
A SystemVerilogCSP Front-End
to an Asynchronous ASIC Flow

By:
Arash Saifhashemi, Mehrdad Najibi, Yujun Cao, Chen Qian, Gang Wu, Aman

Mehra, Roberto Vera, Boyi Huang, and Peter A. Beerel
USC Asynchronous CAD/VLSI Group

http://async.usc.edu/

ICCAD (MSCAS) 2012



2

Agenda

•Motivation
•SystemVerilogCSP (SVC) for modeling
•Conversion to RTL (SVC2RTL)
•Proteus front-end

•Mixed mode simulation
•Multiple abstraction levels

•Mixed sync/async simulation



3

Motivation

• Desirable features
• Concurrency e.g.: A=B || (C=D  ; E=F)
• CSP-like communication actions
• Timing e.g.: A=B after 5ns
• Support for various levels of abstraction
• Support by commercial CAD tools
• Ease of adoption by synchronous

designers

• Mixed async-sync circuits

• Interfacing at multiple abstraction levels

• Use as Proteus front-end

• Publicly available (open source)

Gate level
(Netlist)

High level
(Behavioral)

Transistor level
(Netlist)

Synthesis

Simulation/
Verification



4

Previous Work

• New Language inspired by CSP
• Have limited CAD tool support - LARD [Edwards et al], Tangram [Berkel et al.],

CHP [Martin], Haste [Peeters et al.]

• Software languages
• No inherent support for timing, limited CAD tool support - JCSP [Welch et al.]

• VHDL
• Fine grained concurrency is cumbersome [Frankild et al, Renaudin et al, Myers

et al]

• VerilogCSP
• Verilog Programming Language Interface: slow; cannot handle multi-channel

modules [Saifhashemi et al]

• Verilog macros are cumbersome and do not support extensions

• SystemC [Koch-Hofer, Shanker, …]
• SystemVerilog [Tiempo]



5

SystemVerilogCsp (SVC)

• SystemVerilog interface abstracts channel wires as well as

communication protocol

• Send/Receive
• Blocking tasks

module Sender (interface R);
parameter WIDTH = 8;
logic [WIDTH-1:0] data;
always
begin
//produce data

R.Send(data);
end
Endmodule

module Receiver (interface L);
parameter WIDTH = 8;
logic [WIDTH-1:0] data;
always
begin

L.Receive(data);
//consume data

end
Endmodule

Abstract
communication

Sender ReceiverSVC Interface



6

Waveform view

Receiver
pending on

Receive

Sender performs
Send,

Communication
happens

No one is
Sending or
Receiving

Sender
pending on

Send

Receiver
performs
Receive,

Communication
happens

//Sender (DataGen)
always

begin
#Delay;
R.Send(data);

End

//Receiver
always

begin
L.Receive(data);
#FL;
R.Send(data);
#BL;

end



Supports Mixed-Levels of Abstraction

• Completed blocks
can be simulated
with others still at
behavioral level

module mp_fb_csp (interface L, interface R);
logic data;
always
begin

L.Receive(data);
R.Send(data);

end
endmodule

module mp_fb_gate (interface L, interface R);
celement ce(L.req, pd_bar, c);
not inv (pd_bar, pd);
cap_pass cp (c, L.ack, R.ack, pd, L.data, R.data);

endmodule

Block1 Block2

C

CD

PD

P

CP
C

Lreq

Lack

Rack

Rreq

RdataLdata

Block3

Gate-level
description of

the buffer
(After synthesis)

High-level description
of the buffer

(Before synthesis)

Same abstract
description using

Send/Receive



8

Peek and Probe [CHP, Martin]

• Peek

• Sampling without committing

to communication

• Probe

• Is the channel idle?

• Used for arbitration

wait(ch0.status!=idle && ch1.status!= idle);
winner = Arbitrate (ch0.status, ch1.status);

if(winner == 0)
ch0.Receive(d);

if(winner ==1)
ch1.Receive(d);

P1

P2

PArbiter

P Q

task Peek (output logic[WIDTH-1:0] d);
wait (status == s_pend );
d = data;

endtask

0



9

Split Communication

• Handshaking of different channels
might be interleaved

• Modeling interleaved behavior for
early system evaluation

module buf (interface L, interface R);
logic data;
always
begin

L.Receive(data);
R.Send(data);

end
endmodule

module buf_split (interface L, interface R);
logic data;
always
begin

L.SplitReceive(data, 1);
R.Send (data);
L.SplitReceive(data, 2);

end
endmodule



10

One-To-Many and One-To-Any Channels

• One sender to multiple receivers
• Option 1: Use a copy block
• Option 2: Shared channels [JCSP, Welch

et. al]
• Sender and receiver send and receive

as if the channel is a normal one-to-
one channel
• Top level module specifies the channel

is broadcast

• One sender to multiple receiver -
JCSP [Welch et. al]
• Only one of the receiver participates in

communication

P

Q1

Q2

Q3

CopyP

Q1

Q2

Q3
Broadcast
Channel

P

Q1

Q2

Q3

One to any
channel



11

Agenda

•Motivation
•SystemVerilogCSP (SVC) for modeling
•Conversion to RTL (SVC2RTL)
•Proteus front-end

•Mixed mode simulation
•Multiple abstraction levels

•Mixed sync/async simulation



12

SVC Front-end

• The industrial version of Proteus uses CAST (based
on CHP) as front-end.



13

The e1ofN_M  Interface

• CAST and Proteus naming convention for PCHB
template [Lines’98]

• An M size array of e1-of-N channels

• Only synthesizable signals are visible to the synthesizer



14

SVC2RTL Synthesizable Template

module CondAccumulator (
e1of2_1.In C1,C2,C3,
e1of2_16.In I1,I2,
e1of2_16.Out O);

logic [I1.W-1:0] x1;
logic [I2.W-1:0] x2;
logic[O.W-1:0] sum;
logic c1, c2, c3;
always begin

sum = 0; //Reset value
forever begin
x1=0; x2=0; //Default values
fork
C1.Receive(c1);
C2.Receive(c2);
C3.Receive(c3);
join
if (c1) I1.Receive(x1);
if (c2) I2.Receive(x1);
sum= sum + x1 + x2;
if (c3) O.Send(sum);

end
end

endmodule

• Synthesizable SVC

• Close to RTL

• Limitaitons

• Only one Send/Receive per

channel per iteration

• Delays and fork/join blocks

ignored



15

Conditional Communication
(RECEIVE/SEND Cells)

• Implement conditionality
• RECEIVE:

• E = 1: behaves like a buffer

• E = 0: doesn’t receive from left, but sends  a  dummy token to the right

• SEND

• E = 1: behaves like a buffer

• E = 0: receives from left, doesn’t send to right



16

The Wrapper Module

• SVC2RTL - Creates Top-Level
Wrapper
• Instantiate SEND and RECEIVE cells

• Single-rail on one side

• 1-of-N on other side

• Create and Instantiate RTL Body

• Implements the logic and enables
inputs for SEND/RECEIVE

• Single-rail on both sides

• Each iteration is mapped to one
clock cycle

• Synthesized using RTL synthesizer
• The “Image” netlist

e1_of_N

RTL Interface
(do, value)

RTL
Synthesis



17

The RTL_Body with Synthesizable Tasks

module CondAccumulator (
e1of2_1.In C1,C2,C3,
e1of2_16.In I1,I2,
e1of2_16.Out O);

logic [I1.W-1:0] x1;
logic [I2.W-1:0] x2;
logic[O.W-1:0] sum;
logic c1, c2, c3;
always begin

sum = 0; //Reset value
forever begin
x1=0; x2=0; //Default values
fork
C1.Receive(c1);
C2.Receive(c2);
C3.Receive(c3);
join
if (c1) I1.Receive(x1);
if (c2) I2.Receive(x1);
sum= sum + x1 + x2;
if (c3) O.Send(sum);

end
end

endmodule

Receive: samples value, and asserts do
Send: asserts both value and do
InitDo: assigns 0 to do
InitValue: assigns 0 to value

module CondAccumulator_RTL (
interface C1 ,C2 ,C3 ,I1 ,I2, O,
input CLK, input _RESET );

logic [I1.W-1:0] x1, ff$x1;
logic [I2.W-1:0] x2, ff$x2;
logic [O.W-1:0] sum, ff$sum;
logic c1, ff$c1, c2, ff$c2, c3, ff$c3;
always_ff @ (posedge CLK, negedge _RESET)

if (!_RESET) begin
ff$sum <= '0;

end
else begin
ff$x1 <= x1; ff$x2 <= x2; ff$sum <= sum;
ff$c1 <= c1; ff$c2 <= c2; ff$c3 <= c3;

end
always_comb begin

C1.InitDo; C2.InitDo; C3.InitDo;
I1.InitDo; I2.InitDo; O.InitDo;
O.InitValue;
x1 = ff$x1; x2 = ff$x2; sum = ff$sum;
c1 = ff$c1; c2 = ff$c2; c3 = ff$c3;
x1 = 0; x2 = 0;
C1.Receive(c1); C2.Receive(c2);
C3.Receive(c3);
if (c1) I1.Receive(x1);
if (c2) I2.Receive(x2);
sum = sum + x1 + x2;
if (c3) O.Send (sum);

end
endmodule

Output and
next state logic



18

Proteus-a Flow



19

Agenda

•Motivation
•SystemVerilogCSP (SVC) for modeling
•Conversion to RTL (SVC2RTL)
•Proteus front-end

•Mixed mode simulation
•Multiple abstraction levels

•Mixed sync/async simulation



20

Validation by Co-simulation

•Testbench includes:
•The SVC module
(Golden)

•The output of Proteus
(UUT)

•Data generator at
inputs

•Comparators at outputs



21

Mixed Sync/Async Design

• Asynchronous island with A2S and S2A

Sync
(data, clk, _RESET

Async
(e1ofN_M)



22

S2A and A2S



23

Future Extension

• Addressing single Receive/Send
limitation:

• Create a CDFG

• Map to the classic minimum latency

scheduling under resource constraints



24

Summary and Conclusions

• Asynchronous circuits can/should leverage sync. tools.
• SVC is suitable for channel based async. Circuits.

• Both for modeling and synthesis

• Mixed mode simulation

• Standard and open source

• SystemVerilogCSP for modeling and simulation:

http://async.usc.edu/index.php/research/current/9-systemverilogcsp

Questions: saifhash@usc.edu

• Proteus-a (Academic license): pabeeral@usc.edu


