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Abstract—Self-configuration in wireless sensor networks is ~ Emerging applications for wireless sensor networks will
a general class of estimation problems that we study via the depend on automatic and accurate location of thousands of

Cramér-Rao bound (CRB). Specifically, we consider Sensor gonqqrs |n environmental sensing applications such as water
location estimation when sensors measure received signal strength

(RSS) or time-of-arrival (TOA) between themselves and neigh- quality monitoring, precision agriculture, and indoor air quality
boring sensors. A small fraction of sensors in the network have monitoring, “sensing data without knowing the sensor location
a known location, whereas the remaining locations must be is meaningless”[6]. In addition, by helping reduce configuration
estimated. We derive CRBs and maximum-likelihood estimators  raquirements and device cost, relative location estimation may

(MLESs) under Gaussian and log-normal models for the TOA and | licati h . .
RSS measurements, respectively. An extensive TOA and RSSenabe applications such as inventory management [7], intru-

measurement campaign in an indoor office area illustrates MLE Sion detection [8], traffic monitoring, and locating emergency
performance. Finally, relative location estimation algorithms are workers in buildings.

implemented in a wireless sensor network testbed and deployedin - Tg design a relative location system that meets the needs
indoor and outdoor environments. The measurements and testbed of these applications, several capabilities are necessary. The

experiments demonstrate 1-m RMS location errors using TOA, . .
and 1- to 2-m RMS location errors using RSS. system requires a network of devices capable of peer-to-peer

Index Terms—Cramér—Rao bound, localization, radio channel range measurement, ad-hoc networking protocol, and a
measurement, self-configuration, sensor positionllocation estima- distributed or Centrahzeq Ioca“oh estlmatlon algorithm. For'
tion, signal strength, time-of-arrival. range measurement, using received signal strength (RSS) is
attractive from the point of view of device complexity and cost
but is traditionally seen as a coarse measure of range. Time-of-
arrival (TOA) range measurement can be implemented using

E CONSIDER location estimation in networks in whichnquiry-response protocols [7], [9]. In this paper, we will show

a small proportion of devices, called reference devicethat both RSS and TOA measurements can lead to accurate
havea priori information about their coordinates. All devices|ocation estimates in dense sensor networks.
regardless of their absolute coordinate knowledge, estimate th&@he recent literature has reflected interest in location esti-
range between themselves and their neighboring devices. Suedtion algorithms for wireless sensor networks [8], [10]-[16].
location estimation is called “relative location” because thBistributed location algorithms offer the promise of solving
range estimates collected are predominantly between pairgmiltiparameter optimization problems even with constrained
devices of which neither has absolute coordinate knowledgesources at each sensor [10]. Devices can begin with local
These devices withouwat priori information we call blindfolded coordinate systems [11] and then successively refine their
devices. In cellular location estimation [1]-{3] and localpcation estimates [12], [13]. Based on the shortest path from
positioning systems (LPS) [4], [5], location estimates are magedevice to distant reference devices, ranges can be estimated
using only ranges between a blindfolded device and referengey then used to triangulate [14]. Distributed algorithms must
devices. Relative location estimation requires simultaneogg carefully implemented to ensure convergence and to avoid
estimation of multiple device coordinates. Greater locatiogror accumulation,” in which errors propagate serially in the
estimation accuracy can be achieved as devices are addgglyork. Centralized algorithms can be implemented when the
into the network, even when new devices havean@riori  gnjication permits deployment of a central processor to per-
coordinate information and range to just a few neighbors. o |ocation estimation. In [15], device locations are resolved

by convex optimization. Both [8] and [16] provide maximum
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determination if the accuracies necessary for particular appli¢arms in (1) that depend dh = .. The off-diagonal elements

tions are possible. can be further reduced: Whén# [, there is at most one sum-
We begin in Section Il by considering CRBs for networknand in (1) that is a function of bothand!; thus

self-calibration estimators. Next, we state the relative location 92

estimation problem and derive CRBs and MLESs in Section Ill. - 2 E {Wlk,j] k=1

In Section 1V, measurements of TOA and RSS are used to il- fri= seH (k) * (3)

lustrate estimator performance. Finally, real-time operation of 1 ()E 9? I k£l
relative location is demonstrated in Section V. Photos of the ex- H(k) 00,00, kotlo
periments are included in an extended electronic version of tWﬁereIH(k)(l) is an indicator function: 1 if € H(k) or 0

paper in [19]. otherwise.

Il. NETWORK ESTIMATION BOUNDS A. Conditions for a Decreasing CRB

In network self-calibration problems, parameters of all de- Intuitively, as more devices are used for location estimation,
vices in a network must be determined. Information comes bdtie accuracy increases for all of the devices in the network. For
from measurements made between pairs of devices and a subsetdevice network, there are(n) parameters bu®(n?) vari-
of devices that knova priori their parameters. A network self-ables{ X; ;} used for their estimation. The analysis of this sec-
calibration estimator estimates the unknown device parametdian gives sufficient conditions to ensure the CRB decreases as
For example, distributed clock synchronization in a networdtevices are added to the network. Consider a netwatkotihid-
could be achieved by devices observing pair-wise timing offelded devices aneh reference devices. Now, consider adding
sets when just a small number of devices are synchronous. one additional blindfolded device. For theand(n + 1) blind-

Specifically, consider a vector of device parametefelded device cases, I® and G be the FIMs defined in (2),

Y = [71, .-, Yntm]. Each device has one parameter. Devicesspectively.

1---n are blindfolded devices, and devicest+ 1---n + m Theorem 1:Let [G™'],; be the upper lefta x n block

are reference devices. The unknown parameter vectorofs G='. If for the (n + 1) blindfolded device case 1)

0 = [0, ..., 0,], wheref; = ~; fori = 1-..n. Note that (9/90,+1)lk n+1 = £(8/30k)lk n+1, VE = 1---n and 2)
{7, ¢ = n+1---n+ m} are known. Devices andj make devicen + 1 makes pair-wise observations between itself and
pair-wise observations(; ; with density fx|,(X;, j|vi, 7;). atleastone blindfolded device and at least two devices, in total;
We allow for the case when devices make incomplete othen two properties hold: B~ — [G~1],; > 0 in the positive
servations since two devices may be out of range or hasemi-definite sense and 2)Rr! > tr[G=1],;.

limited link capacity. LetH (i) = {j: devicej makes pair-wise =~ Theorem 1 is proven in Appendix B. The Gaussian and log-
observations with device}. By convention, a device cannotnormal distributions in Section Il meet condition 1). Property
make a pair-wise observation with itself, so that H(:). By 1)implies that the additional unknown parameter introduced by
symmetry, ifj € H(7), theni € H(j). the (n + 1)st blindfolded device does not impair the estimation

We assume by reciprocity thaf; ; = X ;; thus, it is suf- of the originaln unknown parameters. Furthermore, property 2)
ficient to consider only the lower triangle of the observatiommplies that the sum of the CRB variance bounds forithen-
matrix X = ((X;, ;)):.; when formulating the joint likelihood known parameters strictly decreases. Thus, when a blindfolded
function. In practice, if it is possible to make independent olslevice enters a network and makes pair-wise observations with
servations on the links fromto j and fromj; to 7, then we as- at least one blindfolded device and at least two devices in total,
sume that a scalar sufficient statistic can be found. Finally, wiee bound on the average variance of the originabordinate
assume thafX; ;} are statistically independent fgr< 7. This estimates is reduced. Note that properties 1) and 2) of Theorem
assumption can be somewhat oversimplified (see [20] for thewould be trivially satisfied by the data processing theorem if
RSS case) but necessary for analysis. Using measurementsdiftding a device into the network did not increase the number of
those in Sections IV and V remains important to verify true peparameters.
formance. The log of the joint conditional pdf is

m+n lll. RELATIVE LOCATION ESTIMATION
[(X]y) = Z Z L, In this section, we specialize for device location estimation
i=1 JEH(q) . . . . .
i<i using pair-wise RSS or TOA measurements in a wireless
li,j = log fxy(Xs, 517vis 7j)- (1) network. Specifically, consider a network ofi reference

The CRB on the covariance matrix of any unbiased estirrﬁatofmd n blindfolded devices. The device parameteys =

is covd) > F, ', where the Fisher information matrix (FIM) Z1, .-+ Zm+n], Where, for a two-dimensional (2-D) system,

F, is defined as z; = [z;, y;]7 (although extension of these results to 3-D is

also possible). The relative location problem corresponds to the

fur e fin estimation of blindfolded device coordinaigs= [6.., 6,]
_ T _ . . .
F9 - _EVG(VGZ(X|’Y)) - . . . ) (2) 0.7: = [$17 Tty xn]? 0!/ = [y17 ) y”] (4)
fa1 o fam given the known reference coordinat¢s,1,...,Zntm,

As derived in Appendix A, the diagonal elemerfis;, of Fg  4n+41,--.,¥ntm]. In the TOA caseX; ; = T; ; is the mea-
reduce to a single sum ovéf(k) since there areard{ H(k)} sured TOA between devicgsand j in (seconds), and in the
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RSS caseX; ; = P; ; is the measured received power ahll devices make pair-wise measurements with every other
devicei transmitted by devicg (in milliwatts). As discussed device, i.e. H(k) ={1, ..., k—1,k+1, ..., m+n}. The
in Section II, only a subsel (k) of devices make pair-wise distribution of the observatlons is given by (5) with ; =
measurements with devide ((7; ;)):; and ((P;,;)):,; are |z; — z;|. The second partials df ; are (9?/0x;> )L,j =
taken to be upper triangular matrices, and these measureme(i8®/9x; dx;)l;,; = —1/0%c?, Vi # j, which are constant
are assumed statistically independent. with respect to the random variablés ;. Thus, the FIM, which

In addition, assume thdt; ; is Gaussian distributed with is calculated using (3), iBr = [(n + m)L, — 117]/(orc)?,
meand;, ;/c and variancer%, which is denoted wherel, is then x n identity matrix, andl is ann by 1 vector
of ones. Form > 1, the matrix is invertible

Ti ; ~N(di /e, 0F), di j = d (2, z;) = ||z; — 2;||*/* ) s
(5) F-l=_—2T% 1,1, +117].
T m(n +m) [m - ]

wherec is the speed of propagation, and is not a function
of d; ;. We assume thab; ; is log-normal; thus, the random
variableP; ; (dBm) = 10log;, P;, ; is Gaussian 2 2 2

0y, 2 0pC
P;.j (dBm) ~N(P; ; (dBm), o3p)
fij (dBm) :PO (dBm) — 10np loglo(di,j/do) (6)

The CRB on the variance of an unbiased estimator:fas
m+ 1

it m)’ ®

Expression (8) implies that the varianeéq_ is reduced more
quickly by adding referencer() than blindfolded 4) devices.
whereP; ; (dBm) is the mean power in decibel milliwatts} However, ifm is large, the difference between increasingnd

is the variance of the shadowing, afigl (dBm) is the received 7 is negligible.

power in decibel milliwatts at a reference distadgeTypically,

dy = 1 m, andP, is calculated from the free space path los8: TWo-Dimensional Location Estimation

formula [21]. The path loss exponeij is a function of the en-  In the remainder of this article, we focus on 2-D location es-
vironment. For particular environments, may be known from timation of (4). We denote by r andF the FIMs for the RSS
prior measurements. Although we derive the CRB assumjng and TOA measurements, respectively. Each device has two pa-
is known, it could have been handled as an unknown “nuisanga@ieters, and we can see that the FIM will have a similar form

parameter. to (2) if partitioned into blocks
Given (6), the density of;_; is Froe Frey Froo Fro,
10/1log10 1 b d? = [FszmJ FRyy} ’ = [F%J FTyy} ©
Te(Fi ) = V2rals Pij R <10g 2 whereF g... andF .. are given by (2) using only theparam-

b— 10n,, 2
0dB IOg 10

eter vecto® = 0, andF g, andFr,, are given by (2) using
only @ = 8,. The off-diagonal block¥ g, andFr,, are simi-

larly derived. The elements of the submatrices of (9) are derived
in Appendix C. For the case of RSS measurements, the elements

are given by

~ P 1/n,
Gy=do(52) @

2,3

Here,d; ; is the MLE of rangel; ; given received powep; ;.

Neither P; ; nor T; ; are assumed to be ergodic random
variables; in fact, obstructions in the measured environment that
cause shadowing and TOA errors do not usually change over
time. The CRB gives a lower bound on the ensemble variance
over different random shadowing environments. If networks
with the same relative device coordinates are implemented in
many different areas, the variances of any unbiased coordinate
estimator will be lower bounded by the CRB presented here.

The model assumptions made in this section will justified
by experiment in Section IV. In the next sections, we use these
models to derive the CRB and MLE for both RSS and TOA mea-

[FRM] k, 1

b k=1
Z ||z k—ZzH4
— 1€H (k)
(z — m1)?
—bl Ne—m——, k#I
{ H(k)( )sz — Z[||4/ ;é
[FRwy]k
yk_yl) L
bz |Zk_z||4 . k=1
_ 1€H (k)

by k)(l> (xk - «Tl)(yk - yl).

surements. |z — ze]|* FA
A. One-Dimensional TOA Example [FRyy]k
Consider using TOA measurements to locate devices that b Z (yr — vi)® k=1
are limited to a one-dimensional (1-D) linear track. This could, CH (k) |z — z:]|*
for example, be applied to location estimation on an assembly =q "
line. Considem blindfolded devices aneh reference devices bl (1) (yr — w1)? k1
with combined parameter vecter = [z, ..., Ty ym]. The L 2k — 2| *
unknown coordinate vector i8 = [z1, ..., z,]. ASsume (10)
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For the case of TOA measurements, the elements are from which we obtain
[FTM] k1 1 mil d1_2i
(1 (g — x;)? 02— i=2
VA k=1 1 p m m+l 2
252 Z z — ;|2 (duz,jdi.j)
_ T iCH (k) 12 I ng j:%-l & &
L SN k) here the di is the sh di from the poi
—57 H(k)( )m, # where the |stancﬁli7j Isthes ortes_t |stan_ce romt_e point
T k%t (z1, y1) to the line segment connecting devicand devicej.
[Frayl, , For the case of TOA measurements, we obtain
(1 (o — 23)(yx — i) -1
- ¢ ‘ , k=1 m  m—+1 s ods s 2
= i=2 j=i+l R
1 0 (e —2)(yr —w0) oy !
L c20% H(k) |z — ze||? ’ The ratiod, 1, jd;, j/(d1,:d1, ;) has been called the geometric
[Fry,] conditioningA; ; of device 1 w.r.t. referencesandj [2]. A; ;
,k’l ) is the area of the parallelogram specified by the vectors from
21 . Z @k;yi)w k=1 device 1 ta and from device 1 tg, normalized by the lengths
T iCm(k) lz — zil of the two vectors. The geometric dilution of precision (GDOP),
- which is defined as /(cor), is
1 o 2
- IH(k)(l) (yk yl) -, k ;é L
[ cPor Iz — 2|l

(11) GDOP=

Note thatF i o« n) /o while Fr o 1/(¢?07.). These SNR

quantities directly affect. the CRB.' For TOA me.asurem.ents, tn\ﬂwich matches the result in [2]. The CRBs are shown in Fig. 1
ere_ndenc_e onthe devu_:e coordinates is in unit-less d'StanC%ﬁén there are four reference devices located in the corners of
tios, indicating that the size of the system can be scaled withqu by 1 m square. The minimum of Fig. 1(a) is 0.27. Since the

cHhanglng _thehCRB as fl(;ansgsas the geometry Ihs kep'_c the S;’“E%? scales with size in the RSS case, the standard deviation of
owever, In the case o measurements, the variance bOYREia e Iocation estimates in a traditional RSS system oper-

scales with the size of the system even if the geometry is kept ﬁwg in a channel withrap /n, = 1.7 is limited to about 27%

" . :
same due tp the termsmthe dgnqmmatorof each termi. of the distance between reference devices. This performance
These scaling characteristics indicate that TOA measuremets prevented use of RSS in many existing location systems
would be preferred for sparse networks, but for sufficiently higgﬂnd motivates having many blindfolded devices in the network.

densit)f, RS? f:ag perftc))_rm ads We_“ as TOA. q h Note that in the TOA case; is proportional ta:o, and thus,
Let z; andy; be unbiased estimators of andy;. For the cor = 1 was chosen in Fig. 1(b).

case of TOA measurements, the trace of the covariance of thé

ith location estimate satisfies D. Maximum Likelihood Relative Location Estimation
o? S {cove(&i, i)} For generah andm, we calculate the MLE of. In the case
= Varg(z;) + Varg(7;) of TOA measurements, the MLE is
> ( F o — F - F_,l, FTT,I _1) . m+n
sl [ Tzx Tzxy Tyy T./J] i, aT _ argmln Z Z (C CTII’J _ d(Zh Zj))2 (14)
_ —1 Z; /._ .
+ ([FTyy - FT(EUFT;IF%I:IJ:I ) L (12) =3 = 1611251)

For RSS measurements, repldge in (12) with F. For the Wherez; = [z;, y;]". The MLE for the RSS case is [16]
case of one blindfolded device, a simple expression can be de-

: ) m+n 2.\

rived for both RSS and TOA measurements. §5, = arg min Z Z ln i,j . (15)
. . {z:} i=1 JEeH(i) dz(zi’ Zj)

C. Single Unknown Location Example T

Consider the network having blindfolded device 1 and refeynlike the MLE based on TOA measurements, the RSS MLE is
ence deviceg---m + 1. This example, with a single pair of readily shown to be biased. Specifically, for a single reference
unknownsz; andy., is equivalent to many existing locationand single blindfolded device, the range estimate between the
systems, and a bound for the variance of the location estimag@t devices is/; ». Using (7), the mean af; » is given by
has already been derived in for TOA measurements [2]. In the

. 1 /In(1 ?
case of RSS measurements E[dy5] = C dy.2, whereC = exp [_ < n(10) 0d_B> ] _

2 A . 2 . 9 Fros + FRyy 2 10 Ny
ol =E (@ —z1)"+ (1 — )7 =
1 [( 1 1) (7 1) ] Fros Frey —F}%

(16)

Yy
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@ Fig. 2. Bias gradient norm of the RSS MLE :of from (17) for the example

system of Section IlI-C.

three reference devices provide relatively little information re-
garding the placement of the blindfolded device. In the limit as
the blindfolded device approaches areference device, it can only
be localized to a circle around that reference. Thus, no unbiased
estimator is possible. The MLE in (17) approaches a constant in
the limit, and thus, the bias gradient norm approaches 1.

p (M)
o

—
—

IV. CHANNEL MEASUREMENT EXPERIMENT

—_
¥

In this section, we describe the measurement system and ex-
periment and validate the channel model assumptions made at
the beginning of Section Ill. A set of multipoint-to-multipoint
(M2M) wideband channel measurements were conducted at the

y Position (m) 00 x Position (m)  Motorola facility in Plantation, FL. The measurement environ-

®) ment is an office area partitioned by 1.8-m-high cubicle walls
Fig. 1. o (in meters) for the example system versus the coordinates of tWith hard partitioned Off?CGS, external glass windows, and ce-
single biindfolded device for (a) RSS withs /n = 17 of (b) TOA with Mfent walls on the outside of the area. There are also metal
cop = 1m. and concrete support beams within and outside of the area. Of-
fices are occupied with desks, bookcases, metal and wooden
filing cabinets, computers, and equipment. Forty-four device lo-

For typical channels [21)¢' ~ 1.2, adding 20% bias to the _ . : e o .
range. Motivated by (16), a bias-reduced MLE can be deﬁn?cgrt)lgns are identified within a 14 by 13 m area and marked with

as

Lower Bo_gnd forc
o
— (6)]

The measurement system uses a wideband direct-sequence
men e ee 2 spread-spectrum (DS-SS) transmitter (TX) and receiver (RX)
éR = arg min Z Z <1n ©J > (17) (Sigtek model ST-515). The TX and RX are battery-powered
{zi} 521 jen(n and are placed on carts. The TX outputs an unmodulated
= pseudo-noise (PN) code signal with a 40-MHz chip rate and
However, there remains residual bias. Consiges= 4 and code length 1024. The center frequency is 2443 MHz, and the
n = 1. Place the reference devices at the corners of a 1 by 1ti@nsmit power is 10 mW. Both TX and RX use 2.4-GHz sleeve
square and the blindfolded device within the square, the saméliple antennas kept 1 m above the floor. The antennas have an
the case plotted in Fig. 1. We calculate via simulation [22] tHemnidirectional pattern in the horizontal plane and a measured
bias gradient norm of; given by (17) and display it in Fig. 2. antenna gain of 1.1 dBi. The RX records | and Q samples at
The gradient of the bias can be used in the uniform CRB &rate of 120 MHz, downconverts, and correlates them with
calculate the achievable variance of the biased estimator [221ag known PN signal and outputs a power-delay profile (PDP).
compared with all other estimators with same or less bias g example PDP is shown in Fig. 3. We ensure that noise and
dient norm. Fig. 2 shows that the bias gradient is high (witlsM-band interference is not an issue by maintaining an SNR
norm 1) at the corners of the square. Expression (17) shows25 dB throughout the campaign.
that the MLE tries to force the rati@yj/(czd%j) closetol. For TOA, wireless sensors will likely make two-way
If the blindfolded device is very close to one reference devi¢eound-trip) measurements [7], [9] due to the impracticality
and far away from the others, then measurements from the otberaccurately synchronizing all devices in wireless sensor

d2(zi, Zj)
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60 ‘ ' ' ' ‘ A. Estimating TOA and RSS

The wideband radio channel impulse response (CIR) is mod-
___________________ RSS Threshold ___ eled as a sum of attenuated, phase-shifted, and time-delayed
| multipath impulses [18], [21]. The PDP output of the Sigtek
1 . . . measurement system, due to its finite bandwidth, replaces each
(@ 200 0 200 400 600 800 1000 impulse of the CIR with the autocorrelation function of the PN
y, T (ns) : L - .
signal Rpx(7), which is shown in Fig. 3(c), an approximately
1 triangular peak that i2/Rc = 50 ns wide. In high SNR,
low multipath cases, TOA estimates can be more accurate than
2/R¢c. However, a wider peak permits more multipath errors
since the line-of-sight (LOS) component, with T@A ; /¢, can
! be obscured by non-LOS multipath that arrie@/R¢ s after
'50'_ 100 150 & 05 0 50 the LOS TOA. If the LOS component is attenuated, it can be dif-
Time Delay, T (ns) (%) Time Delay, 7 (ns) ficult to distinguish the LOS TOA. In Fig. 3(a), the PDP is seen
‘ ] " . ot and threshold to contain several multipath within the first 200 ns. Inspecting
zlt?(;vzwrs?c)h,*leeg\lj;?j ps\/\?; ;glitnt(-ar;aat‘(tejt?::algia?é R%Sgr.](b; Lrgesidi%g édg%h PDP ImmedlaFely_ a_'ftef = 0, as shown in Fig. 3(b.)' the
same PDP showing LOS TOA d; o4/c (- - - - - ) and estimated TOA (- - -). S path at 42 ns is visible but attenuated compared with a later
(c) Autocorrelation of PN signaR » v (7) used in template-matching [23]. multipath, which appears to arrive at 80 ns.
The template-matching method [23] provides a TOA estima-
tion algorithm that is robust to such attenuated-LOS multipath
networks. Two-way TOA measurements do not require Sypnhannels. In template-matching, samples of the leading edge of
chronized devices since the round-trip delay can be measufgg ppp are compared with a normalized and oversampled tem-
at a single device and then divided by two to estimate ”ﬂﬂate of Rpx (), which is shown in Fig. 3(c). The TOA esti-
one-way propagation time. However, for the purpose of theggatef; ; is the delay that minimizes the squared-error between
measurements, two-way TOA measurements are not necessg/samples of the PDP and the template. In Fig. 3(b), the tem-
Instead, we Carefu”y SynChronize our TX and RX USin9|ate_matching TOA estirnafﬂ"24 = 51 ns is in error by_|_9
off-the-shelf time-synchronization equipment. Errors due {§s. |f a local maximum was necessary to identify the LOS path,
multipath are the predominant source of variance in TOfe error would have been much greater.
estimates: for the two-way TOA case this has been reported ingjnce non-LOS multipath are delayed in tinig,j usually
[9], and for these measurements, this is demonstrated belgs a positive bias. We estimate the bias to be the average of
One-way synchronized and two-way TOA measurements gte; — ¢, ;/c, V4, j, which in these measurements is 10.9 ns.
equally affected by the multipath channel; thus, this one-way this paper, we assume this bias is known for environments of
measurement experiment closely approximates the TOAs tfiatrest, however, and, similarly tg,, this bias could be esti-
would be measured in a sensor network. mated as a “nuisance” parameter. Subtracting out the bias from
Both TX and RX are synchronized by 1 pulse per secorsiir measurements, we get the unbiased TOA estimatoiFi-
(1PPS) signals from two Datum ExacTime GPS and rubidiumally, the average of the 1), ; measurements for the link be-
based oscillators. On each of the eight days of the campaig@ieen; and; is called7; ;. The measured standard deviation
a procedure is followed to ensure a stable time base. After @p is 6.1 ns.
initial GPS synch of the ExacTimes, GPS is disconnected, andt has been shown that a wideband estimate of received power
the rubidium oscillators provide stable 1PPS signals. The fr@-’j can be obtained by summing the powers of the multipath in
quencies of the two rubidium oscillators are off very slightlythe PDP [21]. To distinguish between noise and multipath, only
thus, the 1PPS signals drift linearly, on the order of nanosecorstsver above a noise threshold is summed, as shown in Fig. 3(a).
per hour. By periodically measuring and recording the offset bghis wideband method reduces the frequency-selective fading
tween the two 1PPS signals using an oscilloscope, the effecieffects. The geometric mean of the 40; measurements for
the linear drift can be cancelled. A time base with a standard dhe link betweeri and;, which we callP;_ ;, reduces fading due
viation of between 1-2 ns is achieved. The variance of the tini@ motion of objects in the channel. Shadowing effects, which
base €4 ng’) is thus a small source of error in the measuregke caused by permanent obstructions in the channel, remain
TOA variance (37 g reported in Section IV-A. predominant inP; ; since the TX and RX are stationary. Shad-
The M2M measurements are conducted by first placing tlgving loss is often reported to be a log-normal random variable
TX at location 1, while the RX is moved, and measuremen$8], [21], [24], which lead us to propose the log-normal shad-
are made at locations 2 through 44. Then, the TX is placedating model in (6). As shown in Fig. 4, The measurEd;
location 2, as the RX is moved to locations 1 and 3 through 4dhatch the log-normal shadowing model in (6) with= 2.30
At each combination of TX and RX locations, the RX recordandoyg = 3.92 dB, usingdy = 1 m. The low variance may be
five PDPs. Since we expect reciprocity, there are a total of tiie to the wide bandwidth, averaging, and homogeneity of the
measurements for each link. All devices are in range of all othereasured cubicle area.
devices. Over the course of the eight-day campaign, a total oWe verify the log-normal and Gaussian distributions of
44 % 43 x 5 = 9460 measurements are taken. the RSS and TOA measurements by examining the residuals
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RSS and TOA data fit the models well between th2 and ~ Q} 11T . 30T 3QE 533'1 = X
+2 quantiles. Using a Kolmogorov—Smirnov (KS) test, Wi 1gE
o 1.~ N(FR, 2 i ; : : : : : :
test the hypothesi#ly: rf*; ~ NV(7%, S%) versusH;: rft; is 4 o 0 > 4 6 8 10(m)

not Gaussian, where is the sample mean of’;, andSR is 5
the sample variance. An identical test is conducted%ﬁfor ®)
the TOA measurements. For the RSS and TOA residuals, ffi$ . True ¢ #T) and esimatedX #E) location using (@) RSS and (b) TOA

a for measured network with four reference devices (X#). Higher errors are
KS tests yield p-values of 0.09 and 0.50, respectively. In bofRjicated by darker text.
cases, we would decide to accdpy at a level of significance
of « = 0.05.

However, the low p-value for the RSS data indicates thE -ocation Estimates From Measurements

log-normal shadowing model in (6) may not fully characterize Four devices near the corners are chosen as reference de-
the data. In fact, if we use iff, a two-component Gaussianvices. The remaining 40 devices are blindfolded devices. The
mixture distribution (with parameters estimated fr@ﬁl via four reference device coordinates and either the RSS or TOA
the MLE), the KS test yields a p-value of 0.88. A topic for fumeasurements; ; or71; ; are inputto the MLE in (14) or (17).
ture research is to investigate whether the potential benefitsTdfe minimum in each case is found via a conjugate gradient
using a mixture distribution in the channel model would justifalgorithm. Then, the estimated device locations are compared
its additional complexity. The experimental results reported imith the actual locations in Fig. 6(a) and (b). To generalize
the next sections use only the MLE derived under the log-nornthk results, the RMS location error of all 40 unknown-location
shadowing model; these results nevertheless demonstrate g@dces is 2.18 m in the RSS case and 1.23 m in the TOA case.
location accuracy. Since shadowing and non-LOS errors are not ergodic, as dis-
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cussed in Section IV-A, experimentally determining the MLE (m) QvE 4
variances would require several measurement campaigns with ol % OTe X
the same device geometry but in different office areas. This was
not possible due to resource and time limitations. Nevertheless, 5E BE
it is instructive to report the CRB for the measured network. 3l -YST 6IV 7 ZT?VE 8.T 'E
We use the measured channel parametgsyn, = 1.70 and
or = 6.1 ns, the four reference devices used above, and the )= 10E
actual coordinates of all of the devices to calculate the CRB \/ v, ~-11T11E12T12E
for o7 given in (12) fori = 1---n and for both TOA and 6 9T 10T o 'y & ¥
RSS measurements. The quan{ity’ ", cr?/zlo)l/2 is lower
bounded by 0.76 m for the RSS and 0.69 m for the TOA cases. 13 14T 15T 16

We also notice that the devices close to the center are located 9 e 15Ee X
more accurately than the devices on the edges, particularly in 14E v
the RSS case. Poor performance at the edges is expected since v
devices have fewer nearby neighbors to benefit their location 0 3 6 9 (m)
estimate. (@

(m) | - 3E
V. TESTBED EXPERIMENTATION 1 oT ST v 4

To provide an easy means for M2M radio channel measure- OF x A '.7E X
ment and location estimation testing, we developed and fabri- ' 8E
cated at Motorola Labs a testbed of 12 prototype peer-to-peer 27E 7T gTY
wireless sensor devices with RSS measurement capability. The 3r-o5T BT @
devices have FSK transceivers with a 50-kHz data rate which 5VE
operate in the 900-928 MHz band at one of eight center fre- LOE_
guencies separated by 4 MHz, which is approximately the 6 %T 9E1PT ;
coherence bandwidth of the channel. Devices hop between Y 1'5E
center frequencies so that RSS measurements can be taken
at each center frequency. While one device transmits, other 1)63 15T 1x6
devices measure its RSS. Packet transmissions are infrequent, 9 > P *
and packets are short; thus, the channel is almost always 0 3 6 9 (m)

silent. Devices are asynchronous and use a carrier-sense mul- .
tiple access (CSMA) protocol. Thus, RX measurements are ®)
not subject to multiuser interference. Every 2 s, each devi@- 7 True ¢ #T) and estimated¥ #E) location for the (a) parking lot and
. .[b) residential home tests using four reference devices (X#). Higher errors are
creates a packet of measured RSS data and transmits if,{ated by darker text.
a central “listening” device, which uploads data to a laptop
computer. The laptop has access to the known coordinate%ofparkmg Lot Area

the reference devices and the TX power and the RSS charac-

teristic of the devices, as measured prior to deployment. TheTestbed dewce_s are placedina 9 by 9 m areain a 3‘”? grid
n empty parking lot area at the Motorola facility. Devices

laptop stores the RSS for each pair of devices, each fr(a(m(aﬁae|>(§’jlkept at a height of 0.35 m. Using the testbed, we estimate

and each measurement over time. n,,to be 3.2. Then, we place reference devices at the four cor-
First, we use the testbed as an easy way to estimate the pdth - ' P

| xoonent... When all of the device locations are known '€ of the area and blindfolded devices at seven of the re-
0SS eXponent,,. . maining 12 spots in the grid (for 11 devices total). Devices
the laptop uses the path loss versus path length data to eSt'ng:%rd RSS and send packets as described above. The blind-
the path loss exponent, [25]. After estimatingrn,,, the blind-

: ) folded devices are then moved to different positions in the grid
folded device coordinates are removed from the laptop, and ¢ 5 ey trial. Sixteen trials are run. The RMS location errors

operate the relative location estimation algorithm using the &8; ihe individual trials range from 0.9 to 2.4 m. However, by
timated,,. moving seven blindfolded devices around between positions, we

Next, the relative location estimation algorithm averages thgqrd enough point-to-point ranges to see what would happen
measurements over time (using the most recent four RSS Mgdnere were 12 blindfolded devices: one in each spot on the
surements), frequency (across eight center frequencies), andyi§. We use the recorded range data off-line to calculate that
reciprocal channel, resulting in the averaged measurement  the RMS error would have been 1.46 m. Furthermore, if we ex-
The maximum of the MLE in (17) is found using a conjugatéended the duration of the time averaging from 4 to 32 ranges,
gradient algorithm, which takes less than 1 s on the Pentiwge would see the location estimates shown in Fig. 7(a), and the
laptop. Each second an updated location is calculated and @84S error would reduce to 1.02 m. Since shadow fading is not
played on a map in a Visual Basic GUI. Real-time tracking afevere in this environment, time averaging is effective at im-
slow movement (e.g., people walking) is possible. proving location estimates.
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el o2 @3 o4 APPENDIX
Garage Dining| Kitchen | Gator
aooml oy | Foom A. CRB for Network Self-Calibration
Living Area The diagonal elementg;, ; of F given in (2) are
@9 ®/0 ol 2
Patio ) 2
" lezeld lers ers forn=FE O 1xl9)) =E 9.
i k k= 89 I(Xx|e)| = Z 90, k., j
Guest F I_Bath Master JEH((k)
Room Office Bedroom
I

0 0
foe= Y. Y E<8—0klk1> (Wklk,;)-

Fig. 8. Map of the grid of sensors in the Perkins home. JEH (k) peH (k)

Since X, ; and X, are independent random variables, and
B. Residential Home E[(0/06k)lk, ;] = 0, the expectation of the product is only

onzero forp = j. Thus, f;, ; simplifies to thek = [ result
Next, we test the system in the Perkins home: a single-fami ¥ (3). The off-diagonal elements similarly simplify

ranch-style house in Sunrise, FL (see Fig. 8). An identical 9

by 9 m grid is used in this test, which spanned across many 0 0
interior rooms and an outdoor patio. The obstructions include fea= 3 > E <— ‘ ) ((9_91 l"”) '
indoor walls, furnishings, appliances, and exterior walls and
windows, andn,, is estimated to be 4.0. Here, there are foudere, due to independence and zero mean of the two terms, the

reference devices in the corners of the grid and eight othgtpectation of the product will be zero unless bptk k and
blindfolded devices. In 16 individual trials, the RMS locatiory = /. Thus, thek # [ result in (3).

errors range from 1.0 to 2.7 m. If all device ranges are used
together, as described previously, we see the results in Fig. 7&),Proof of Theorem 1

in which the RMS error is 2.1 m. This error does not reduce CompareF, which is the FIM for then blindfolded device

significantly when the duration of time-averaging is increasgstoblem, toG, which is the FIM for the: 41 blindfolded device
from 4 to 32 ranges. Much of the error is due to device #1base. PartitiorG into blocks

which has an error of 4.5 m. As seen in Fig.d4 15 = 3 G
m, but significant shadowing is caused by the office closet G = [ ul g'”}
and master bedroom closet that both lie directly in between gu  Gir

the two del\t/|cte;]$P147 15 (dBT) _tplé ltE (dBn?h: ;NZQ).’ a;c()j 5 whereG,,; is ann x n matrix, g;,. is the scalar Fisher information
as a result, the range estimate between the two 1S 10. g}‘ﬂnH, andg,, = gﬁ aren x 1 vectors withkth element

Unfortunately, this shadowing cannot be countered by time or

jeH (k) peH(I)

frequency averaging. o . a .,
gur(k) :IH(n-H)(k)E (yok lk,tLlH) (86n lk—t11+1>
VI. CONCLUSIONS 9 2
.= E .
The motivation for this paper has been to show the accu- I jef%ﬂ) (89 nt, J)

racy with which wireless sensor networks can estimate the rel-
ative sensor locations. The results should help researchersidere, we denote the log-likelihood of the observation between
termine if the accuracy possible from relative location estimaevices: andj in (1) asi} ; andl?f;1 for then and(n + 1)

tion can meet their application requirements. This paper bedalimdfolded device cases, respectively. Similarly,I&tX|y,,)

by proving that location estimation variance bounds (CRBs) dand!" ! (X|v,,,,) be the joint log-likelihood function in (1) for
crease as more devices are added to the network. Next, it Wagn andn + 1 blindfolded device cases, respectively. Then

shown that CRBs can be readily calculated for arbitrary num- I

bers and geometries of devices, and several examples were pre- 1" (X |y Z Z ln+1
sented. Sensor location estimation with approximately 1 m RMS n1) P

error has been demonstrated using TOA measurements. How- <

ever, despite the reputation of RSS as a coarse means to esti- =1"(X|y,) + Z lzjj i

mate range, it can nevertheless achieve an accuracy of about 1
m RMS in a testbed experiment. Fading outliers can still impair
the RSS relative location system, implying the need for a roblBihcel’“r1 is a function only of parameters, 1 = 6,,+1 and
estimator. Future experimentation is needed to verify the vasj;

ance of location estimators due to the nonergodic nature of shad- o2

owing. Analysis can quantify the effect of “nuisance” channel 52 S L nin) (k) —— lzﬁ, W l=k
parameters and can be extended to consider the effects of W Z nt+l1,j — 0y,

tiuser interference on sensor location estimation. Hina 1) 0, I #E.

Jj€
H(n+1)
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Thus,G,; = F + diagh), whereh = {hs, ..., h,}, and where[J];,  isgivenin (20). Sincéd (n+1) # 0, thus,g;,- > 0,
hr = IH<n+1)(k)E((3/09k)lZﬂ7k)2- Compare the CRB for and an equivalent condition is

the covariance matrix of the first devices in the: andn + 1 "

device cases, given b~ and [G~!],,;, respectively. Here, gl > 1gar(B))' S 1gur (). (21)
[G™1],; is the upper left. x n submatrix ofG~! N jz:;

[Gfl]ul — {Gul _ gwg;lg”}*l ={F+ J}_l If £ ¢ H(n+1),thenh; = 0, andg,.-(k) = 0, and the equality
T holds. Ifk € H(n + 1), then
whereJ = diagh) — BurBur

gir aln—i-l 2 aln—i-l ) 2

- - - glrhk ) k,n+1 Z E n+1,j ]
Both F and J are Hermitian. We know thaF is positive 00y, el D) 00541
semidefinite. Let\i(F), kK = 1---n be the eigenvalues & N
and\,(F + J), k = 1---n be the eigenvalues of the sumBecause of condition 1) of Theorem 1
both listed in increasing order; then, if we can show thas ot \ 2 o+l gyt
positive semidefinite, then it is known [26] that E kontl ) _ R k,n41 Yk, nt1

00y, 00,41 06 ’

0 < A(F) < A(F +J) Vi=1---n. (18)

?

Thus
Since the eigenvalues of a matrix inverse are the inverses of the

eigenvalues of the matrix )
gl’rhk = |gu'r(k)| Z |gur(])|

M ({F+317Y < (FTH, Vk=1---n  (19) 2l
which proves property 1 of Theorem 1. If in addition, we can az;.l_jlﬁrl 31?_J7§1+1
show that tJ) > 0, then tF + J) > tr(F), and therefore, + > |E 96, 08
S M(F +3) > S A\(F). This with (18) implies that TN mt J
Aj(F+J) > X;(F)foratleastong € 1---n. Thus,inaddition _ ) o ) ) i
to (19) Sinceg,-(j) = 0if j ¢ H(n + 1), we can include in the first
sum allj € 1---n. Since the second sum3d), (21) is true.
A ({F + J}*l) < )\j(Ffl)7 forsomej €1---n Diagonal dominance impligkis positive semidefinite, which

proves (19). Note that i/ (n+ 1) includes>1 reference device,
which implies that t{{F + J}~!) < tr(F~'), which proves the second sum is0, and the inequality in (21) is strictly0,
property 2 of Theorem 1. which implies positive definiteness df and assures that the
1) Showing Positive Semidefiniteness and Positive Trace@RB will strictly decrease.

J: The diagonal elements &, [J]; « are
C. CRB for Location Estimation

_ o2
e, = i = gun (k) /910 (20) For the elements dF g, using (7) and (1)
If k ¢ H(n+1),thenh, = 0andg,. (k) = 0; thus,[J]x » = 0. 2\ 2
Otherwise, ifk € H(n + 1) li ;=1 10log10 1 ) _ b S
27rc7(2“3 P ; 8 dzz j
ain+1 n+1 2 '
2 B aln+1.k aln+1.k 5 5
oIt I s Recalld; ; = \/(zi — 2;)? + (yi — y;)%. Thus
[I,x = E = - 5
06 ontt 9 b, A\ @ —w
E E agnJr’1 —li_j:—— log ) J 3 .
JEH (n+1) 8;1:]- ’ 2 d%,j di,j
Because of reciprocity, the numerator is equal to the squareNdte that(9/9z;)l; ; = —(9/9x;)l;, ;; thus, the log-normal
thej = k term in the sum in the denominator. Thus distribution of RSS measurements meets condition 1) of The-

N — — orem 1. The second partials differ based on whether of a0j
T > E (3lz+1,k> E <3lz+1,k 8lz+1,k> _,  andifthe partial is taken w.ry, or z;. For example

09, 00 00n41
821,;,1» :_b(ll?i, —a:]-)(yq: _yj) “log @ +1
The equality will hold if% is the only member of the sé (n + dxj dy; df ; d?

1). When condition 2) of Theorem 1 hold3], & will be strictly 2 4 N _ a2
greater than zero. Thus,Jtr> 0. Tl _ _b("”% - "7121(3/% — ) [log (%) -1
Next, we show tha is diagonally dominant [26], i.e., Oz dy; d;, ; d; ;

n n : Note thatE[log(d2 ./d2 .)] = 0. Thus, the FIM simplifies to
gu(k)gu(y o\ @i,/ Y, j PTTES
bk 2 kil = et take the form in . For the case, the derivation is very
RNy PRIBIT] | (g)l Wl ke the f 10). For the TOA he d
= iz " similar, and the details are omitted for brevity.
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