
Markov Chain Monte Carlo: Applications to MIMO 
detection and channel equalization 

Rong-Rong Chen, Ronghui Peng, and Behrouz Farhang-Boroujeny 
Department of Electrical and Computer Eng. 

University of Utah 
Salt Lake City, UT 84093, USA 

Email: {rchen, peng, farhang}@ece.utah.edu 

Abstract- In this paper, we present an overview of recent work 
on the applications of Markov Chain Monte Carlo (MCMC) 
techniques to both multiple-input and multiple-output (MIMO) 
detection and channel equalization. In the setting of MIMO 
detection, we have shown that, even for very large antenna 
systems with high spectral efficiencies of 24 bits/channel use (8 
transmit and 8 receive antennas with 64 QAM modulation), the 
MCMC MIMO detector can bring us within 2 dB of the channel 
capacity with a greatly reduced complexity compared to several 
versions of sphere decoding based detectors. For frequency selec­
tive channels, we demonstrate that MCMC-based equalizers yield 
excellent performance even for severe inter-symbol-interference 
(lSI) channels. The MCMC equalizer achieves significant perfor­
mance gain over minimum mean square error (MMSE) linear 
equalizer and performs closely to the optimal maximum a 
posteriori probability (MAP) equalizer. We will also discuss new 
approaches that effectively alleviate the well-known high SNR 
problems in existing MCMC detectors. 

I. INTRODUCTION 

In this paper, we review recent results on the application of 
Markov Chain Monte Carlo (MCMC) techniques to multiple­
input multiple-output (MIMO) detection and channel equaliza­
tion. The MCMC simulation is a mathematical tool that can be 
used to draw samples from an arbitrary and possibly unknown 
distribution. The MCMC detectors follow a statistical search 
procedure called the Gibbs sampler (GS) to randomly generate 
a small sample set containing the most likely transmitted 
signal vectors. A distinguished feature of the MCMC detectors 
considered here is that they can achieve excellent performance 
with a very small sample set. This makes the low-complexity 
MCMC detectors highly attractive when the complexity of 
the optimal maximum a posteriori probability (MAP) detector 
grows exponentially with the number of antennas, constella­
tion size, and channel memory. 

We first discuss the MCMC MIMO detectors studied in [1]­
[7]. The MCMC detectors demonstrate superior performance 
than linear detectors such as minimum mean square error 
(MMSE) and zero-forcing (ZF) [8] detectors, and the more 
sophisticated list sphere decoding (LSD) based detectors and 
its variants [9]-[11]. The linear detectors achieve low com­
putational complexity, however, at the expense of significant 
performance loss. The widely used LSD detectors, while 
perform well, have a complexity that grows exponentially as 
the number of transmit antenna increases [12]. The MCMC 
detectors are shown to achieve near capacity performance at 

high spectral efficiencies with much lower complexity than 
the LSD based detectors. As opposed to LSD detectors that 
perform well at high signal-to-noise ratio (SNR), the MCMC 
detector suffers from the high SNR problem. Possible remedies 
for addressing the high SNR problem of MCMC detectors can 
be found in recent work [5], [7]. 

We will also review recent work on channel equalization 
using MCMC techniques [13], [14]. For frequency selective 
channels with inter-symbol-interference (lSI), [14] shows that, 
as opposed to the bit-wise GS or symbol-wise GS that gen­
erates one bit, or one symbol at a time, a more complex 
version of the GS that examines a group of symbols at a time 
is necessary to achieve good performance for channels with 
significant lSI. Such MCMC detectors demonstrate superior 
performance than the MMSE-based equalizer of [15]. 

II. MIMO DETECTION 

We consider a MIMO channel with t transmit and r receive 
antennas. The channel model is given by : 

y = I"fHd+n, (1) 

where d = (d1,···, dt ) T and dj is the complex symbol 
transmitted from the j-th antenna. The notation OT denotes 
the transpose operator. y = (Yl,"" Yr ) T is the received 
signal vector; H is the r by t channel gain matrix with 
i.i.d. complex Gaussian CN(O, 1) distributed entries; H is also 
assumed to be independent over time; the channel noise vector 
n has i.i.d. CN(O,1) distributed entries; p denotes the SNR 
per receive antenna. Throughout this paper, we use lowercase 
bold letters to represent vectors and uppercase bold letters to 
represent matrices. 
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Information 
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Fig. 1. A block diagram of the MIMO system. 
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Fig. 1 shows a block diagram of the MIMO system. At 
the transmitter side, the channel encoder encodes a sequence 
of information bits into a sequence of coded bits, which 
is then mapped to a sequence of complex symbols through 
Gray mapping. Here, we assume that the size of the complex 
constellation is M = 2M c so that every Me bits is mapped to 
a complex symbol. The sequence of complex symbols is then 
divided into blocks of t symbols and sent through t transmit 
antennas over the MIMO fading channel. At the receiver end, 
for each set of received signal samples from the r receive 
antennas, the MIMO detector computes the log-likelihood­
ratios (LLRs) of the coded bits. The "extrinsic" part of these 
LLRs is passed to the channel decoder for decoding. At the 
next iteration, the LLRs produced by the channel decoder are 
fed back to the MIMO detector to produce updated LLRs. 
In this manner, joint MIMO detection and channel decoding 
proceeds iteratively through soft information exchange. After 
a pre-determined number of iterations, decisions are made at 
the output of the channel decoder to generate the decoded bit 
sequence. 

A. Capacity-approaching MCMC MIMO detector 

Assume that the bit sequence corresponding to d is denoted 
by b = (bo,bl,'" ,bK_l)T, where K = tMe. Let'x = 
(>'0, ... , >'K -1) T, where >'i is the LLR of the i-th bit provided 
by the channel decoder. In a MAP detector, given y and ,x, 
the LLR value of a particular bit bk is given by 

"Ik = 
In P(bk = 0ly, ,x) 

P(bk = 1Iy,,X) 
L P(bk = 0, bkly,,X) 

In bk 
L P(bk = 1, bkly,,X) 

(2) 

bk 

where bk = (bo,···bk-l,bk+l,··· ,bK-d; bj E {0,1}. 
Computation of each summation in (2) is over all combi­

nations of bk which is equal to 2K -1. Hence, the complexity 
of the optimal MAP detector grows exponentially in K. The 
MCMC detector reduces the detection complexity by utilizing 
Gibbs samplers to generate a small sample set B containing 
most likely bit sequences. The output LLRs are computed from 
samples in B. Hence, the computational complexity is reduced 
greatly compared to the MAP detector. 

The main steps of the bit-wise MCMC detector (b-MCMC) 
[6] are summarized in Algorithm 1. We run D Gibbs sampler 
in parallel. Each Gibbs sampler performs I iterations to 
generate I bit vectors {b(n), n = 1"" I}. Hence, a total 
of D . I bit vectors will be generated and they constitute 
(excluding repetitious samples) the sample set B. 

To compute the output LLR for bit k, we define an expanded 
set Bk which includes not only all bit vectors in B, but also 
new bit vectors that are obtained by flipping the k-th bit of 
the vectors in B. We then let B~l and B~l denote the set of 
bit vectors in Bk whose k-th bit is +1 and -1, respectively. 
Considering the larger set Bk instead of B assures that the 
number of elements in the subset Bi 1 and B~ 1 are the same. 

Algorithm 1: b-MCMC MIMO detector 
Input : Prior LLR for transmitted symbols (from the 

decoder) 
Output: Extrinsic LLR for channel decoder 

1 Use bit-wise Gibbs sampler to generate samples 
II D parallel Gibbs sampler 

2 repeat 
3 Generate initial sequence b(O) 

II I iterations 
4 for n +- 1 to I do 
5 Generate b~n) from the distribution 
6 p(b~n) = 

blb~n-l), b~n-l), . .. , b};~:), y, >'0) 

7 Generate b~n) from the distribution 
8 

p(b(n) _ blb(n) b(n-l) ... b(n-l) >.) 
1 - 0' 2 , , K-l ,y, 1 

9 

10 Generate b};~l from the distribution 

11 P(b};~l = 
blb(n) ben) ben) \ ) o , 1 , ... , K_2,y,AK-l 

12 Save ben) into sample set B 

13 until D times ; 
14 

15 Compute the LLR 
16 for k +- ° to K - 1 do 
17 l Compute extrinsic LLR for bk using (3) or 

(4). 

18 

This is necessary for successful operation of the various Max­
Log and Log-MAP detectors studied in this paper. 

For Max-Log b-MCMC, the output LLR for bit k is 
computed as 

where d(b) denotes the symbol vector corresponding to the 
bit vector b. 

Alternatively, [6] shows that replacing the Max-Log al­
gorithm by the more accurate Log-MAP algorithm with ta­
ble look-up (Log-MAP-tb) yields superior performance while 
requiring less number of samples. For the Log-MAP-tb b-
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MCMC, the output LLR is computed using 

LLRk ~ln L exp { -Ily - IeHd(b) 112 + ~ATb} 
k V t 2 

{b: bE B+ 1 } 

-In L exp { -lly- JfHd(b) 112 + ~ATb}. 
{b: bE B~l} 

(4) 

To further reduce the complexity, we approximate (4) using 
the Jacobian logarithm [16] 

In(e'h + e02 ) = max(81, 82 ) + In(1 + e-I02-011) 
(5) 

= max(81,82 ) + ic(181 - 82 1), 

where the correction function ic(181 - 82 1) is approximated 
using a one-dimensional pre-computed table. Our simulation 
results show that it suffices to use a very small table which 
stores only ten values with 181 - 82 1 equally spaced between 
o and 5. We refer to the b-MCMC detector that utilizes (4) 
based on table look-up (5) as the Log-MAP-tb b-MCMC. 

1~~r===========================~~~ 
:::: - ~ - LDPC Log-MAP-tb b-MCMC 10x10 G=1 
: : :: - -E3 - LDPC Max-Log b-MCMC 20x20 G=1.1 
.... -+- Turbo Log-Map-tb b-MCMC 10x10 G=0.7 ... 
.... ----+- Turbo Max-Log b-MCMC 20x20 G=1.4 . 
"" ~ Turbo Max-Log LSD L=1024 G=4.1 
: : :: ---+- Turbo Max-Log SISO-LSD L=1024 G=27 
:::: -e- Turbo Log-MAP m-SISO-LSD L=100 G=2 
........ : ........ : .... \ .......... ; .... ~: ......... : ........ . 

~ 10-
2 :::::<TT:~ T't::::: 1.1.::::. :::::.!!! .................. :, .... \ .. 

........ .- ......... :., .... y ......... , ....... : ......... : ....... . 

10-3 ........... .:.1. ............................. . 

:::::CapadiY. 1 ::\::: :::::::::". 

...... : .... ,. \' 
:::/:::!i!l:l~ .. :.~::\,I;:::.:: . :.:. 

10~L-L-~----~--~----~--~----~--~ 
6 7 8 11 12 13 

Fig. 2. Performance of turbo and LDPe coded TX8 64QAM systems. 

Fig. 2 shows performance curves of b-MCMC detectors 
for an eight transmit and eight receive antenna system with 
64QAM modulation. We compare the MCMC detectors with 
several versions of the LSD based detectors including the 
Max-Log LSD [9] (L = 1024), the Max-Log soft-in soft­
out LSD (SISO-LSD) [10] (L = 1024), and the modified 
versions of these two detectors, denoted by Log-MAP-tb LSD 
(L = 100) and Log-MAP-tb SISO-LSD (L = 100), obtained 
by replacing the Max-Log by Log-MAP-tb. Here L denotes the 
list size. We use G to denote the normalized simulation time 
of each system against the LDPC coded system that employs 
the 1Ox1O Log-MAP-tb b-MCMC detector with D = I = 10. 
The LDPC code used here is optimized for the 1Ox1O Log­
MAP-tb b-MCMC detector using the EXIT chart method [17]. 
Please refer to [6] for the details of the code parameters and 
discussions on code design. Fig. 2 shows that for both turbo 

coded and LDPC coded systems, the same 1OxlO Log-MAP-tb 
b-MCMC detector gives the best performance with the lowest 
complexity. The LDPC coded system using 1Ox1O Log-MAP­
tb b-MCMC achieves within 1.8 dB of the channel capacity 
(6.4 dB), which reduces the previously known capacity gap (4 
dB [1] ) by more than 50%. Its simulation time is G = 0.7 f"V 1 
for the turbo coded system and the LDPC coded system, 
respectively. In comparison, simulation time of LSD based 
detectors are G = 4.1 f"V 27 for the turbo coded system. 
Since the simulation time of LSD based detectors increases 
even further at lower SNR, it becomes prohibitive to find good 
LDPC codes and evaluate LDPC coded performance for these 
detectors. This result clearly demonstrate the MCMC detector 
as the detector of choice for approaching channel capacity in 
both performance and complexity. 

B. MCMC MIMO detectors for high SNR 

It is well-known [1], [5], [18] that MCMC methods become 
less effective as the operating SNR increases. This is because 
at higher SNRs, the Markov chain associated with the as 
is likely to become reducible so that it tends to get stuck in 
certain states and fail to reach the states corresponding to small 

distances Ily -AHd(b)112. One approach to alleviate this 
problem is to assume a hig~er noise variance than the actual 
noise variance when running the as [1]. This increases the 
chances that the as converge to the optimal solution. In [5], 
it is shown that detection performance can be further improved 
by initializing one of the ass using the MMSE or ZF solution. 
Recently, [7] proposes a constrained MCMC detector for high 
SNR scenarios. The main idea is as follows: First, the as is 
initialized from either a ZF solution b~, or a ML solution 
b~L. The ML solution can be found by running a hard sphere 
decoder [9]. Assume that the as is initialized using b~L. Now 
consider an arbitrary bit k. When there is no prior from the 
channel decoder, the exact Max-Log algorithm for computing 
the LLR of bit k is given by 

LLRk = max {-Ily - IeHd(b)112} 
{b: bk=1} V t 

- max {-Ily - IeHd(b)112}, 
{b: bk=-1} V t 

(6) 

If b~L k = 1, then the first maximum in (6) is achieved by 

b~L. We' refer to the vector that attains the second maximum 
in (6) as the N-ML solution. The N-ML solution needs to be 
found in order to compute the exact LLRk. In [7], it is shown 
that we can get good approximations of the N-ML solution 
by running constrained MCMC. As shown in Algorithm 2, 
for each bit k, we can run a as starting from an initial vector 
that is modified from b~L. Then we apply the as to update 
one bit at a time while keeping the value of bit k constrained 
(let bk = -1 if b~L k = 1). At high SNR, it is shown in [7] 
that a few iterations are sufficient for the as to get close to 
the N-ML solution. 
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Algorithm 2: ML-C-MCMC detector 
Input : Prior LLR for transmitted symbols (from the 

decoder) 
Output: Bit sequences used for computing extrinsic 

LLR 

I Use bit-wise Gibbs sampler to generate sample sets 

2 Generate initial ML vector b~L using hard output 
sphere decoding, save into important set B 

3 for k +-- 0 to K - 1 do 
4 d = lk/MbJ 
5 Flip the k-th bit and change the values of 

remaining bits belonging to the d-th symbol 
so that the resulting symbol is the closest to 
the d-th symbol in b~L. Denote the new 
vector by b(O) 
II I iterations 

6 for n +-- 1 to I do 
7 Generate b~n) from the distribution 
8 P(bo = blb~n-I), b~n-l), . .. , b~~:), y) 
9 Generate b~n) from the distribution 

10 P(b1 = blb~n),b~n-l), ... ,b~~:),y) 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Fix the value of the k-th bit: bkn ) = bkn - 1) 

Generate bk11 from the distribution 
P(bk+l = 

blb(n) ... b(n) b(n-l) ... b(n-l) ) 
0' , k ' k+2' , K-l ,y 

Generate b~~1 from the distribution 
P(bK -1 = blb~n), b~n), . .. , b~~2' y) 

Save b(n) into the important set B 

20 Compute the LLR 
21 I for k +-- 0 to K - 1 do 
22 L Compute extrinsic LLR for bk using (3). 

23 

In Fig. 3 we compare performance of ZF initialized MCMC 
(ZF-MCMC) [5], the ZF initialized constrained MCMC (ZF­
C-MCMC), the ML initialized constrained MCMC (ML-C­
MCMC) [7], LSD, and the exact Max-Log detector. It is as­
sumed that MIMO detection is performed only once, followed 
by channel decoding. The ZF-MCMC runs 11 GSs with 3 
iterations each. For both ZF-C-MCMC and ML-C-MCMC, 16 
constrained GSs are ran (each corresponding to a fixed bit k) 
with 2 iterations each. It is clear that the ZF-C-MCMC is at 
least one order of magnitude better than the non-constrained 
ZF-MCMC [5]. The ML-C-MCMC improves performance of 
ZF-C-MCMC at the cost of additional complexity needed to 
find the ML solution. We also compare the performance of 

-+-ML-G-MCMC 
-B-LSD 
-~-Exact,.Max-Log 

10'" -e-ZF-MCMC 
-+-ZF-G-MCMC 
-+-ML-G-MCMC 
-€l-LSD 
~Exact,.Max-Log 

10~~5 ========='----:':20:----------,2=5-----~30 
SNR (dB) 

Fig. 3. Performance comparisons of ZF-MCMC, ZF-C-MCMC 
ML-C-MCMC, LSD, and exact Max-Log detector. Assume a two 
transmit, two receive MIMO channel with 64 QAM or 256 QAM 
constellations. 

the MCMC detectors with the LSD detector of [9], using the 
same list size as in [9]. The LSD detector performs comparable 
to the ML-C-MCMC when the QAM alphabet is large. For 
lower order QAM modulations, the LSD still outperforms 
the ML-C-MCMC detector at the expense of much higher 
implementation complexity. Finally, the performance curve 
of the exact Max-log detector is presented as a performance 
benchmark. The ML and N-ML solutions for each bit bk can 
be found by running a sphere decoder presented in [9] or [10]. 

III. CHANNEL EQUALIZATION 

We consider a single antenna lSI channel given by 
L 

Yn = L hlXn-l + Zn, n = 0,1, ... , N + L - 1, (7) 
1=0 

where L is the channel memory, hi denotes the channel gain 
of the l-th tap, Xo,'" , X N -I are the transmitted symbols, 
Yn is the received signal at time n. The channel noise {zn} 
is i.i.d, complex Gaussian with zero mean and variance of 
(72 = No/2 per dimension. For notational convenience, in (7), 
we let Xn = 0 for - L :::; n :::; -1 and N :::; n :::; N + L - 1. 

Assume that the channel gain { hi } is 
known perfectly to the receiver. Let y 
{YO,YI,'" ,YN+L-.},X {xo,X.,··· ,XN+L-.} and 
Xj-L:j = {Xj-L, Xj-L+., ... , Xj}. Since the channel has a 
finite memory of L, the conditional pdf of the y given x can 
be written as 

N+L-I 

p(ylx) = II p(YjIXj-L:j) 
j=O 

N+L-l 1 L 
II exp ( - 2(721Yj - L h1Xj_112) 
j=O 1=0 

(8) 

In [14], various versions of MCMC based channel equaliz­
ers are proposed. In particular, a group-based MCMC equal­
izer, denoted by g-MCMC, is shown to greatly improve the 
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convergence rate of the GS. It outperforms bit-wise MCMC 
equalizer under channels with significant lSI. 

The main steps of the g-MCMC equalizer is summarized 
in Algorithm 3. The key idea is to group every G symbols 
xi:HG-I := {Xi,"', XHG-I} together and update these 
symbols simultaneously inside the Gibbs sampler. We first 
identify a sample set S = {u 1, ... , u r }, where each u l is a 
symbol vector of length G. For small values of G :::; 2, we let 
S contain all possible choices of xi:HG-I and the size of Sis 
r = 2M bG . For larger values of G ~ 3, S is found by applying 
the QRD-M algorithm [19] with the M parameter equals r. 
Each time a random sample vector Xi:HG-I is generated from 
the sample set S following a probability mass function (PMF) 
{ "iI, l = 1, . .. , r} over S. We compute {"il} according to 

HL+G-I 

"il = C II p(YjIX~_L:j)P(Xi:HG-I = u l ), (9) 
j=i 

where C is a scaling constant such that 2:r=I "il = 1, and 
xl = (xo(n) ••• X(n)I u l x(n-GI) ••• XN(n-II»). , t-" t+' -

In Algorithm 3, Gmax is the maximal number of symbols 
allowed for group updating, a%b denotes the remainder of a 
divided by b, and La J denotes the maximal integer less than 
a. Note that line 3 of Algorithm 3 allows us to group different 
adjacent symbols over iterations. As shown in simulation 
results, this is necessary to speed up the mixing rate of GS. 

Assume that the GS produces a sample set B. Each element 
in B is a bit sequence of length MbN. Assume that bit k 
is mapped to symbol Xi, then the received signals that are 
affected by bk are Yi:HL. Since Yi:HL depends only on bits 
{bl, il = Mb(i - L) :::; l :::; Mb(i + L) = i2}, we find 
that when computing the output LLR for bk, it is sufficient 
to truncate each sequence in B to take into account only 
bits {bl, il :::; l :::; i2}. We denote the set that contains the 
truncated sequences by Bh :i2 . For each 0 :::; k :::; MbN - 1, 
we construct a larger set Bt :i2 which includes all sequences 
in Bit :i2' together with new sequences that are obtained by 
flipping the k-th bit of each sequence in Bit :i2' Repetitious 
sequences are removed from Bft:i2' Furthermore, we let B7;tI 

and B~';;21 denotes sequences in Bti2 whose k-th bit equals 
1 and -1, respectively. The LLR for bit bk is then computed 
as 

(10) 

In Fig. 4 we compare performance of the proposed MCMC 
equalizers with the optimal MAP equalizer and the MMSE 
equalizer of [15]. The system diagram is similar to the one 
shown in Fig. 1 with the MIMO channel replaced by an lSI 
channel and the MIMO detector replaced by an equalizer. We 
consider a channel with significant lSI (taken from [20]) whose 

Algorithm 3: Group-wise Gibbs sampler 
Input : Prior LLR for transmitted symbols (from 

decoder) 
Output: Bit sequences used for computing extrinsic 

LLR 

1 Generate initial sequence x(O); 

2 for n f- 1 to I do 
3 Go f- n%Gmax , J f- L(N - Go)/GmaxJ 
4 Generate x~~bo -1 from the distribution 

P( I (n-I) (n-I») 
5 XO:Go-I XGo , ••• ,XN_I 

6 Generate x~2:Go+Gmax-I from the distribution 
7 

8 

9 

10 

P( I (n) (n) (n-I) (n-I») 
XGo:Go+Gmax-I Xo , ... ,XGo-I,XGo+Gmax "" ,XN_I 

G (n) ti th d' 'b . enerate XG +JG :N-I rom e IStn utlOn 
o max (n) (n) 

P(XGo+JGmax:N-Ilxo , ••• 'XGo+J·Gmax-I) 

11 SubFunction: Generate xi:HG-I from the 
distribution P 

12 if G < 3 then 
13 

14 

15 

16 

17 

18 

19 

foreach combination O!Xi:HG-I do 
L Compute the PMF using (9) 

Select one combination randomly according 
to PMF bI,' .. , "ir}. 

else l Perform QRD-M over to select r 
combinations with maximal probabilities 
Generate one sample from the selected r 
combinations randomly according to PMF (9). 

20 Compute the LLR 
21 for k f- 0 to MbN - 1 do 
22 l Construct Bk,+1 and Bk,-:I. 
23 Compute ex~i~sic LLltf~r bk using (10) 

24 

channel impulse response is given by 

hIln] = 0.2278[n] + 0.468[n -1] + 0.6888[n - 2] 
+0.468[n - 3] + 0.2278[n - 4] 

We assume that the receiver knows the channel response 
perfectly. The average energy per bit to noise ratio is defined 
as: 

Eb.& Es _ E(IYnI 2 ) _ 2:f='~/ Ihzl2 
No NoRMe - NoRMe - 20'2 RMe 

We use a rate 1/2 convolutional code with generator poly­
nomial (1 + D2, 1 + D + D2). The code length of 4098. 
The bit sequence is mapped to a sequence of 8-PSK symbols 
using gray mapping. The channel interleaver is obtained by 
an S-random interleaver [21] with S = 0.5yfO.5Ke, where 
Ke is the number of coded bits. In Fig. 4, we plot the 
performance curves for the case of separate equalization and 
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Fig. 4. Performance comparisons of MAP, MMSE, and MCMC 
equalizers over a channel with significant lSI. 

decoding, where equalization is performed only once, followed 

by channel decoding, and the case of five iterations of joint 

equalization and decoding. The g-MCMC equalizer uses 10 
parallel Markov chain and each chain runs 20 iterations. 

The maximal group updating symbols of the g-MCMC is 4, 

QRD-M is used to reduce the complexity and r = 8. Fig. 

4 shows that the proposed g-MCMC equalizer significantly 

outperforms the MMSE equalizer. For separate equalization 

and decoding, the MMSE equalizer has a huge gap (more 

than 20 dB) from the MAP detector, while the g-MCMC is 

less than 4 dB worse. After 5 iterations, the g-MCMC is only 

1.7 dB away from the MAP equalizer and still performs 2 dB 

better than the MMSE equalizer at BER 10-4 • The g4MCMC­

FG detector shown in Fig. 4 assumes fixed grouping, i.e., 

(Go is always set to be zero in Algorithm 3). It is clear that 

g4MCMC-FG performs much worse than the g4MCMC that 

groups different symbols over iterations. The performance gap 

between g4MCMC-FG and g4MCMC is significant for the 

case of separate equalization and decoding. 

IV. CONCLUSION 

In this paper, we summarize our recent results on soft-in 

soft-out MCMC detectors for MIMO channels and frequency 

selective channels. It is shown that in both cases, MCMC 

techniques are highly effective in achieving good performance 

with an acceptable (relatively low) receiver complexity. 

It will be interesting to further explore MCMC techniques 

for continuously time-varying channels with imperfect channel 

state information. Theoretical analysis of the convergence rate 

of MCMC detectors remains to be a challenging research 

direction. 
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