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Summary of Past work

« Efficient MCMC algorithms for communication
— Application to MIMO channel [Chen-Peng-Ashikhmin-Farhang]
— Application to noncoherent channel [Chen-Peng]

— Application to ISI channel and extend to underwater channel [Peng-Chen-
Farhang]

— Achieve near optimal performance with reduced complexity
— Solve the slow convergence problem

« MIMO-HARQ schemes and combining algorithm [Peng-Chen]
— Propose new retransmission scheme
— Propose new combining algorithm
— Increase the throughput significantly
— Applicable to Wimax and LTE
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Summary of Past work

« Nonbinary LDPC codes [Peng-Chen]

— Nonbinary LDPC coded MIMO system, achieve good performance with
reduced complexity

— Code design based on EXIT chart

— Hardware-friendly construction
* Low encoding complexity
» Parallel architecture
* Low error floor

* Intern at MERL
— Low complexity MIMO detection algorithm for MIMO-OFDMA
— Wimakx link-level simulation
— 3G LTE antenna selection
— 1 paper, 1 patent
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Summary of Past work

e Consultant at WiderNetworks
— Synchronization and signal detection for 3G LTE driver scanner

 Work at SpiralGen
— Vectorizing physical layer algorithm and map it to multiple-core processor

— Implement physical layer software components in software
communication architecture (SCA)
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Background and motivation
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y=Hd+n
MAP detection:

Vo

b, =max P(b, |y,H)
P(b, |y,H)=> p(Y|H,d)P(d)

MAP detector : Optimal performance but exponential complexity

!

Reduction in computational cost 1s essential for application to
future system.
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Our contribution

* Previous work on MCMC methods for signal processing
and communication [Doucet-Wang'035]

— Bit-counting: use MCMC to determine the frequency over which a
bit occurs.

— Many samples are needed.
— Requires a burning period to allow Markov chain to converge.
— Do not consider convergence problem

* Our proposed MCMC methods

— Do not use bit-counting

— No burning period is needed

— Fewer samples even for large systems
— Solve the slow-convergence problem

2011/7/16



Markov Chain Monte Carlo (MCMC)

« MCMC obtains the statistical inference by sampling from
a posterior distribution through Markov chain

« MCMC is suitable for addressing problems involving high-
dimensional summations or integrals

 Instead of evaluating all summation terms (exponential
complexity), average over the samples from the complex
distribution
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Gibbs sampler

« A MCMC method sampling from a multivariate distribution

|ldea: Sample from the conditional of each variable given the settings
of the other variables

Repeatedly:

1) pick 1 (either at random or in turn)

2) replace x; by a sample from the conditic i
distribution

pOx; | x, A x L x, A L x,)

Gibbs sampling is feasible if it is easy to s

from the conditional probabilities.

This creates a Markov Chain Example: 20 iterations
of Gibbs sampling on a

(1) (2) (3)
XX o> XA bivariate Guassian

2011/7/16



Why Gibbs sampling works

* Retains elements of the greedy approach

— weighing by conditional PDF makes likely to move towards locally
better solutions

 Allows for locally bad moves with a small probability, to
escape local maxima
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Limitations

 May have slow convergence problem
— High posterior correlation, hard to move in other directions

— Multi-modal distribution, proposing small changes causes the
move between modes to become rare

Trapped in
local

»

P(x) 1

v

X

High posterior correlation Multi-model distribution
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MIMO channel
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where
d e C" is a vector of transmit symbols
y € C" is a vector of received signal
H e C"”" is the channel gain matrix
n € C" is an additive noise vector

N,, N, 1s the number of tx and rx antennas
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System Diagram of MIMO system
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SDD: Separate detection and decoding
IDD : Iterative detection and decoding
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MIMO detection

« Maximal likelihood (ML) detection or Maximum a posteriori (MAP),
optimal but exponential complexity

» Low complexity sub-optimal detectors (ZF, MMSE, VBLAST),
performance gap can be 20 dB

« Tree search based (sphere decoding (SD), QRD-M)
— Excellent performance at high SNR
— SD has variable complexity depending channel condition
— Exponential complexity at low SNR
— Complexity increase quickly with large system

« Markov chain Monte Carlo (MCMC)
— Constant complexity, not increased much for large system
— Excellent performance at low SNR
— High SNR problem
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Low complexity detection

« Approximate optimal detectors

P, =+1y) _ b,
, =1In =In
P(b,=-1y) > P(b,=-1Lb_.|y)

maXP(b =+1,b_ |y) max P(b, =+Lb_, |y)

~ |In ~ In
max P(b, =-1,b_, |y) max P(b, =—-1,b_, |y)

where I , cb_,

The searching is performed over a small subset (Important set) instead
of a large full set.
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MCMC MIMO detector

« MCMC detector finds important sets using Markov chain
Monte Carlo
— Create Markov chain with state space: d and stationary
distribution P(d|Y)
— Run Markov chain using Gibbs sampler

— After Markov chain converge, the samples are generated
according to P(d|Y). Those samples with large P(d|Y) generated
with high probabilities

 The samples generated by Gibbs sampler are used to
compute the soft message for soft decoder
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MCMC MIMO detector (bit-wise)

S1. Generate initial b"”
S2. FOR n=1to L

draw b ~p(b, =b|b" "L b .y)
draw 5" ~p(b, =b | B bV ,L LB y)
M
draw b)), ,~p(b =b|b",L ,b) ,.¥)
Add b"™ to important set I
END FOR

S3. Calculate LLR

max P(b, =+1,b_, |y)

A, =1In ok
max P(b, =—Lb_, |y)
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MCMC detector

« Calculate transition probability

p(b,=b1b".L bbby . Y)

i+l °

o< p(y|by".L bY),b,=b,b "L by, )p(b, =b)

I i+l °

=p(y|d)p(b, =D)
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Simulation results (Low SNR)
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« MCMC with LDPC performs best in performance and complexity
« Within 1.8 dB of capacity at 24 bits/channel use

« Turbo LSD is 25 times higher in running time
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High SNR problem

« At high SNR, MCMC takes long time to converge, leads
performance degradation, this is because of the
multimodal property of channel PDF at high SNR

Trapped in
local states

P(y|d)? P(yld)t

/W

d: : d:
Low SNR High SNR
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Solutions

 Run L independent parallel Gibbs samplers and each
Gibbs sampler run [ iterations

« (Generate good initial candidates using other low
complexity detector (warm start)
— MMSE/ZF

Hybrid QRD-MCMC
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QRD-M

* QR decomposition

=Q"y=Rd+n'=
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Hybrid QRD-MCMC

e Combine QRD-M and MCMC

— A QRD-M with a small M is running first to generate initial
important sets

— The bit sequence with minimal path metric will be used to initialize
one of L parallel MCMC

— The important set produced by the QRD-M detector is
incorporated by the MCMC detector

— MCMC is running to generate refined important set
— The soft message is computed using refined important set
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Simulation Results
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Simulation Results
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Complexity

200000

180000 -
160000
140000 -
120000

80000 2 QRD-M

60000 = MCMC
40000

20000

8x8 16QAM 4x4 64QAM
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Summary of results

MCMC detector for MIMO channel is studied

Low complexity for large system

Excellent performance at low SNR region

High SNR problem can be solved by combining QRD-M
with MCMC without increasing complexity
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ISI channel

« Multipath fading channel

y(m) = Zhl (m)d(m—1)+n(m),

form=0,LL N-1+L

d(m)

2
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I1SI

channel

In matrix form

y=Hd+n
where

d e C" : transmitting vector

CN+L—1

y € : received vector

H e CY"™N. channel matrix

-1 .. .
n e CY"* dditive noise vector

N : Equalizer block length

L : Channel memory

29
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Detection for ISI channel

 MAP detection is still optimal

— Efficient implementation of MAP detection is Forward backward
algorithm (BCJR)

— Still exponential complexity with channel memory

* Low complexity algorithm
- MMSE
— Decision-feedback
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Bit-wise MICMC detector

« Transition probability

P(b, :a“_)k’y) o p(y |b*)P(b, = a)
=p(y|d*)P(b, = a)

N+L-1

=[] p(y, 15, )P0, =)

i-1 N+L-1 i+L
=T, 10) [T pO, 1 ] P, 14%.)Pb, = a)
Jj=0 Jj=i+L+1 Jj=i

i+L

=Cd | p(y, 1d%_,.)P(b, =a)
=i

b* =L LB a b L b,
d“ denote the symbol vector corresponding to b*

b, 1s mapped to d,
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Bit-wise MICMC detector

« Computing the a posteriori LLR

— Accurate posteriori LLR involve computations over the whole
block (may be very cumbersome since N can be very large)

— Truncated window to approximate

Z P(Yiiis |bi1:i2 )ﬁp(bz)

k0 —
bilziz el iy ! h

S p¥a b O] [ PB)

k.1 7

Ay =In ~Ay

[ .. the set which truncate sequences in I

hiy

with bits {b,,i, <k <i,}
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Severe ISI channel

For channels with severe IS,
bit-wise MCMC suffers from
slow convergence problem

We found slow convergence
problem for IS| channel is
mainly caused by high

posterior correlation

—C1}
—-C2

0 0.2

04 06
Normalized Frequency

h[n]=0.2275[n]+0.465[n —1]+ 0.6885[n — 2]
+0.465[n—3]+0.2275[n— 4]

h,[n] = (2+04)S[n]+ (15+18i)S[n—1]+ S[n—2]
+(12=131)8[n— 3]+ (08 +16)5[n — 4]
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Severe ISI channel

e Qur solution

— Grouping (blocking) the highly correlation variables in Gibbs
sampler

_____________________________________________________________________________________
_____________________________________________________________________________________
__________________________________________________________________________________

_____________________________________________________________________________________

Shift grouping different adjacent symbols over iterations
to speed up the mixing rate of Gibbs sampler
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Transition probability

« Grouping multiple variables allow a large sample space
containing » = 2":¢ values

Yo h, 0 L 0 L 0 || d, n,
M h hy, 0 L 0 M M
Vi1 M O O M|l d_ Ny
¥, O h | h 0 L 0 d, n,
M||=| M O O M M|+ | M
Vivp O L 10 h hy Lk |||dig Mip
Yieps1 0 L 0 O Ml d:6. Mipi1
M 0 L 0O h h M M
| Ve O L L 0 A JLdyy ] [Pyera ]

P=G+L+1
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Transition probability

. i—L:i—1 i+Gi+P
%QHP =VYiiip— Hi:i+P di—L:i—l —H, di+G:i+P +n

Ii+P
. i+G:i+P
_ Hi:i+P di:i+G—1 + ni:i+P

Ii+P

« Can be considered as received signals of a MIMO
channel with G transmit antenna and P+1 receive
antenna

« QRD-M is applied to find 7, < ¥ important states with
large APPs

* Gibbs sampler randomly jump to one state from those
Important states
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Simulation results

* A channel with strong ISI
h[n]=0.2276[n]+0.460[n—1]+0.6886[n—2]+0.460[n —3]+0.2276[n — 4]

,Channel 1, secerate equalization and decoding Channel 7, 5th iteration
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Performance comparison of MAP, MMSE, g-MCMC equalizer for a strong ISI channel
* ¢-MCMC significantly outperforms MMSE equalizer (Tuchler-Singer-Koetter’02)

*  b-MCMC does not work for such channel with strong ISI
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Summary of results

MCMC equalizer for ISI channel is studied
* Near optimal performance can be obtained

« Slow convergence is mainly caused by high posterior
correlation

 QRD-M algorithm is applied to reduce the complexity of
group-wise MCMC equalizer

« Parallel implementation is proposed
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Conclusions

« Efficient MCMC algorithms for MIMO and ISI channel are studied
— For MIMO, MCMC works well at low SNR region
— For ISI, MCMC works well for moderate ISl

« Solutions for slow convergence are proposed
— For MIMO, use QRD-M as good start point

— For IS,
» Use group-wise Gibbs sampler to group high correlated variables
+ Use QRD-M to reduce the complexity of group-wise Gibbs sampler

 Future work

— Study the sensitivity of proposed MIMO detector with more practical
channel model

— Study the time-varing I1SI channel and adaptive grouping scheme for
group-wise MCMC

— Hardware implementation of MCMC
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