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Abstract

The Radio Interferometric Positioning System (RIPS), in-
troduced by Maroti et. al. [1], provides a means for very ac-
curate sensor localization with very minimal device hard-
ware requirements. To avoid stopping in a significant num-
ber of locally optimal location solutions, RIPS employs a
genetic optimization localization algorithm. This paper pro-
poses an indirect localization algorithm which first esti-
mates pairwise distances, and then uses them to estimate
coordinates via distributed weighted multidimensional scal-
ing (dwMDS). The pairwise distances are iteratively im-
proved and coordinates re-estimated. While suboptimal,
simulations show the proposed method can achieve 50 cm
RMS location errors. The algorithm provides a tradeoff be-
tween computational complexity and accuracy, and may en-
able distributed RIM-based localization.

1. Introduction

Radio interferometric measurements (RIMs) have the
potential to enable very accurate localization in networks of
very simple wireless sensors. Maroti et. al. in [1] presented
analysis, algorithms, and experimental verification for the
radio interferometric positioning system (RIPS), and were
able to demonstrate an average localization error of 3 cm in
an experimental system. Such results are more suggestive
of the accuracies expected from ultra-wideband (UWB) lo-
calization systems. In contrast, RIMs can be made with nar-
rowband transceivers, are not subject to the strict (regula-
tory) transmit power limitations of UWB, and require only
low-speed sampling and signal processing.

Localization algorithms which use RIMs are more com-
plicated than those which use pairwise distance estimates
for two related reasons. First, each RIM is a function of
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Figure 1. Flow chart of localization algorithm.

the coordinates of four sensors (two transmitters and two
receivers), compared with two sensors for each pairwise
distance measurement. Second, iterative optimization algo-
rithms based on RIM data must avoid many local optima. In
[1], a genetic algorithm is used to find a globally optimal so-
lution even in the presence of these multiple local optima.
While well suited for this purpose, genetic algorithms can
be undesirable in terms of convergence speed.

This paper presents an alternative cooperative localiza-
tion algorithm which solves indirectly for the coordinates,
as shown in Fig. 1. As suggested by [2], pairwise dis-
tances are used as an intermediary in the localization pro-
cess. However, pairwise distance estimation solely from
RIM data is an underdetermined problem. Thus, pairwise
distance space is separated into a signal space and a null
space, as described in Section 2, and RIMs are used to esti-
mate the pairwise distances in the signal space.

For the pairwise distance contribution from the null
space, we propose an iterative algorithm which initial-
izes using measurements of received signal strength (RSS).
Since both RSS and RIMs can be implemented with very
simple devices, requiring both does not add to device cost
or complexity. After this initialization with RSS mea-
surements, coordinates are estimated, and the null space
pairwise distance contribution is re-estimated.

This iterative algorithm is described in Section 3, after
Section 2 introduces the measurements. Next, the algorithm



is simulated in Section 4. Section 5 concludes and discusses
the significant work-in-progress.

2. Problem Formulation

This paper considers cooperative localization, i.e., the es-
timation of the unknown coordinates of sensors {zi}n

i=1,
where zi is a length-D actual coordinate vector. Reference
sensors {zi}n+m

i=n+1 have perfect a priori coordinate knowl-
edge, and the total number of sensors N = n + m. We as-
sume multiple radio interferometric measurements and pair-
wise distance estimates (obtained from RSS) are available
as described in this section.

2.1. Radio Interferometric Measurements

RIMs require two sensors, i and j, transmitting simul-
taneously at slightly different frequencies, fi and fj . The
combined signal exhibits a beat frequency, |fi − fj |, with
a phase that is a function of receiver location. The differ-
ence in this phase at two different receiving sensors k and l
is a function of the coordinates of the two transmitters and
two receivers. In the absence of noise and multipath, the dif-
ference in phase measured at k and l, Φi,j,k,l, is [1]

Φi,j,k,l =
2π
λ

(di,l − dj,l + dj,k − di,k) (mod 2π)

where λ = c/f , c the speed of light, f = (fi + fj)/2, and
da,b = ‖za − zb‖2 denotes Euclidean distance. It is shown
in [1] that the phase ambiguity (due to the mod 2π) can be
disambiguated by performing several measurements (on the
order of 10) with the same four devices at different transmit
frequency pairs fi and fj . After this measurement and es-
timation process, the disambiguated phase is multiplied by
λ/(2π) and referred to as the four-wise distance di,j,k,l. In-
cluding the effects of noise,

di,j,k,l = di,l − dj,l + dj,k − di,k + εi,j,k,l

where εi,j,k,l is the measurement error. Note that

di,j,k,l = [1,−1, 1,−1] · [di,l, dj,l, dj,k, di,k]T + εi,j,k,l

2.1.1. Range Limits on Measurements: Not all sensors
are ‘in range’, because energy limited sensors use low trans-
mit powers. Thus measurements cannot be made between
all sensors. We assume M different RIMs are made

r = [di1,j1,k1,l1 , . . . , diM ,jM ,kM ,lM ]T ,

where ip is the first node involved in the pth measurement,
jp is the second node involved in the pth measurement, etc.,
and that (ip, lp), (jp, lp), (jp, kp), (ip, kp) are pairs of sen-
sors which can make measurements. Next, we denote H to
be the set of all pairs (a, b) of sensors which are involved

in the M RIMs. Finally, we denote x to be the vector list-
ing all the unique ‘in-range’ pair-wise distances,

x = [da1,b1 , . . . , daP ,bP ]T , (1)

where (a1, b1), . . . , (aP , bP ) is an ordering of set H, and
P = |H| ≤ N(N−1)

2 , with equality only if all nodes are
fully connected.

2.1.2. Linear RIM Model: Matrix A relates x and r,

r = Ax + εr. (2)

where A is an M ×P matrix, and εr is an error vector. Row
p of matrix A is zero except for four positions: it is equal to
1 in the positions corresponding to pairwise distances dip,lp

and djp,kp
, and it is equal to−1 in the positions correspond-

ing to pairwise distances djp,lp and dip,kp
.

2.1.3. Number of Independent RIMs: In [4], it
was proven that for a fully connected network,
R (

AT
)

= N(N−3)
2 . This would be N less than P

(the number of columns of A), since P = N(N−1)
2 in a

fully connected network. While proofs are not available for
the non-fully-connected networks, in our range-limited con-
nectivity graphs, simulations show that R (

AT
)

= P −N .
Because matrix AT is low-rank, we cannot simply estimate
pairwise distances x directly from r without other con-
straints. For example, it can be seen from (2) that if x(0)

is a solution to (2), then x(0) + c1P , c ∈ < is also a solu-
tion, where 1P is the P -length vector of ones.

2.1.4. Singular Value Decomposition of A: In particu-
lar, assume the singular value decomposition (SVD) of A is
given by

A = UΛV T =
[

U1 U0

] [
Λ1 0
0 0

] [
V T

1

V T
0

]
(3)

where U is the M ×M matrix of the left singular vectors,
Λ is the M × P singular value matrix, and V is the P × P
matrix of the right singular vectors. We assume that A has
P − N non-zero singular values and N zero singular val-
ues. Assuming that singular vectors are sorted from highest
to lowest singular value magnitude, U , Λ, and V are parti-
tioned as in the right-most side of (3). Thus V1 are the P−N
non-zero-valued and V0 are the N zero-valued right singu-
lar vectors, Λ1 is a diagonal matrix of the P −N non-zero
singular values, and U1 are their corresponding left singu-
lar vectors.

2.1.5. Signal and Null Spaces: The columns of V form a
basis for <P , i.e., the space of pairwise distances. In partic-
ular, V1 spans the row (or RIM ’signal’) space of A, and V0

spans its null space. In other words, if we denote x(k)
1 to be

a solution to (2), then x(k)
1 +V0α0, for any α0 ∈ <N is also



a solution. To be more explicit, write a pairwise distance es-
timate x(k) ∈ <P ,

x(k) = x1 + x(k)
0 = V1α1 + V0α

(k)
0 (4)

where α
(k)
0 ∈ <N , α1 ∈ <P−N , x1 = V1α1, x(k)

0 =
V0α

(k)
0 , and the superscript (k) identifies an iteration num-

ber, to be introduced in Section 3.3.

2.1.6. Estimation of x1: The vector x1 can be well-
determined from RIMs. Consider estimating α1 ∈ <P−N

by minimizing the squared-error cost function,

S1 = ‖r−AV1α1‖2. (5)

Cost S1 has a minimum at α1 = S−1
1 UT

1 r. This solution
exists since AV1 = U1Λ1 is full rank. As a result,

x1 = Π1r, where Π1 = V1S
−1
1 UT

1 . (6)

2.2. Received Signal Strength Measurements

Measured RSS, Pi,j , can be measured on very simple
wireless devices. We assume in this paper that a model for
RSS as a function of distance is known, i.e., that the path
loss exponent for the environment of interest is known. As
a result, we talk about the distances δi,j that are estimated
from Pi,j , as described in detail in [3].

Distance estimates δi,j are assumed to have very signifi-
cant errors. In fact, the motivation for the proposed method
assumes that RSS measurements are very noisy. We note
that for the channel measured in [3], the standard deviation
of δi,j is 53% of the actual distance between i and j.

We assume that RSS measurements and the associated
pairwise distance estimates are available from each pair in
H. Thus the full RSS distance estimate vector is

δ = [δa1,b1 , . . . , δaP ,bP
]T .

In the proposed method, δ is used solely for the estimation
of x(0)

0 . A simple initial null-space distance estimate x(0)
0

can be formed by projecting δ onto the null space of A,

x(0)
0 = Π0δ, where Π0 = V0V

T
0 (7)

This projection can also be interpreted as the least-squared
error estimate of α

(0)
0 in (4) from the RSS measurements δ.

3. Localization Algorithm

The proposed algorithm (Fig. 1) has three stages:

1. Forming an initial pairwise distance estimate x(0) as
described in Section 3.1.

2. Estimating coordinates {zk
i } for sensors i = 1 . . . n

given x(k), as described in Section 3.2.

3. Calculating an updated pairwise distance estimate
x(k+1) = Π1r + Π0δ

(k+1) (Section 3.3) and return-
ing to Step 2, until the stopping criteria is met.

3.1. Initialization

A simple scheme for initialization would be to set x(0) =
Π1r + Π0δ for iteration k = 0, as suggested by (6) and (7).
However, RSS distance estimates δ tend to be biased sig-
nificantly lower than the actual distance due to the biasing
effect of neighbor selection [5]. In order to provide a less bi-
ased initialization point, the proposed algorithm sets x(0) as

x(0) = Π1r + Π0δ̃ (8)
δ̃ = max (Π1r + Π0δ, δ)

where max(·, ·) is an element-wise maximum of its two
vector arguments. Equation (8) is further motivated by sim-
ulation in Section 4.3.

3.2. Estimation of Coordinates

From pairwise distance estimates x(k), any distributed
location estimator might be used to estimate coordinates. In
this paper, we apply the dwMDS algorithm, a distributed
sensor coordinate estimation algorithm which minimizes a
non-linear weighted least-squared error cost function via
majorization [5, 6]. Each sensor participates in a round
by updating its own coordinate to minimize a local cost
function, and communicating its new estimate to its neigh-
bors. Each round of the algorithm is guaranteed to de-
crease the cost function. The complexity of the algorithm
is O(NKL), where K is the average number of neighbors,
and L is the number of iterations.

3.3. Iterative Update of Distances

An iterative update scheme is a means to improve the
null space contribution x(k)

0 to the pairwise distance vec-
tor x(k). Since estimation of coordinates from pairwise dis-
tances is overdetermined, the coordinate estimate can pro-
vide information about which distance estimates were most
reliable. In the proposed method, the updated pairwise dis-
tance vector is given as

x(k+1) = Π1r + Π0δ
(k+1) (9)

where δ(k+1) = [δ(k+1)
a1,b1

, . . . , δ
(k+1)
aP ,bP

]T

and δ
(k+1)
i,j = ‖z(k)

i − z(k)
j ‖.

3.3.1. Stopping Condition: The iteration stops when ei-
ther k ≥ kmax or x(k) no longer shows increasing agree-
ment with the RIM data. Specifically, defining the squared-
error cost S(k) = ‖r − Ax(k)‖2, stop at iteration k − 1 if
k ≥ 1 and S(k) > S(k−1). In the simulations in Section 4,
we use a maximum number of iterations of kmax = 10.



4. Simulation Results

We simulate in Matlab the proposed localization algo-
rithm. For each trial, we first generate for RIMs with the
model that εr are independent, zero-mean Gaussian with
variance σ2

r = (0.20m)2. Note this model is known to be
unrealistic, as noise in [1] was shown to be multi-modal
in distribution, and future research must evaluate the ef-
fects of non-Gaussian RIM noise. We also generate Pi,j as-
suming the log-normal RSS model with channel parame-
ter σdB/np = 1.7 (as measured in [3]). We assume a pair
(i, j) is connected if Pi,j > P0, the receiver threshold. Here,
P0 is chosen such that the nominal range is 6 meters, i.e.,
the probability of being ‘in range’ at a distance of 6 meters
is 50% [6]. This receiver connectedness determines which
RIMs and RSS measurements can physically be measured
in the sensor network, as described in Sections 2.1 and 2.2.

We consider a 10m by 10m square deployment area. In
all geometries, we use N = 25 total sensors, and assume
that m = 4 sensors closest to each corner of the square de-
ployment area are reference devices. We note that execu-
tion time for one trial is about 1.6 seconds on a AMD Tu-
rion 64-based laptop running Windows XP.

4.1. Two Example Trial Runs

First, for a 5 by 5 grid of sensors, we plot a single trial in
Fig. 2(a). Second, for a random deployment of N = 25 sen-
sors (each was independently selected from a uniform dis-
tribution on [0, 10]2), we plot a single trial in Fig. 2(b). In
both figures, coordinate estimates z(k)

i are plotted for k =
0 . . . 9 and for each unknown-location sensor i = 1 . . . n.
Each figure shows the improvement gained through the it-
erative update, although errors remain in the final solution.
Fig. 2(a) demonstrates something often seen in the simu-
lation trials, that a sensor’s coordinate errors are very cor-
related with those of its neighbors. Fig. 2(b) shows two or
three sensors with large errors; other trials confirm that this
problem is most likely for sensors outside of the convex hull
of the reference sensors.

4.2. Estimator Mean and Covariance

Next, in the same two sensor deployments (from Sec-
tion 4.1), 100 trials are run to determine the estimator mean
and covariance, which are shown in Figs. 3(a) and (b). As a
summary, let the mean bias b̄ and the RMS standard devia-
tion σ̄ of the estimator be defined as b̄ = 1

n

∑n
i=1 ‖z̄i−zi‖,

and σ̄ = [tr C/n]1/2, where z̄i is the mean of the final esti-
mates of sensor i over all trials, zi is the actual location of
sensor i, and C is the covariance of the coordinate estimates
over all trials. For the grid geometry in Fig. 3(a), b̄ = 0.10
and σ̄ = 0.51. For the random deployment in Fig. 3(b),
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Figure 2. Actual coordinates (×) and coordi-
nate estimates z(k)

i (•, darker for higher k), for
(a) 5× 5 grid, and (b) random deployment.

b̄ = 0.15 and σ̄ = 0.32. Note that the sensors near or out-
side of the convex hull of the reference sensors, contribute
the bias and standard deviation of location error.

4.3. Remaining Local Minima Problem

To help judge the severity of the local optima that ham-
per the performance of the iterative update scheme, we test
two schemes to initialize x(0) instead of using (8):

1. Oracle: In this clearly unrealistic case, use the actual
distance vector x, and set x(0) = Π1r + Π0x.

2. LS Initialization: Simply use the RSS distance vector
δ (rather than δ̃), and set x(0) = Π1r + Π0δ.

The oracle initialization provides a lower bound on the
best that could be done with a RIMs-based indirect coordi-



nate optimization method. The LS initialization shows how
much worse our iterative update method would perform if
initialized with less accurate pairwise distance estimates.

Both alternate initialization methods are simulated in the
5 by 5 grid geometry (with other settings unchanged) for
100 trials. For the oracle initialization, b̄ = 0.004 and σ̄ =
0.065. For the LS initialization, b̄ = 0.34 and σ̄ = 0.60.
Since initialization clearly has a significant impact, these re-
sults show that local minima are an issue for the proposed
method. The results from LS initialization motivate the use
of (8) as an initialization method. Also, better initialization
may be a fruitful source of future accuracy increases.

5. Conclusion and Future Work

The proposed method achieves in simulations RMS lo-
calization errors of about half of a meter and lower. Indi-
rect coordinate optimization, by using pairwise distances as
an interim step, offers a useful tradeoff between computa-
tional complexity and accuracy; and may in the future en-
able a fully distributed RIM-based localization estimator.

Outlier elimination may be a key strategy for improved
performance. From simulation experiences, large RSS er-
rors can ‘push’ a sensor far away from its actual coordi-
nate, and the iterative update may not be able to recover.
The dwMDS algorithm includes an adaptive mechanism in
which pairwise distance estimates that appear too low or too
high are ignored [5]. Possibly, the coordinate estimation al-
gorithm could provide side information on which distances
are least reliable so that their effects can be negated.

Full distribution of the algorithm will require significant
future work. The dwMDS is already fully distributed. The
vector projections required by the subspace projection op-
erations can be computed quickly by randomized gossiping
[7]. However, fully distributed calculation of the projection
matrices will be required. These may be formulated as least-
squares problems involving matrix A, which has significant
local structure – A is zero for pairs involving non-neighbors.
Distributed calculation will be less expensive than for ran-
domly structured sparse matrices. For large N , a hybrid ap-
proach might be used in which subsets of sensors estimate
their maps separately and then fuse them together.
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