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Abstract—Self-configuration in wireless sensor networks is
a general class of estimation problems that we study via the
Cramér–Rao bound (CRB). Specifically, we consider sensor
location estimation when sensors measure received signal strength
(RSS) or time-of-arrival (TOA) between themselves and neigh-
boring sensors. A small fraction of sensors in the network have
a known location, whereas the remaining locations must be
estimated. We derive CRBs and maximum-likelihood estimators
(MLEs) under Gaussian and log-normal models for the TOA and
RSS measurements, respectively. An extensive TOA and RSS
measurement campaign in an indoor office area illustrates MLE
performance. Finally, relative location estimation algorithms are
implemented in a wireless sensor network testbed and deployed in
indoor and outdoor environments. The measurements and testbed
experiments demonstrate 1-m RMS location errors using TOA,
and 1- to 2-m RMS location errors using RSS.

Index Terms—Cramér–Rao bound, localization, radio channel
measurement, self-configuration, sensor position location estima-
tion, signal strength, time-of-arrival.

I. INTRODUCTION

WE CONSIDER location estimation in networks in which
a small proportion of devices, called reference devices,

havea priori information about their coordinates. All devices,
regardless of their absolute coordinate knowledge, estimate the
range between themselves and their neighboring devices. Such
location estimation is called “relative location” because the
range estimates collected are predominantly between pairs of
devices of which neither has absolute coordinate knowledge.
These devices withouta priori information we call blindfolded
devices. In cellular location estimation [1]–[3] and local
positioning systems (LPS) [4], [5], location estimates are made
using only ranges between a blindfolded device and reference
devices. Relative location estimation requires simultaneous
estimation of multiple device coordinates. Greater location
estimation accuracy can be achieved as devices are added
into the network, even when new devices have noa priori
coordinate information and range to just a few neighbors.
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Emerging applications for wireless sensor networks will
depend on automatic and accurate location of thousands of
sensors. In environmental sensing applications such as water
quality monitoring, precision agriculture, and indoor air quality
monitoring, “sensing data without knowing the sensor location
is meaningless”[6]. In addition, by helping reduce configuration
requirements and device cost, relative location estimation may
enable applications such as inventory management [7], intru-
sion detection [8], traffic monitoring, and locating emergency
workers in buildings.

To design a relative location system that meets the needs
of these applications, several capabilities are necessary. The
system requires a network of devices capable of peer-to-peer
range measurement, anad-hoc networking protocol, and a
distributed or centralized location estimation algorithm. For
range measurement, using received signal strength (RSS) is
attractive from the point of view of device complexity and cost
but is traditionally seen as a coarse measure of range. Time-of-
arrival (TOA) range measurement can be implemented using
inquiry-response protocols [7], [9]. In this paper, we will show
that both RSS and TOA measurements can lead to accurate
location estimates in dense sensor networks.

The recent literature has reflected interest in location esti-
mation algorithms for wireless sensor networks [8], [10]–[16].
Distributed location algorithms offer the promise of solving
multiparameter optimization problems even with constrained
resources at each sensor [10]. Devices can begin with local
coordinate systems [11] and then successively refine their
location estimates [12], [13]. Based on the shortest path from
a device to distant reference devices, ranges can be estimated
and then used to triangulate [14]. Distributed algorithms must
be carefully implemented to ensure convergence and to avoid
“error accumulation,” in which errors propagate serially in the
network. Centralized algorithms can be implemented when the
application permits deployment of a central processor to per-
form location estimation. In [15], device locations are resolved
by convex optimization. Both [8] and [16] provide maximum
likelihood estimators (MLEs) for sensor location estimation
when observations are angle-of-arrival and TOA [8] and when
observations are RSS [16].

In this paper, we mention only briefly particular location es-
timation algorithms. Instead, we focus on the accuracy pos-
sible usingany unbiased relative location estimator. The radio
channel is notorious for its impairments [17], [18], and thus,
sensor location accuracy is limited. The Cramér–Rao bounds
(CRBs) presented in this paper quantify these limits and allow
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determination if the accuracies necessary for particular applica-
tions are possible.

We begin in Section II by considering CRBs for network
self-calibration estimators. Next, we state the relative location
estimation problem and derive CRBs and MLEs in Section III.
In Section IV, measurements of TOA and RSS are used to il-
lustrate estimator performance. Finally, real-time operation of
relative location is demonstrated in Section V. Photos of the ex-
periments are included in an extended electronic version of this
paper in [19].

II. NETWORK ESTIMATION BOUNDS

In network self-calibration problems, parameters of all de-
vices in a network must be determined. Information comes both
from measurements made between pairs of devices and a subset
of devices that knowa priori their parameters. A network self-
calibration estimator estimates the unknown device parameters.
For example, distributed clock synchronization in a network
could be achieved by devices observing pair-wise timing off-
sets when just a small number of devices are synchronous.

Specifically, consider a vector of device parameters
. Each device has one parameter. Devices

are blindfolded devices, and devices
are reference devices. The unknown parameter vector is

, where for . Note that
are known. Devices and make

pair-wise observations with density .
We allow for the case when devices make incomplete ob-
servations since two devices may be out of range or have
limited link capacity. Let device makes pair-wise
observations with device . By convention, a device cannot
make a pair-wise observation with itself, so that . By
symmetry, if , then .

We assume by reciprocity that ; thus, it is suf-
ficient to consider only the lower triangle of the observation
matrix when formulating the joint likelihood
function. In practice, if it is possible to make independent ob-
servations on the links fromto and from to , then we as-
sume that a scalar sufficient statistic can be found. Finally, we
assume that are statistically independent for . This
assumption can be somewhat oversimplified (see [20] for the
RSS case) but necessary for analysis. Using measurements like
those in Sections IV and V remains important to verify true per-
formance. The log of the joint conditional pdf is

(1)

The CRB on the covariance matrix of any unbiased estimator
is cov , where the Fisher information matrix (FIM)

is defined as

...
...

... (2)

As derived in Appendix A, the diagonal elements of
reduce to a single sum over since there are

terms in (1) that depend on . The off-diagonal elements
can be further reduced: When , there is at most one sum-
mand in (1) that is a function of bothand ; thus

(3)

where is an indicator function: 1 if or 0
otherwise.

A. Conditions for a Decreasing CRB

Intuitively, as more devices are used for location estimation,
the accuracy increases for all of the devices in the network. For
an -device network, there are parameters but vari-
ables used for their estimation. The analysis of this sec-
tion gives sufficient conditions to ensure the CRB decreases as
devices are added to the network. Consider a network ofblind-
folded devices and reference devices. Now, consider adding
one additional blindfolded device. For theand blind-
folded device cases, let and be the FIMs defined in (2),
respectively.

Theorem 1: Let be the upper left block
of . If for the blindfolded device case 1)

, and 2)
device makes pair-wise observations between itself and
at least one blindfolded device and at least two devices, in total;
then two properties hold: 1) in the positive
semi-definite sense and 2) tr tr .

Theorem 1 is proven in Appendix B. The Gaussian and log-
normal distributions in Section III meet condition 1). Property
1) implies that the additional unknown parameter introduced by
the st blindfolded device does not impair the estimation
of the original unknown parameters. Furthermore, property 2)
implies that the sum of the CRB variance bounds for theun-
known parameters strictly decreases. Thus, when a blindfolded
device enters a network and makes pair-wise observations with
at least one blindfolded device and at least two devices in total,
the bound on the average variance of the originalcoordinate
estimates is reduced. Note that properties 1) and 2) of Theorem
1 would be trivially satisfied by the data processing theorem if
adding a device into the network did not increase the number of
parameters.

III. RELATIVE LOCATION ESTIMATION

In this section, we specialize for device location estimation
using pair-wise RSS or TOA measurements in a wireless
network. Specifically, consider a network of reference
and blindfolded devices. The device parameters

, where, for a two-dimensional (2-D) system,
(although extension of these results to 3-D is

also possible). The relative location problem corresponds to the
estimation of blindfolded device coordinates

(4)

given the known reference coordinates
. In the TOA case, is the mea-

sured TOA between devicesand in (seconds), and in the
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RSS case, is the measured received power at
device transmitted by device (in milliwatts). As discussed
in Section II, only a subset of devices make pair-wise
measurements with device, and are
taken to be upper triangular matrices, and these measurements
are assumed statistically independent.

In addition, assume that is Gaussian distributed with
mean and variance , which is denoted

(5)

where is the speed of propagation, and is not a function
of . We assume that is log-normal; thus, the random
variable dBm is Gaussian

dBm dBm

dBm dBm (6)

where (dBm) is the mean power in decibel milliwatts,
is the variance of the shadowing, and (dBm) is the received
power in decibel milliwatts at a reference distance. Typically,

m, and is calculated from the free space path loss
formula [21]. The path loss exponent is a function of the en-
vironment. For particular environments, may be known from
prior measurements. Although we derive the CRB assuming
is known, it could have been handled as an unknown “nuisance”
parameter.

Given (6), the density of is

(7)

Here, is the MLE of range given received power .
Neither nor are assumed to be ergodic random

variables; in fact, obstructions in the measured environment that
cause shadowing and TOA errors do not usually change over
time. The CRB gives a lower bound on the ensemble variance
over different random shadowing environments. If networks
with the same relative device coordinates are implemented in
many different areas, the variances of any unbiased coordinate
estimator will be lower bounded by the CRB presented here.

The model assumptions made in this section will justified
by experiment in Section IV. In the next sections, we use these
models to derive the CRB and MLE for both RSS and TOA mea-
surements.

A. One-Dimensional TOA Example

Consider using TOA measurements to locate devices that
are limited to a one-dimensional (1-D) linear track. This could,
for example, be applied to location estimation on an assembly
line. Consider blindfolded devices and reference devices
with combined parameter vector . The
unknown coordinate vector is . Assume

all devices make pair-wise measurements with every other
device, i.e., . The
distribution of the observations is given by (5) with

. The second partials of are
, , which are constant

with respect to the random variables . Thus, the FIM, which
is calculated using (3), is ,
where is the identity matrix, and is an by 1 vector
of ones. For , the matrix is invertible

The CRB on the variance of an unbiased estimator foris

(8)

Expression (8) implies that the variance is reduced more
quickly by adding reference () than blindfolded ( ) devices.
However, if is large, the difference between increasingand

is negligible.

B. Two-Dimensional Location Estimation

In the remainder of this article, we focus on 2-D location es-
timation of (4). We denote by and the FIMs for the RSS
and TOA measurements, respectively. Each device has two pa-
rameters, and we can see that the FIM will have a similar form
to (2) if partitioned into blocks

(9)

where and are given by (2) using only theparam-
eter vector , and and are given by (2) using
only . The off-diagonal blocks and are simi-
larly derived. The elements of the submatrices of (9) are derived
in Appendix C. For the case of RSS measurements, the elements
are given by

(10)
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For the case of TOA measurements, the elements are

(11)

Note that while . These SNR
quantities directly affect the CRB. For TOA measurements, the
dependence on the device coordinates is in unit-less distance ra-
tios, indicating that the size of the system can be scaled without
changing the CRB as long as the geometry is kept the same.
However, in the case of RSS measurements, the variance bound
scales with the size of the system even if the geometry is kept the
same due to the terms in the denominator of each term of .
These scaling characteristics indicate that TOA measurements
would be preferred for sparse networks, but for sufficiently high
density, RSS can perform as well as TOA.

Let and be unbiased estimators of and . For the
case of TOA measurements, the trace of the covariance of the
th location estimate satisfies

tr cov

(12)

For RSS measurements, replace in (12) with . For the
case of one blindfolded device, a simple expression can be de-
rived for both RSS and TOA measurements.

C. Single Unknown Location Example

Consider the network having blindfolded device 1 and refer-
ence devices . This example, with a single pair of
unknowns and , is equivalent to many existing location
systems, and a bound for the variance of the location estimator
has already been derived in for TOA measurements [2]. In the
case of RSS measurements

from which we obtain

where the distance is the shortest distance from the point
to the line segment connecting deviceand device .

For the case of TOA measurements, we obtain

(13)

The ratio has been called the geometric
conditioning of device 1 w.r.t. referencesand [2].
is the area of the parallelogram specified by the vectors from
device 1 to and from device 1 to, normalized by the lengths
of the two vectors. The geometric dilution of precision (GDOP),
which is defined as , is

GDOP

which matches the result in [2]. The CRBs are shown in Fig. 1
when there are four reference devices located in the corners of
a 1 by 1 m square. The minimum of Fig. 1(a) is 0.27. Since the
CRB scales with size in the RSS case, the standard deviation of
unbiased location estimates in a traditional RSS system oper-
ating in a channel with is limited to about 27%
of the distance between reference devices. This performance
has prevented use of RSS in many existing location systems
and motivates having many blindfolded devices in the network.
Note that in the TOA case, is proportional to , and thus,

was chosen in Fig. 1(b).

D. Maximum Likelihood Relative Location Estimation

For general and , we calculate the MLE of . In the case
of TOA measurements, the MLE is

(14)

where . The MLE for the RSS case is [16]

(15)

Unlike the MLE based on TOA measurements, the RSS MLE is
readily shown to be biased. Specifically, for a single reference
and single blindfolded device, the range estimate between the
two devices is . Using (7), the mean of is given by

where

(16)
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(a)

(b)

Fig. 1. � (in meters) for the example system versus the coordinates of the
single blindfolded device for (a) RSS with� =n = 1:7 or (b) TOA with
c� = 1 m.

For typical channels [21], , adding 20% bias to the
range. Motivated by (16), a bias-reduced MLE can be defined
as

(17)

However, there remains residual bias. Consider and
. Place the reference devices at the corners of a 1 by 1 m

square and the blindfolded device within the square, the same as
the case plotted in Fig. 1. We calculate via simulation [22] the
bias gradient norm of given by (17) and display it in Fig. 2.

The gradient of the bias can be used in the uniform CRB to
calculate the achievable variance of the biased estimator [22] as
compared with all other estimators with same or less bias gra-
dient norm. Fig. 2 shows that the bias gradient is high (with
norm ) at the corners of the square. Expression (17) shows
that the MLE tries to force the ratio close to 1.
If the blindfolded device is very close to one reference device
and far away from the others, then measurements from the other

Fig. 2. Bias gradient norm of the RSS MLE ofx from (17) for the example
system of Section III-C.

three reference devices provide relatively little information re-
garding the placement of the blindfolded device. In the limit as
the blindfolded device approaches a reference device, it can only
be localized to a circle around that reference. Thus, no unbiased
estimator is possible. The MLE in (17) approaches a constant in
the limit, and thus, the bias gradient norm approaches 1.

IV. CHANNEL MEASUREMENTEXPERIMENT

In this section, we describe the measurement system and ex-
periment and validate the channel model assumptions made at
the beginning of Section III. A set of multipoint-to-multipoint
(M2M) wideband channel measurements were conducted at the
Motorola facility in Plantation, FL. The measurement environ-
ment is an office area partitioned by 1.8-m-high cubicle walls
with hard partitioned offices, external glass windows, and ce-
ment walls on the outside of the area. There are also metal
and concrete support beams within and outside of the area. Of-
fices are occupied with desks, bookcases, metal and wooden
filing cabinets, computers, and equipment. Forty-four device lo-
cations are identified within a 14 by 13 m area and marked with
tape.

The measurement system uses a wideband direct-sequence
spread-spectrum (DS-SS) transmitter (TX) and receiver (RX)
(Sigtek model ST-515). The TX and RX are battery-powered
and are placed on carts. The TX outputs an unmodulated
pseudo-noise (PN) code signal with a 40-MHz chip rate and
code length 1024. The center frequency is 2443 MHz, and the
transmit power is 10 mW. Both TX and RX use 2.4-GHz sleeve
dipole antennas kept 1 m above the floor. The antennas have an
omnidirectional pattern in the horizontal plane and a measured
antenna gain of 1.1 dBi. The RX records I and Q samples at
a rate of 120 MHz, downconverts, and correlates them with
the known PN signal and outputs a power-delay profile (PDP).
An example PDP is shown in Fig. 3. We ensure that noise and
ISM-band interference is not an issue by maintaining an SNR

dB throughout the campaign.
For TOA, wireless sensors will likely make two-way

(round-trip) measurements [7], [9] due to the impracticality
of accurately synchronizing all devices in wireless sensor
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Fig. 3. (a) Measured PDP with TX at 1 and RX at 24 and threshold (- - -)
above which received power is integrated to calculate RSS. (b) Leading edge of
same PDP showing LOS TOA= d =c (� - � - �) and estimated TOA (- - -).
(c) Autocorrelation of PN signalR (�) used in template-matching [23].

networks. Two-way TOA measurements do not require syn-
chronized devices since the round-trip delay can be measured
at a single device and then divided by two to estimate the
one-way propagation time. However, for the purpose of these
measurements, two-way TOA measurements are not necessary.
Instead, we carefully synchronize our TX and RX using
off-the-shelf time-synchronization equipment. Errors due to
multipath are the predominant source of variance in TOA
estimates: for the two-way TOA case this has been reported in
[9], and for these measurements, this is demonstrated below.
One-way synchronized and two-way TOA measurements are
equally affected by the multipath channel; thus, this one-way
measurement experiment closely approximates the TOAs that
would be measured in a sensor network.

Both TX and RX are synchronized by 1 pulse per second
(1PPS) signals from two Datum ExacTime GPS and rubidium-
based oscillators. On each of the eight days of the campaign,
a procedure is followed to ensure a stable time base. After an
initial GPS synch of the ExacTimes, GPS is disconnected, and
the rubidium oscillators provide stable 1PPS signals. The fre-
quencies of the two rubidium oscillators are off very slightly;
thus, the 1PPS signals drift linearly, on the order of nanoseconds
per hour. By periodically measuring and recording the offset be-
tween the two 1PPS signals using an oscilloscope, the effect of
the linear drift can be cancelled. A time base with a standard de-
viation of between 1-2 ns is achieved. The variance of the time
base ( ns ) is thus a small source of error in the measured
TOA variance (37 ns) reported in Section IV-A.

The M2M measurements are conducted by first placing the
TX at location 1, while the RX is moved, and measurements
are made at locations 2 through 44. Then, the TX is placed at
location 2, as the RX is moved to locations 1 and 3 through 44.
At each combination of TX and RX locations, the RX records
five PDPs. Since we expect reciprocity, there are a total of 10
measurements for each link. All devices are in range of all other
devices. Over the course of the eight-day campaign, a total of

measurements are taken.

A. Estimating TOA and RSS

The wideband radio channel impulse response (CIR) is mod-
eled as a sum of attenuated, phase-shifted, and time-delayed
multipath impulses [18], [21]. The PDP output of the Sigtek
measurement system, due to its finite bandwidth, replaces each
impulse of the CIR with the autocorrelation function of the PN
signal , which is shown in Fig. 3(c), an approximately
triangular peak that is ns wide. In high SNR,
low multipath cases, TOA estimates can be more accurate than

. However, a wider peak permits more multipath errors
since the line-of-sight (LOS) component, with TOA , can
be obscured by non-LOS multipath that arrive s after
the LOS TOA. If the LOS component is attenuated, it can be dif-
ficult to distinguish the LOS TOA. In Fig. 3(a), the PDP is seen
to contain several multipath within the first 200 ns. Inspecting
the PDP immediately after , as shown in Fig. 3(b), the
LOS path at 42 ns is visible but attenuated compared with a later
multipath, which appears to arrive at 80 ns.

The template-matching method [23] provides a TOA estima-
tion algorithm that is robust to such attenuated-LOS multipath
channels. In template-matching, samples of the leading edge of
the PDP are compared with a normalized and oversampled tem-
plate of , which is shown in Fig. 3(c). The TOA esti-
mate is the delay that minimizes the squared-error between
the samples of the PDP and the template. In Fig. 3(b), the tem-
plate-matching TOA estimate ns is in error by 9
ns. If a local maximum was necessary to identify the LOS path,
the error would have been much greater.

Since non-LOS multipath are delayed in time, usually
has a positive bias. We estimate the bias to be the average of

, , which in these measurements is 10.9 ns.
In this paper, we assume this bias is known for environments of
interest, however, and, similarly to , this bias could be esti-
mated as a “nuisance” parameter. Subtracting out the bias from
our measurements, we get the unbiased TOA estimator. Fi-
nally, the average of the 10 measurements for the link be-
tween and is called . The measured standard deviation

is 6.1 ns.
It has been shown that a wideband estimate of received power

can be obtained by summing the powers of the multipath in
the PDP [21]. To distinguish between noise and multipath, only
power above a noise threshold is summed, as shown in Fig. 3(a).
This wideband method reduces the frequency-selective fading
effects. The geometric mean of the 10 measurements for
the link between and , which we call , reduces fading due
to motion of objects in the channel. Shadowing effects, which
are caused by permanent obstructions in the channel, remain
predominant in since the TX and RX are stationary. Shad-
owing loss is often reported to be a log-normal random variable
[18], [21], [24], which lead us to propose the log-normal shad-
owing model in (6). As shown in Fig. 4, The measured
match the log-normal shadowing model in (6) with
and dB, using m. The low variance may be
due to the wide bandwidth, averaging, and homogeneity of the
measured cubicle area.

We verify the log-normal and Gaussian distributions of
the RSS and TOA measurements by examining the residuals
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Fig. 4. Measured wideband path gain (x) as a function of path length. Linear
fit (—) is with d = 1 m,n = 2:3, and� = 3:92.

Fig. 5. Q–Q plot of (a)P (dBm) � P (dBm) for RSS data and (b)
T � d =c for TOA data compared with a Gaussian quantile.

dBm dBm and
via quantile-quantile plots (normal probability) in Fig. 5. Both
RSS and TOA data fit the models well between the2 and

2 quantiles. Using a Kolmogorov–Smirnov (KS) test, we
test the hypothesis versus is
not Gaussian, where is the sample mean of , and is
the sample variance. An identical test is conducted onfor
the TOA measurements. For the RSS and TOA residuals, the
KS tests yield p-values of 0.09 and 0.50, respectively. In both
cases, we would decide to accept at a level of significance
of .

However, the low p-value for the RSS data indicates that
log-normal shadowing model in (6) may not fully characterize
the data. In fact, if we use in a two-component Gaussian
mixture distribution (with parameters estimated from via
the MLE), the KS test yields a p-value of 0.88. A topic for fu-
ture research is to investigate whether the potential benefits of
using a mixture distribution in the channel model would justify
its additional complexity. The experimental results reported in
the next sections use only the MLE derived under the log-normal
shadowing model; these results nevertheless demonstrate good
location accuracy.

(a)

(b)

Fig. 6. True (� #T) and estimated ( #E) location using (a) RSS and (b) TOA
data for measured network with four reference devices (X#). Higher errors are
indicated by darker text.

B. Location Estimates From Measurements

Four devices near the corners are chosen as reference de-
vices. The remaining 40 devices are blindfolded devices. The
four reference device coordinates and either the RSS or TOA
measurements or are input to the MLE in (14) or (17).
The minimum in each case is found via a conjugate gradient
algorithm. Then, the estimated device locations are compared
with the actual locations in Fig. 6(a) and (b). To generalize
the results, the RMS location error of all 40 unknown-location
devices is 2.18 m in the RSS case and 1.23 m in the TOA case.
Since shadowing and non-LOS errors are not ergodic, as dis-
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cussed in Section IV-A, experimentally determining the MLE
variances would require several measurement campaigns with
the same device geometry but in different office areas. This was
not possible due to resource and time limitations. Nevertheless,
it is instructive to report the CRB for the measured network.
We use the measured channel parameters and

ns, the four reference devices used above, and the
actual coordinates of all of the devices to calculate the CRB
for given in (12) for and for both TOA and
RSS measurements. The quantity is lower
bounded by 0.76 m for the RSS and 0.69 m for the TOA cases.

We also notice that the devices close to the center are located
more accurately than the devices on the edges, particularly in
the RSS case. Poor performance at the edges is expected since
devices have fewer nearby neighbors to benefit their location
estimate.

V. TESTBEDEXPERIMENTATION

To provide an easy means for M2M radio channel measure-
ment and location estimation testing, we developed and fabri-
cated at Motorola Labs a testbed of 12 prototype peer-to-peer
wireless sensor devices with RSS measurement capability. The
devices have FSK transceivers with a 50-kHz data rate which
operate in the 900–928 MHz band at one of eight center fre-
quencies separated by 4 MHz, which is approximately the
coherence bandwidth of the channel. Devices hop between
center frequencies so that RSS measurements can be taken
at each center frequency. While one device transmits, other
devices measure its RSS. Packet transmissions are infrequent,
and packets are short; thus, the channel is almost always
silent. Devices are asynchronous and use a carrier-sense mul-
tiple access (CSMA) protocol. Thus, RX measurements are
not subject to multiuser interference. Every 2 s, each device
creates a packet of measured RSS data and transmits it to
a central “listening” device, which uploads data to a laptop
computer. The laptop has access to the known coordinates of
the reference devices and the TX power and the RSS charac-
teristic of the devices, as measured prior to deployment. The
laptop stores the RSS for each pair of devices, each frequency,
and each measurement over time.

First, we use the testbed as an easy way to estimate the path
loss exponent . When all of the device locations are known,
the laptop uses the path loss versus path length data to estimate
the path loss exponent [25]. After estimating , the blind-
folded device coordinates are removed from the laptop, and we
operate the relative location estimation algorithm using the es-
timated .

Next, the relative location estimation algorithm averages the
measurements over time (using the most recent four RSS mea-
surements), frequency (across eight center frequencies), and the
reciprocal channel, resulting in the averaged measurement.
The maximum of the MLE in (17) is found using a conjugate
gradient algorithm, which takes less than 1 s on the Pentium
laptop. Each second an updated location is calculated and dis-
played on a map in a Visual Basic GUI. Real-time tracking of
slow movement (e.g., people walking) is possible.

(a)

(b)

Fig. 7. True (� #T) and estimated ( #E) location for the (a) parking lot and
(b) residential home tests using four reference devices (X#). Higher errors are
indicated by darker text.

A. Parking Lot Area

Testbed devices are placed in a 9 by 9 m area in a 3-m grid
in an empty parking lot area at the Motorola facility. Devices
are kept at a height of 0.35 m. Using the testbed, we estimate

to be 3.2. Then, we place reference devices at the four cor-
ners of the area and blindfolded devices at seven of the re-
maining 12 spots in the grid (for 11 devices total). Devices
record RSS and send packets as described above. The blind-
folded devices are then moved to different positions in the grid
for a new trial. Sixteen trials are run. The RMS location errors
for the individual trials range from 0.9 to 2.4 m. However, by
moving seven blindfolded devices around between positions, we
record enough point-to-point ranges to see what would happen
if there were 12 blindfolded devices: one in each spot on the
grid. We use the recorded range data off-line to calculate that
the RMS error would have been 1.46 m. Furthermore, if we ex-
tended the duration of the time averaging from 4 to 32 ranges,
we would see the location estimates shown in Fig. 7(a), and the
RMS error would reduce to 1.02 m. Since shadow fading is not
severe in this environment, time averaging is effective at im-
proving location estimates.
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Fig. 8. Map of the grid of sensors in the Perkins home.

B. Residential Home

Next, we test the system in the Perkins home: a single-family,
ranch-style house in Sunrise, FL (see Fig. 8). An identical 9
by 9 m grid is used in this test, which spanned across many
interior rooms and an outdoor patio. The obstructions include
indoor walls, furnishings, appliances, and exterior walls and
windows, and is estimated to be 4.0. Here, there are four
reference devices in the corners of the grid and eight other
blindfolded devices. In 16 individual trials, the RMS location
errors range from 1.0 to 2.7 m. If all device ranges are used
together, as described previously, we see the results in Fig. 7(b),
in which the RMS error is 2.1 m. This error does not reduce
significantly when the duration of time-averaging is increased
from 4 to 32 ranges. Much of the error is due to device #15,
which has an error of 4.5 m. As seen in Fig. 8,
m, but significant shadowing is caused by the office closet
and master bedroom closet that both lie directly in between
the two devices dBm dBm , and
as a result, the range estimate between the two is 10.5 m.
Unfortunately, this shadowing cannot be countered by time or
frequency averaging.

VI. CONCLUSIONS

The motivation for this paper has been to show the accu-
racy with which wireless sensor networks can estimate the rel-
ative sensor locations. The results should help researchers de-
termine if the accuracy possible from relative location estima-
tion can meet their application requirements. This paper began
by proving that location estimation variance bounds (CRBs) de-
crease as more devices are added to the network. Next, it was
shown that CRBs can be readily calculated for arbitrary num-
bers and geometries of devices, and several examples were pre-
sented. Sensor location estimation with approximately 1 m RMS
error has been demonstrated using TOA measurements. How-
ever, despite the reputation of RSS as a coarse means to esti-
mate range, it can nevertheless achieve an accuracy of about 1
m RMS in a testbed experiment. Fading outliers can still impair
the RSS relative location system, implying the need for a robust
estimator. Future experimentation is needed to verify the vari-
ance of location estimators due to the nonergodic nature of shad-
owing. Analysis can quantify the effect of “nuisance” channel
parameters and can be extended to consider the effects of mul-
tiuser interference on sensor location estimation.

APPENDIX

A. CRB for Network Self-Calibration

The diagonal elements of given in (2) are

Since and are independent random variables, and
, the expectation of the product is only

nonzero for . Thus, simplifies to the result
in (3). The off-diagonal elements similarly simplify

Here, due to independence and zero mean of the two terms, the
expectation of the product will be zero unless both and

. Thus, the result in (3).

B. Proof of Theorem 1

Compare , which is the FIM for the blindfolded device
problem, to , which is the FIM for the blindfolded device
case. Partition into blocks

where is an matrix, is the scalar Fisher information
for , and are vectors with th element

Here, we denote the log-likelihood of the observation between
devices and in (1) as and for the and
blindfolded device cases, respectively. Similarly, let
and be the joint log-likelihood function in (1) for
the and blindfolded device cases, respectively. Then

Since is a function only of parameters and

.
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Thus, diag , where , and
. Compare the CRB for

the covariance matrix of the first devices in the and
device cases, given by and , respectively. Here,

is the upper left submatrix of

where diag

Both and are Hermitian. We know that is positive
semidefinite. Let , be the eigenvalues of
and , be the eigenvalues of the sum,
both listed in increasing order; then, if we can show thatis
positive semidefinite, then it is known [26] that

(18)

Since the eigenvalues of a matrix inverse are the inverses of the
eigenvalues of the matrix

(19)

which proves property 1 of Theorem 1. If in addition, we can
show that tr , then tr tr , and therefore,

. This with (18) implies that
for at least one . Thus, in addition

to (19)

for some

which implies that tr tr , which proves
property 2 of Theorem 1.

1) Showing Positive Semidefiniteness and Positive Trace of
: The diagonal elements of, are

(20)

If , then and ; thus, .
Otherwise, if

Because of reciprocity, the numerator is equal to the square of
the term in the sum in the denominator. Thus

The equality will hold if is the only member of the set
. When condition 2) of Theorem 1 holds, will be strictly

greater than zero. Thus, tr .
Next, we show that is diagonally dominant [26], i.e.,

where is given in (20). Since , thus, ,
and an equivalent condition is

(21)

If , then , and , and the equality
holds. If , then

Because of condition 1) of Theorem 1

Thus

Since if , we can include in the first
sum all . Since the second sum is , (21) is true.

Diagonal dominance impliesis positive semidefinite, which
proves (19). Note that if includes reference device,
the second sum is , and the inequality in (21) is strictly ,
which implies positive definiteness of and assures that the
CRB will strictly decrease.

C. CRB for Location Estimation

For the elements of , using (7) and (1)

Recall . Thus

Note that ; thus, the log-normal
distribution of RSS measurements meets condition 1) of The-
orem 1. The second partials differ based on whether or not
and if the partial is taken w.r.t. or . For example

Note that . Thus, the FIM simplifies to
take the form in (10). For the TOA case, the derivation is very
similar, and the details are omitted for brevity.
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