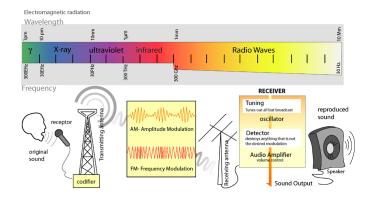
Entropic Analysis of Spectrum Sensing for Cognitive Radio

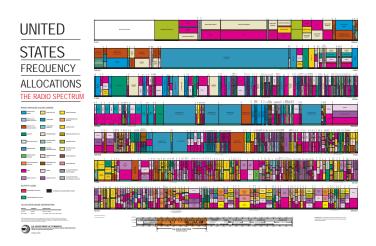
Jim Gaines (Dr. Neal Patwari)

Department of Electrical and Computer Engineering University of Utah

Undergraduate Research Symposium



Outline


- Introduction
 - Fixed Spectrum Access
 - Opportunistic Spectrum Access
 - Problem Statement
- 2 Methods
 - GNU Radio/USRP
 - Software Defined Spectrum Analyzer
 - Analysis
- 3 Progress
 - Challenges
 - Progress
 - Future Work

Wireless Communications

FCC Frequency Allocation

Spatio-Temporal Variances In Spectrum Access

- FCC Study¹: Utilization Varied From 15% To 85%
- Spatial Variances: Salt Lake City vs. Green River
- Temporal Variances: Business Hours vs. Late Evening
- If Only This Could Be Exploited...

Fixed Spectrum Access

- Fixed Licensing Is Problematic
 - Crowded: No More Usuable Bands Available
 - Expensive: 90Mhz Recently Sold² For \$13 Billion!
 - Under Utilized: Spatio-Temporal Variances
- We Need Something Better!

Case Study: Public Safety Band Usage³

• Channels: 23

Channel BW: 25KHz

Total BW: 20MHz

• F_c: 856-869MHz

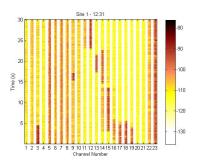


Figure: PSB Usage

³[Jones, 2007]

Cognitive Radio

Definition ⁴

A "Cognitive Radio" is a radio that can change its transmitter parameters based on interaction with the environment in which it operates.

Adaptive Transmitter Parameters:

- Power Level
- Modulation Type
- Center Frequency

⁴[Haykin, 2002]

Hidden Terminal Problem

- Both Nodes Sense CR
- Can't Sense Each Other
- This Causes Interference

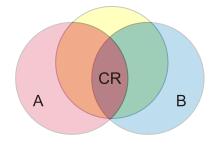


Figure: Hidden Terminals

Collaborative Spectrum Sensing

Pros

- Two Heads Are Better Than One!
 - i.e. More CR Nodes ⇒ More Accurate Detection ⁵
- Solves Hidden Terminal Problem

Cons

- Some BW Wasted On Control Channel
- How Much?

⁵[Ghasemi, 2005]

Information Entropy ⁶

Definition

The entropy of a discrete random variable X is a function of its PMF and is defined by

$$\mathrm{H}(X) = -\sum_{i=1}^{N} p_i \log p_i$$

- The Number Of Bits Required By A Control Channel
- A Similiar Metric, Entropy Rate, Gives Bit Rate
- Need Only Know The PMF Of Primary User Activity

⁶[Shannon, 1948]

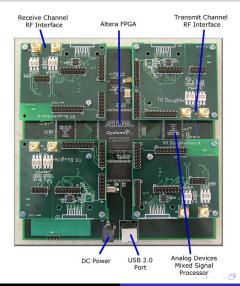
Widely Held Hypothesis

Hypothesis

Primary User Activity is a Markovian Process.

$$q_1$$
 q_2 p_1 p_2 q_2

- PU Activity Depends Only On Previous State(s)
- This Is The PMF We Could Use To Measure BW Loss
- But Is This Hypothesis Correct?


Problem Statement

Problem Statement

We Wish to Measure The Bandwidth Required of a Collaborative Sensing, Cognitive Radio Control Channel.

- Cognitive Radio Needs Collaborative Spectrum Sensing
- This Will Require a Control Channel
- Control Channel Wastes Some BW
- We Assume The Markovian Hypothesis (For Now)

Universal Software Radio Peripheral

GNU Radio

- GNU General Public License
- Python Wrapper For C++
- Object Orientated Approach
- Software Radios Defined In Terms Of Graphs
 - Define Source (USRP)
 - ② Define Signal Processing Unit (Spectrum Analyzer)
 - Opening Sink (File Format)
 - Connect!

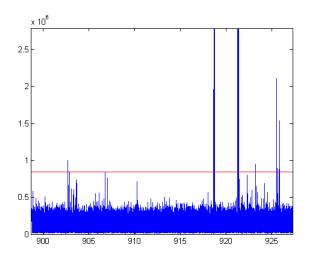
Class Definition

```
class my_graph(gr.flow_graph):
    def __init__(self, min_freq, max_freq):
        gr.flow_graph.__init__(self)
    self.u = usrp.source_c(...)

    s2v = gr.stream_to_vector(...)
    c2mag = gr.complex_to_mag_squared(...)
    stats = gr.bin_statistics_f(...)

self.connect(self.u, s2v, c2mag, stats)
```

Complex Samples


File Format

TimeDate Stamp

```
10/29/07 05:56 PM 898750000 56953 32489 ...
10/29/07 05:56 PM 900250000 322640 358258 ...
10/29/07 05:56 PM 901750000 284045 303849 ...
10/29/07 05:56 PM 903250000 46261 40136 ...
```

Frequency

Sampled ISM Band

Public Safety Band Revisited⁷

- Count State Transitions
- Divide By Sample Count
- We Then Have Our PMF

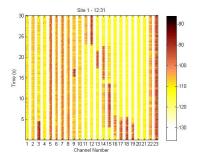


Figure: PSB Usage

⁷[Jones, 2007]

Challenges

A Lot to Learn

- DSP, Embedded Systems, Information Theory
- BASH, Python, Linux System Administration
- Deciphering Professor's Code!

A Lot of Obstacles

- Non-linear AGC and CIC Filters
- Calibrating USRP
- Minimal Documentation

Progress

- Software Defined ISM Band Spectrum Analyzer
- Matlab Scripts to Analyze Data
- BASH Scripts to Automate Data Collection
- Debian Domain Controller to Share USRP Access
- Custom File Format

Future Work

- Finish Statistical Analysis
- Mobile Spectrum Sensing
- Emulab Data Collection
- Online Database of Samples
- Investigate Cyclostationary Feature Detection

Questions?

- FCC, ET Docket No 03-222, Notice Of Proposed Rule Making And Order, Dec. 2003
- Committee on Energy and Commerce, House of Representatives, "Commercial Spectrum Enhancement Act", Report to Congress on Agency Plans for Spectrum Relocation Funds, Feb. 2007
- Jones, S., et. al., "Characterization of Spectrum Activities in the U.S. Public Safety Band for Opportunistic Spectrum Access", New Frontiers in Dynamic Spectrum Access Networks, 2007, pp.137-146
- Haykin, S., et. al., "Cognitive Radio: Brain-Empowered Wireless Communications", *Selected Areas in Communications*, Vol. 23, No.2, Feb. 2002
- Ghasemi, A., et. al., "Collaborative Spectrum Sensing for Opportunistic Access in Fading Environments," *Proc. Symposium on Dynamic Spectrum Access Networks*, Nov. 2005.
- Shannon, C., "A Mathematical Theory of Communication", *The Bell System Technical Journal*, Vol. 27, pp. 370-423, 623-656, July, Oct., 1948.