation Multi-model distribution
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MIMO channel
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System Diagram of MIMO system
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SDD: Separate detection and decoding
IDD : Iterative detection and decoding
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MIMO detection

• Maximal likelihood (ML) detection or Maximum a posteriori (MAP),
optimal but exponential complexity

• Low complexity sub-optimal detectors (ZF, MMSE, VBLAST),
performance gap can be 20 dB

• Tree search based (sphere decoding (SD), QRD-M)
– Excellent performance at high SNR
– SD has variable complexity depending channel condition
– Exponential complexity at low SNR
– Complexity increase quickly with large system

• Markov chain Monte Carlo (MCMC)
– Constant complexity, not increased much for large system
– Excellent performance at low SNR
– High SNR problem
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Low complexity detection

• Approximate optimal detectors

The searching is performed over a small subset (Important set) instead
of a large full set.
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MCMC MIMO detector

• MCMC detector  finds important sets using Markov chain
Monte Carlo
– Create Markov chain with state space: d and stationary

distribution P(d|Y)
– Run Markov chain using Gibbs sampler
– After Markov chain converge, the samples are generated

according to P(d|Y). Those samples with large P(d|Y) generated
with high probabilities

• The samples generated by Gibbs sampler are used to
compute the soft message for soft decoder
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MCMC MIMO detector (bit-wise)
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MCMC detector

• Calculate transition probability
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Simulation results (Low SNR)

• MCMC with LDPC performs best in performance and complexity
• Within 1.8 dB of capacity at 24 bits/channel use
• Turbo LSD is 25 times higher in running time
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Performance of turbo and LDPC coded TX8 64QAM systems, code length 18432
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High SNR problem

• At high SNR, MCMC takes long time to converge, leads
performance degradation, this is because of the
multimodal property of channel PDF at high SNR

P(y|d)

d
Low SNR

P(y|d)

d
High SNR

Trapped in
local states
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Solutions

• Run L independent parallel Gibbs samplers and each
Gibbs sampler run I iterations

• Generate good initial candidates using other low
complexity detector (warm start)
– MMSE/ZF

• Hybrid QRD-MCMC



2011/7/16
22

QRD-M
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• Combine QRD-M and MCMC
– A QRD-M with a small M is running first to generate initial

important sets
– The bit sequence with minimal path metric will be used to initialize

one of L parallel MCMC
– The important set produced by the QRD-M detector is

incorporated by the MCMC detector
– MCMC is running to generate refined important set
– The soft message is computed using refined important set

Hybrid QRD-MCMC
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Simulation Results

8x8 16QAM LDPC coded SDD and IDD systems, code length 2304
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Complexity

8x8 16QAM 4x4 64QAM
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Summary of results

• MCMC detector for MIMO channel is studied

• Low complexity for large system

• Excellent performance at low SNR region

• High SNR problem can be solved by combining QRD-M
with MCMC without increasing complexity
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ISI channel

• Multipath fading channel
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ISI channel

• In matrix form
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Detection for ISI channel

• MAP detection is still optimal
– Efficient implementation of MAP detection is Forward backward

algorithm (BCJR)
– Still exponential complexity with channel memory

• Low complexity algorithm
– MMSE
– Decision-feedback
– …
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Bit-wise MCMC detector

• Transition probability
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Bit-wise MCMC detector

• Computing the a posteriori LLR
– Accurate posteriori LLR involve computations over the whole

block (may be very cumbersome since N can be very large)
– Truncated window to approximate
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Severe ISI channel

• For channels with severe ISI,
bit-wise MCMC suffers from
slow convergence problem

• We found slow convergence
problem for ISI channel is
mainly caused by high
posterior correlation
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Severe ISI channel

• Our solution
– Grouping (blocking) the highly correlation variables in Gibbs

sampler

1st iteration:

2nd iteration:

3rd iteration:

4th iteration:

Shift grouping different adjacent symbols over iterations
to speed up the mixing rate of Gibbs sampler
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Transition probability

• Grouping multiple variables allow a large sample space
containing              values
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Transition probability

• Can be considered as received signals of a MIMO
channel with G transmit antenna and P+1 receive
antenna

• QRD-M is applied to find important states with
large APPs

• Gibbs sampler randomly jump to one state from     those
important states
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Simulation results

Performance comparison of MAP, MMSE, g-MCMC equalizer for a strong ISI channel

• A channel with strong ISI

• g-MCMC significantly outperforms MMSE equalizer (Tuchler-Singer-Koetter’02)

• b-MCMC does not work for such channel with strong ISI

]4[227.0]3[46.0]2[688.0]1[46.0][227.0][  nnnnnnh 



2011/7/16
38

Summary of results

• MCMC equalizer for ISI channel is studied

• Near optimal performance can be obtained

• Slow convergence is mainly caused by high posterior
correlation

• QRD-M algorithm is applied to reduce the complexity of
group-wise MCMC equalizer

• Parallel implementation is proposed
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Conclusions

• Efficient MCMC algorithms for MIMO and ISI channel are studied
– For MIMO, MCMC works well at low SNR region
– For ISI, MCMC works well for moderate ISI

• Solutions for slow convergence are proposed
– For MIMO, use QRD-M as good start point
– For ISI,

• Use group-wise Gibbs sampler to group high correlated variables
• Use QRD-M to reduce the complexity of group-wise Gibbs sampler

• Future work
– Study the sensitivity of proposed MIMO detector with more practical

channel model
– Study the time-varing ISI channel and adaptive grouping scheme for

group-wise MCMC
– Hardware implementation of MCMC
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Thank you !


