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Abstract
The peer-to-peer nature of a wireless sensor net-

work presents the opportunity for accurate and low-
configuration sensor location estimation. Range mea-
surements are made between pairs of sensors, regard-
less of their a priori coordinate knowledge. This paper
quantifies via the Cramér-Rao Bound (CRB) variance
limits on location estimators which use measured time-
of-arrival (TOA) or received signal strength (RSS).
An extensive campaign measures TOA and RSS in a
44-device multipoint-to-multipoint indoor network for
input into maximum-likelihood estimators (MLEs) of
location. RMS location errors of 1.2 and 2.2 m are
demonstrated using TOA and RSS, respectively.

1 Introduction

Sensor location estimation in wireless sensor net-
works is both a requirement and an opportunity. To be
useful, sensor data must be accompanied by location.
Location estimation must be enabled in a manner con-
sistent with the low power, low cost and low configura-
tion requirements of sensor networks. The low power
and low cost requirements preclude including GPS in
each device, and the low configuration requirement
prevents installation of a dense network of base sta-
tions. A low transmit power device may only be able
to communicate with its nearby neighbors. However,
when all devices in the network measure range to their
neighbors, and a small proportion of devices, which we
call reference devices, have a priori information about
their coordinates, we have the opportunity to enable
accurate sensor location estimates. We call this rela-
tive location estimation since it uses range measure-
ments predominantly between pairs of devices of which
neither has absolute coordinate knowledge.

Distributed algorithms [1] [11] [13] are proposed to
locate devices in such wireless sensor networks using
parallel and iterative estimation algorithms. If a cen-
tral processor can be deployed, convex optimization
[2] can solve a set of geometric constraints, or MLEs
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can be employed, as reported for sensors that measure
angle-of-arrival and TOA [5] or RSS only [8].

This paper focuses on the sensor location accuracy
possible in networks of devices capable of peer-to-peer
RSS or TOA measurements. The radio channel is no-
torious for its impairments [6] [3], thus accurate RSS
or TOA measurements are by no means a given. The
CRBs presented in this article provide an ability to de-
termine if the location accuracy necessary for a partic-
ular application is possible using either RSS or TOA.

First, we state the location estimation problem and
model assumptions in Section 1.1, and derive the CRB
and MLEs for the RSS and TOA cases in Sections 2
and 3. Then, we present an extensive measurement
campaign in Section 4, which we use to verify the chan-
nel model assumptions and to test the TOA and RSS
relative location MLEs.
1.1 Estimation problem statement

We assume a wireless sensor network of M ref-
erence devices and N − M devices with unknown-
location, which we call blindfolded devices. The
relative location problem is the estimation of θ =
{x1, . . . , xN−M , y1, . . . , yN−M} given the known coor-
dinates, {xN−M+1, . . . , xN , yN−M+1, . . . , yN}. In the
TOA case, Ti,j is the measured TOA between devices i
and j in (s), and in the RSS case, Pi,j is the measured
received power between devices i and j in (mW). The
set H(k) ⊂ {1, . . . , N} is the set of all devices with
which device k has measured a range. By symmetry,
if l ∈ H(k) then k ∈ H(l), and clearly k /∈ H(k). If re-
ciprocal measurements (from i to j and then from j to
i) are made, we assume that they have been averaged
together and set to Ti,j . For simplicity we consider
Ti,j and Pi,j to be upper triangular.

We assume that Ti,j is Gaussian distributed,

Ti,j ∼ N (di,j/c, σ
2
T ), di,j =

√
(xi − xj)2 + (yi − yj)2

where c is the speed of light, and σ2
T is not a function of

di,j . We assume that Pi,j is log-normal, thus the ran-
dom variable Pi,j(dBm) = 10 log10 Pi,j is Gaussian,

Pi,j(dBm) ∼ N (P̄i,j(dBm), σ2
dB) (1)

P̄ij(dBm) = P0(dBm)− 10n log10(di,j/d0)



where Pi,j is the power received at device i transmitted
by device j, P̄i,j(dBm) is the mean power in dBm, and
Zi,j(dB) is the shadowing gain (loss) which is Gaus-
sian when expressed in dB. The mean received power
is a function of P0(dBm), the free-space received power
in dBm at a reference distance d0, the path loss ex-
ponent n, and the distance di,j . We assume that the
model parameters d0 and n are known or are estimated
for the environment of interest. For simplicity, we as-
sume that the data Ti,j (and Pi,j) are independent
∀i, j.

These model assumptions will be shown to be valid
in Section 4.1, using the literature and the results of
the measurement campaign. In the next sections, we
first use these model assumptions to derive the CRB
and MLE for both the RSS and TOA cases.

2 CRB for coordinate estimation
The CRB provides a lower bound on the covari-

ance matrix of any unbiased estimator of θ. The
CRB is the inverse of the Fisher information matrix,
F = −E

[∇θ(∇θl(θ))T
]
, where l(θ) = log fp|θ(P|θ) is

the log of the joint density function conditional on θ.
Since θ is a concatenation of x and y vectors, F par-
titions in both the RSS and TOA cases,

FRSS =
[

FRxx FRxy

FT
Rxy FRyy

]
, FTOA =

[
FTxx FTxy

FT
Txy FTyy

]
.

In the RSS case,

fp|θ(P|θ) =∏N−1
i=1

∏
j∈H(i)

j<i

10/ log 10√
2πσ2

dB

1
Pi,j

e
− b

8

�
log

d2
i,j

d̃2
i,j

�2

where b =
(

10n
σdB log 10

)2

, d̃i,j = d0

(
P0
Pi,j

)1/n

.

To see the physical meaning behind the measured
power, consider that d̃i,j has units of (m) and is actu-
ally the MLE of range di,j given Pi,j . Thus,

l(θ) =
N−1∑
i=1

∑
j∈H(i)

j<i


C1 − b

8

(
log

d2
i,j

d̃2
i,j

)2

 (2)

where C1 is a term which is constant w.r.t. θ. The
2nd partial derivative of (2) w.r.t. θr and θs will be
a summation of terms if θr and θs are coordinates of
the same device k, but will be only one term if θr and
θs are coordinates of different devices k and l, k �= l.
For example,

∂2l(θ)
∂xk∂yk

= −b
∑

i∈H(k)
(xi−xk)(yi−yk)

d4
i,k

[
− log d2

i,k

d̂2
i,k

+ 1
]

∂2l(θ)
∂xk∂yl

= −bIH(k)(l)
(xl−xk)(yl−yk)

d4
l,k

[
log d2

l,k

d̃2
l,k

− 1
]

where IH(k)(l) = 1 if l ∈ H(k) and 0 otherwise.
All of the 2nd partial derivatives depend on a term,
log(d2

i,k/d̃
2
i,k), which has an expected value of zero.

The elements of FRSS become

((FRxx))k,l =

{
b
∑

i∈H(k)
(xk−xi)

2

[(xk−xi)2+(yk−yi)2]2
k = l

−b IH(k)(l)
(xk−xl)

2

[(xk−xl)2+(yk−yl)2]2 k �= l

((FRxy))k,l =

{
b
∑

i∈H(k)
(xk−xi)(yk−yi)

[(xk−xi)2+(yk−yi)2]2
k = l

−b IH(k)(l)
(xk−xl)(yk−yl)

[(xk−xl)2+(yk−yl)2]2 k �= l

((FRyy))k,l =

{
b
∑

i∈H(k)
(yk−yi)

2

[(xk−xi)2+(yk−yi)2]2
k = l

−b IH(k)(l)
(yk−yl)

2

[(xk−xl)2+(yk−yl)2]2
k �= l

For the TOA case, the derivation is very similar
and is omitted for brevity. The elements of the sub-
matrices of FTOA are given by

((FTxx))k,l =




1
c2σ2

T

∑
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2
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Note FRSS is proportional to n/σdB while FTOA

is proportional to 1/(c2σ2
T ). These two signal-to-noise

ratio quantities directly affect the CRB. Also, in the
TOA case, the dependence on the coordinates is in
unitless distance ratios. These indicate that the size
of the system can be scaled without changing the CRB
as long as the geometry is kept the same. However, in
the RSS case, due to the d4 terms in the denominator
of each term ofFRSS the variance bound must increase
with to the size of the system even if the geometry is
kept the same. These scaling characteristics indicate
that TOA will be preferred for sparse networks, but at
some high density, RSS can perform as well as TOA.
2.1 Existing location system example

Consider the simple case when device 1 is blind-
folded and devices 2 . . .N are references. This exam-
ple is equivalent to many existing location systems in
the literature, and a bound for the variance of the
location estimator has been derived in the TOA case
[12]. There are only two unknowns in this case, x1 and
y1. The CRB for location estimators in this example
we denote σ2

1 . In the RSS case,

E
[
(x̂1 − x1)2 + (ŷ1 − y1)2

] ≤ σ2
1 = FRxx+FRyy

FRxxFRyy−F 2
Rxy

σ2
1 = 1
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Figure 1: σ1 (m) for the example system vs. the coor-
dinates of the single blindfolded device, for (a) RSS with
σdB/n = 1.7, or (b) TOA with c σT = 1.

where the distance d1⊥i,j is the shortest distance from
the point (x1, y1) to the line between device i and de-
vice j. For the TOA case,

σ2
1 = c2σ2

Tm


N−1∑

i=2

N∑
j=i+1

(
d1⊥i,jdi,j

d1,id1,j

)2


−1

(3)

The ratio d1⊥i,jdi,j/(d1,id1,j) has been called the ge-
ometric conditioning Ai,j of device 1 with respect to
references i and j [12]. Ai,j is the area of the parallelo-
gram formed by the vectors from device 1 to reference
i and from device 1 to reference j, normalized by the
lengths of the two vectors. Thus the geometric dilu-
tion of precision (GDOP), defined as σ1/(cσT ), is

GDOP =
√

m∑−1
i=−m+1

∑0
j=i+1 A2

i,j

,

which matches the result in [12]. The bound in (3) is
constant with scale if Ai,j is unchanged ∀i, j.

Contour plots of σ1 for the RSS and TOA cases are
shown in Fig. 1 when there are four reference devices
located in the corners of a 1m by 1m square. The min-
imum value in Fig. 1(a) is 0.27. Since the CRB scales
with size in the RSS case, the standard deviation of

location estimates in a traditional RSS system with
σdB/n = 1.7 is limited to about 27% of the distance
between reference devices. This performance has pre-
vented use of RSS in many existing location systems
and motivates the use of relative location information.
In the TOA case in Fig. 1(b), σ1 ∝ cσT , thus cσT = 1
was chosen for ease of calculation.

3 Relative location MLEs
A maximum likelihood estimation algorithm is

shown in [8] for the two-dimensional RSS case. Here,
we consider a bias-reduced MLE for the RSS case,

θ̂ = arg min
N−1∑
i=1

∑
j∈H(i)

j<i

(
ln

d̃2
i,j

C2d2
i,j

)2

(4)

where C = exp
[
0.5(σdB log 10)2/(10n)2

]
. To see the

bias-reduction, consider the case when M = 1, N = 2.
With only two devices, (4) will place the blindfolded
device such that d2

i,j = d̃2
i,j/C

2 . Since E[d̃i,j ] = C di,j ,
(4) makes the separation of the two devices unbiased.

The RSS bias-reduced MLE is still a biased esti-
mator. For the example in Section 2.1 with M = 4
and N = 5, the bias is very high near the edges of
the square area. Shown in Fig. 2 is the estimated bias
gradient norm of x̂1, which can be used to find the
uniform CRB [4]. Intuitively, (4) tries to force the ra-
tio d̃2

1,j/(C
2d2

1,j) close to 1. When d̃2
1,j is small, the

estimator has little freedom to place device 1 with re-
spect to device j. In the limit as the actual locations
of devices 1 and j become equal, the MLE will locate
device 1 at device j with zero variance. It makes sense
that the simulated bias gradient norm is close to 1 at
the corners of Fig. 2.

For the TOA case, the MLE is given by

θ̂ = arg min
N−1∑
i=1

N∑
j=i+1

(cTi,j − di,j)
2 . (5)

4 Channel measurement experiment
In this section, we describe the measurement sys-

tem and experiment and show why the channel model
assumptions made in Section 1.1 are valid. The chan-
nel measurements are conducted in the Motorola fa-
cility in Plantation, Florida in a 14m by 13m cubicle
area. The cubicles have 1.8m high walls and are occu-
pied with desks, bookcases, metal and wooden filing
cabinets, computers and equipment. There are also
metal and concrete support beams within and outside
of the area. Forty-four device locations are identified
and marked with tape.

The measurement system uses a wideband direct-
sequence spread-spectrum (DS-SS) transmitter (TX)
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Figure 2: Bias gradient norm of the RSS MLE of x1 from
(4) for the example system of Section 2.1.

and receiver (RX) (Sigtek ST-515). They are oper-
ated synchronously using two Datum ExacTime GPS
& rubidium-based oscillators. The TX outputs an un-
modulated pseudo-noise (PN) signal with a 40 MHz
chip rate, code length 1024, center frequency fc of
2443 MHz, and TX power Pt of 10 mW. The RX takes
complex samples at 120 MHz, downconverts, and cor-
relates them with the known PN signal. Both TX
and RX use 2.4 GHz sleeve dipole antennas kept at a
height of 1m above the floor. The antennas have an
omni pattern in the horizontal plane and a measured
gain of 1.1 dBi. Periodic time calibrations are made to
enable a time base accuracy of 1-2 ns, and power cali-
brations are done ensure accurate RSS measurement.

During the campaign, the channel between each
pair of device locations is measured. First, the TX
is placed at location 1 while the RX is moved to lo-
cations 2 through 44. Then the TX is moved to lo-
cation 2, as the RX is moved to locations 1 and 3 to
44. At each combination of TX and RX locations, the
RX records five wideband channel measurements. All
devices are in range of all other devices, so a total
of 44*43*5 = 9460 wideband channels are measured.
Since we expect reciprocity, each link has a total of 10
measurements that can be averaged.
4.1 Estimating TOA and RSS

The wideband radio channel is typically modeled
as a sum of attenuated, phase-shifted, and time de-
layed multipath impulses [3] [10]. The power-delay
profile (PDP) output of the Sigtek measurement sys-
tem, due to its finite bandwidth, replaces each impulse
of the channel impulse response with the autocorrela-
tion function of the PN signal RPN (τ), a triangular
peak 2/RC wide. The line-of-sight (LOS) component,
with TOA di,j/c, can be obscured by non-LOS mul-
tipath that arrive within 2/RC after the LOS TOA.
If the LOS component is attenuated more than the
early-arriving multipath, it can be difficult to distin-

quish the LOS TOA.
We estimate the LOS TOA by template-matching

[9], in which samples of the leading edge of the PDP
are compared to an oversampled template of RPN (τ).
The TOA estimate t̃i,j is the delay that minimizes the
squared-error between the samples of the PDP and the
template. Due to the fact that the non-LOS multipath
are delayed in time, t̃i,j usually has a positive bias. We
estimate the bias to be the average of t̃i,j−di,j/c, ∀i, j
which in these measurements is 10.9 ns. Subtracting
out the bias, we get the unbiased TOA estimator ti,j .
Finally, the average of the 10 ti,j measurements for
the link between i and j we call Ti,j . The measured
standard deviation, σT , is 6.1 ns.

It has been shown that a wideband estimate of re-
ceived power, pi,j , is obtained by summing the pow-
ers of the multipath of the PDP [10]. This wideband
method reduces the frequency-selective fading effects.
The geometric mean of the 10 pi,j measurements for
the link between i and j, called Pi,j , reduces fading
due to motion of objects in the environment. Shad-
owing effects, caused by permanent obstructions in the
channel, remain predominant in Pi,j since sensors are
assumed to be stationary. Shadowing loss is often
reported to be a log-normal random variable [3][10],
which leads to the log-normal shadowing model in (1).
The measured Pi,j match the log-normal shadowing
model in (1) with n = 2.30 and σdB = 3.92 dB, using
d0 = 1m. The low variance may be due both to the
wide bandwidth and averaging, and to the homogene-
ity of the measured cubicle area.

Pi,j and Ti,j for the link i-j is a random function not
of time but of place. This is because the obstructions
between devices i and j that cause shadowing and ob-
struction of the LOS don’t change over time. However
the two devices placed the same distance apart in a
different area would have a different realization. Still,
we can experimentally see the log-normal and Gaus-
sian distributions of the RSS and TOA measurements
if we examine Pi,j(dBm)− P̄i,j(dBm) and Ti,j−di,j/c.
Both are demonstrated to have a very close fit to the
Gaussian distribution using quantile-quantile plots [7].

4.2 Experimental results
The RSS and TOA measurements Pi,j and Ti,j are

input to the MLEs in (4) and (5). The minimum
in each case is found via a conjugate gradient algo-
rithm. The estimated device locations are compared
to the actual locations in Fig. 3(a) and (b). To gen-
eralize the results, the RMS location error of all 40
unknown-location devices is 2.18m in the RSS case
and 1.23m in the TOA case. Since shadowing and
non-LOS errors are not ergodic, calculating the MLE
variances requires several measurement campaigns in



different areas. This was not possible due to time lim-
itations. But we note that the root mean variance
bound, (

∑40
i=1 σ2

i /40)
1/2, is equal to 0.76m for the RSS

case and 0.69 in the TOA case. We also notice that
the devices close to the center are located more accu-
rately than the devices on the edges, particularly in
the RSS case. Devices at the edges have fewer nearby
neighbors to benefit their location estimate.

5 Conclusion
In a measured network in an office area, we show

location errors in the RSS case about twice those ob-
served in the TOA case. From the CRB results, we
know that at some density, a location system can per-
form as well using RSS as TOA. Since RSS is a less
costly feature to implement in hardware, the results
are important to the development of low-cost wireless
sensor networks. In general, the results in this pa-
per should allow designers of wireless sensor networks
to determine if the accuracy possible can meet their
requirements. Future research may use the CRB to
evaluate new coordinate estimators. Also, if a model
of the joint distribution of TOA and RSS can be deter-
mined, then a CRB can be determined for estimators
using both TOA and RSS data.
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