

Estimating MTBF of Multi-Stage Synchronizers

D. Zar¹, T. Chaney¹, J. Cox¹, S. Beer² and R. Ginosar²

¹Blendics, Inc., St. Louis, Missouri, ²EE Dept., Technion-Israel Institute of Technology, Haifa, Israel Synchronizers Essential in Multi-Synchronous SoCs

- Low-skew, global clock trees problematic
- Survey of proposed SoC design starts*
 - 32% contain > 50 clock domains
 - 12% contain > 100 clock domains
- Each CDC requires reliable synchronization

* Survey by Graham Bell, Director of Marketing, Real Intent, Inc. See: http://www10.edacafe.com/blogs/realintent/2012/09/27/dac-survey-on-cdc-bugs-x-propagation-constraints/

Old Rules of Thumb* Unreliable

- Problematic because of increases in
 - Clock speeds
 - Data rates
 - Number of CDCs
 - Semiconductor process variability
 - Tau (low power $\rightarrow V_m \sim V_t$)
- FO4 no longer predicts tau
- Negative temperature coefficient of V_t

* Two FFs in cascade are almost always enough, but when you are worried, use three.

Determining Synchronizer MTBF

- Intrinsic parameters vary with PVTA
 - Settling time-constant τ_{eff}
 - Number of stages *n*
 - Aperture width $T_W(n)$
- Extrinsic parameters vary with application
 - Clock rate f_C
 - Data transition rate f_D
 - Duty cycle lpha

Determining Synchronizer Parameters

- Physical measurements \rightarrow protracted testing
 - Testing at PVT corners impractical number of runs
 - Testing multi-stage synchronizers interminable
- Circuit simulation \rightarrow automated, pre-fab testing
 - Synchronizer standard-cell designer specifies:
 - Intrinsic parameters: τ_{eff} , n, $T_{W}(n)$
 - Synchronizer standard-cell integrator specifies:
 - Extrinsic parameters: $f_{\rm C}, f_{\rm D}, \, \alpha$
 - MTBF formula for a multi-stage synchronizer needed

Some Multi-Stage Formulas

Over the years, many ways to estimate MTBF in multi-stage synchronizers have been presented in the literature. Here are three common forms:

- Kinnement, Altera and others: MTBF(n) is proportional to waiting n times as long. (2007)
- Kleeman, et al: routing delays and setup time reduce resolving time of each stage. (1987)
- Gabara, et. al: master and slave latches have independent T_W . (1992)

$$\frac{D}{FF1} \xrightarrow{Q_1} FF2 \xrightarrow{Q_2} \underbrace{Q_{n,1}} FFn \xrightarrow{Q_n} \underbrace{Q_n} \underbrace{Q_n}$$

$$MTBF_{Kleeman}(n) = \frac{exp[(nT_C - nt_p)/\tau]}{T_W f_D f_C}$$

$$MTBF_{Gabara}(n) = \tau \frac{exp[(nT_C - 2nt_S^S)/\tau]}{T_W^2 f_D f_C}$$

Simulation vs. Measurement

• Simulating with *MetaACE*, we compared a latch τ with measurements on a 65 nm, low-power circuit ($\tau \pm 5\%$).

Blendics Inc.

Some *MetaACE* results

Comparison of MTBF Results

Published Formulas Conservative

- Existing formulas treat inter-stage coupling conservatively
- Voltage traces leaving metastability
 - V_N is voltage range that covers invalid, next-stage outputs.
 - V_L is voltage range that covers invalid, last-stage outputs.
- For multi-stage synchronizers V_L << V_N and as a result MTBF based on V_L can much greater than that based on V_N
- Therefore must simulate entire synchronizer

Estimation of MTBF by Formula

Predicting Synchronizer MTBF Important

- More multi-synchronous SoC designs
- Low-voltage circuits increase τ
- Low-temperature operation increases τ
- Semiconductor variability increases failure risk
- Failures hard to recognize in silicon
 - Must have accurate MTBF before fab

– MTBF can be calculated from τ_{eff} , *n* and $T_w(n)$

Acknowledgments

- This material is based upon work supported by the National Science
 Foundation under Grant No. 0924010.
- Additional support was provided by the National Innovation Fund, Omaha, NE.

Thanks and questions