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ABSTRACT

Wire latency across the links of a NoC can limit throughput,
especially in deep submicron technology. Stateful pipeline
buffers added to long links allow a higher clock rate, but this
wastes resources on links needing only low bandwidth. In
asynchronous (clockless) NoCs, link pipelining can be done
to only those that will benefit from both increased through-
put and buffering capacity, and is especially useful in hetero-
geneous embedded SoCs. We evaluate two strategies that
determine where link pipeline buffers should be placed in
the topology. The first compares available link bandwidth,
based on physical wirelength, to the throughput needed by
each source-to-destination path, for each link. The second
adds buffers to a link such that its bandwidth is at least equal
to the throughput of a core’s network adapter. These strate-
gies were integrated into our network optimization tool for
an application-specific SoC. Simulations were based on its
expected traffic patterns, floorplan-derived wirelength, and
uses self-similar traffic generation for more realistic behav-
ior. Results show improved large-message network latency
and output buffer delay of the network adapter. There was
a slight power increase with the addition of pipeline buffers,
but our proposal is a complexity-effective improvement by
the power*latency product metric. The results indicate the
strategy of pipelining certain links provides more efficiency
opposed to a ubiquitous addition of buffers.

Categories and Subject Descriptors

B.4.3 [Input/Output and Data Communications]: In-
terconnections—A synchronous/synchronous operation

1. INTRODUCTION

A link of a network-on-chip (NoC) can be pipelined using
latch or register-based buffers when its wire delay is a limit-
ing factor in throughput. This often occurs with long links,
small process technology, and relatively fast clock speeds.
Another benefit to link pipelining comes from the additional
buffering space it provides, assuming a compatible link-level
flow-control. This paper explores the system-level effects of
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link pipelining for an asynchronous (clockless) NoC that has
already been optimized for link-specific bandwidth require-
ments.

Our work focuses on a class of system-on-chips (SoC)
termed application-specific in which the NoC is designed and
optimized for performance and energy qualities with knowl-
edge of the specific tasks done by the SoC. These fixed-
function SoCs can use many specialized cores and are less
flexible than general-purpose chip-multiprocessors or even
platform-SoCs. However, knowledge of the traffic, such as
bandwidth between particular cores, provides an opportu-
nity for optimization.

Many globally-asynchronous locally-synchronous (GALS)
interconnect solutions rely on a clock, either with standard
synchronous clock distribution, or a mesochronous method.
However, an asynchronous network has a number of poten-
tial advantages over a clocked network in a GALS environ-
ment. Standard arguments for asynchronous (async) circuit
design include robustness to process/voltage/temperature
variation, and average-case instead of worst-case performance.
However, there are also NoC-specific considerations. In a
synchronous NoC, the clock tree for all routers and pipeline
buffers can consume significant power as shown in a het-
erogeneous network [1], and in a large CMP (chip multi-
processor) 33% of router power [2]. Many SoC designs have
quite bursty and “reactive” traffic. In this case, async meth-
ods are beneficial in that they consume little dynamic power
during periods of low traffic without relying on clock gating
techniques.

Available bandwidth on each async link is dependent, in
part, on wirelength between sender and receiver. This is
in contrast to clocked networks that commonly use a single
frequency for all routers, which is wasteful on links not re-
quiring high bandwidth. Bandwidth can be modified in an
async NoC by changing the distance between routers, or by
inserting link pipeline buffers on only those links that will
benefit. We explore this concept here, with an evaluation
of insertion strategies for heterogeneous SoC designs, and
offer another knob to turn for the NoC engineer for power—
performance trade-offs.

Figure 1 shows the functional components of an async
NoC, and how it interfaces with the cores of an SoC. A
core has an interface using some type of standard protocol,
such as OCP or AMBA. A network adapter converts this
protocol to the one used in the particular NoC design. It
can also synchronize between two timing domains; in our
work, between the core’s clock domain and the asynchronous
NoC domain. This also enables each core to operate at its
own frequency, as is done in globally-asynchronous locally-



synchronous (GALS) design. The routers are entirely async
and do not use a clock to communicate to each other, or to
the network adapters. An example implementation of this
is presented in [3].
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Figure 1: Component diagram of an asynchronous NoC.
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An asynchronous channel, which transfers data from a
sender to a receiver, is shown in Figure 2. Instead of a syn-
chronous clock signal determining when data should be read,
a handshaking protocol performs this function. Typically a
request and acknowledge signal are used to accomplish this.
The sender generates the request signal to indicate new data
is available. The receiver responds with the acknowledge sig-
nal, indicating data is stored.

There have been a number of NoC proposals for incorpo-
rating storage and/or control logic within inter-router links.
The work of iDEAL [4] showed that the performance penalty
of reduced-complexity routers with few input/output buffers
can be improved by using links containing storage elements.
For a traditional synchronous NoC and mesh topology, mov-
ing storage to the links significantly reduced network power
at a very slight performance reduction. Link pipelining is
described for the Xpipes network components [5]. These
are placed primarily to meet clock timing requirements. Er-
ror detecting link pipeline circuits were designed to achieve
greater NoC robustness while maintaining high through-
put [6]. Elastic buffers, similar to the asynchronous buffers
used here, were used to reduce router complexity by using
the link as a distributed FIFO buffer [7]. Throughput per
energy was improved compared to the baseline architecture.
Elastic and asynchronous link pipelining was explored in [8],
but with an ad hoc approach in determining where and when
a buffer should be inserted on a link. It also did not eval-
uate effects on large-message latency. A number of energy-
efficient proposals, including pipelined links shared between
multiple sources, is given by [9]. It uses a standard mesh
topology and homogeneous SoC for evaluation and does not
address the optimization problem of determining the the
number of buffers on each link. Link pipelining for a delay-
insensitive asynchronous NoC are described in [10], where
multiple virtual channels can overlap packet transmissions
at the flit level to maintain high link utilization. The paper

did not describe the conditions or depth of the pipeline, nor
was a system-level evaluation of the proposal given.

NoC optimization for a particular SoC is a rich topic to
draw from. The COSI framework generates an application-
specific NoC and floorplan, taking as input such constraints
as core areas and average bandwidth between cores [11]. A
heuristic search determines the topology and router config-
uration [12]. It uses floorplan information, router energy
models, and core communication requirements. The results
indicate a significantly reduced power and hop-count versus
the best mesh topologies for a variety of SoC designs. For
the QNoC routers, application-specific optimization is dis-
cussed in [13], but it focuses on mapping logical resources
of a mesh-style topology rather than physical concerns. It
presents a link capacity allocation method, but does not ex-
plain mechanisms for implementing such a method.

A large variety of async networks have been developed,
but these have not provided details of link pipelining, even
when it assumed. Fulcrum Microsystems created a large
asynchronous crossbar to interconnect cores of a SoC [14].
The commercial startup Silistix, based on earlier academic
research, sells EDA software and circuits that provide a cus-
tomized asynchronous NoC, but has no published methods
for the optimization process [15]. The MANGO router [16]
provides both best-effort and guaranteed-service traffic. Faust
[17] is a platform and fabricated chip used in 4G telephony
development, and uses an asynchronous mesh-based NoC [18].
The QNoC group has developed an asynchronous router that
provides multiple service levels and dynamically allocated
virtual channels per level [19].

2. LINK PIPELINING

The goal of pipelining a link is to reduce the cycle-time,
created by wire delay, by inserting a buffer between sender
and receiver. Throughput along a link is increased, at the
expense of single-flit latency and a slight power increase over
only wire repeaters. This organization is illustrated in Fig-
ure 3, where a buffer is placed between a router and network
adapter. Our asynchronous pipeline buffer is composed of a
bank of latches (rather than flip flops) and a handshake con-
troller. This arrangement is called a linear controller or link
buffer. The use of latches saves almost half the area, and
potentially power, compared to a traditional synchronous
flip-flop design. Note, the pipeline buffer does not negate
the need for wire repeaters (large inverters). In this work,
we assume the buffers for the separate input and output
channels are located in the same proximity, but this is not
required. From this point forward, when we use the term
buffer in the context of describing the network configuration
we refer to the collection of latches and controllers for both
channel directions.

Link Buffer z

latches a

ol wire repeaters =

data _——. input  Q

‘é‘} req. | ! > channel »~
N ik o x| >
o ack. Icontroller o
% output %
L.B. hannel 5

Figure 3: Organization of NoC link components showing
detail for a router’s output channel, and the equivalent link
buffer (L.B.) for its input channel.



Our asynchronous router is designed for efficiency and
simplicity, similar to other recent work [20]. Each switch
directs a flit to one of two output ports. With bi-directional
channels, this results in a three-ported router. Possible
topologies include a ring, tree, or an irregular arrangement,
but this work considers trees, as they have the minimal num-
ber of routers. The packet format consists of a single flit
containing source-routing bits in parallel, on separate wires,
with the data bits. We assume a transaction layer protocol
implemented in the network adapter will use the packet’s
data field to transmit control information, such as addresses
and command-type. This is not fundamentally different to
packet formats that serialize a fixed packet size into multiple
flits.

The packet is switched through a demultiplexer controlled
by the most-significant routing bit. The bits are simply ro-
tated for the output packet. The number of required routing
bits is determined by the maximum hop count of a network,
and this study required eight and twelve bits for the two
benchmark designs. This format has the overhead of re-
quiring routing bits with every flit, but does not require
an extra header-flit carrying routing information common
to other packet formats. Its energy overhead is further re-
duced in that series of packets following the same source-to-
destination path do not cause switching in the routing bit
wires.

This design uses an Artisan cell library on the IBM 65 nm
10sf process. We used post-layout back-annotation to eval-
uate the router/link buffer’s latency, HSPICE simulation
for energy measurement, and leakage power from SOC En-
counter. Latency and energy results are shown in Table 1,
and assume 25% of bits switch each flit. Forward latency
is the time between when an input channel receives a re-
quest signal to the time the router/buffer asserts the outgo-
ing channel’s request signal. Throughput is the maximum
cycle-time of the component, assuming zero wire delay.

Table 1: Circuit-level properties of router and link buffer.

Energy/flit Leakage Latency Throughput

(pJ) (uW) (ps) Gflits/sec
Router 1.03 9.76 460 2.1
Link Buf. 0.45 1.21 130 4.1

Insertion Strategies

We propose two strategies to determine under what condi-
tions a link pipeline buffer should be inserted. The first,
path-specific buffer insertion, pipelines links that require a
throughput greater than a fraction, k, of the link’s available
bandwidth (ABW). The intuition behind this is that high-
traffic links will benefit from additional buffering to reduce
contention in the preceding routers, and also to decrease la-
tency from a receiving router’s ack signal (indicating the
next flit may be sent) to a sending buffer req signal (indi-
cating the next flit is ready).

This strategy is termed path-specific because the required
throughput (Treq) is derived from the source-to-destination
paths that utilize the link; it is the sum of average through-
put of each of these paths (7,). The number of buffers, N,
to insert on link £ is

_ ,7:‘6(] _
Re = {(ABWZ x k)J where g = > Ty

pathp using £

The value of k is a user-parameter, and is explored in Sec-
tion 4. In other words, this is an insertion threshold based
on the percentage of link utilization.

For the application-specific SoCs we consider in this work,
a common representation of core-to-core traffic requirements
is a core communication graph (CCG) as shown in Figure 4.
The expected average throughput required between cores is
shown with an annotated edge. For this particular CCG,
traffic is assumed to be equal in both directions, but a CCG
is often shown with directed edges. Given a topology and
CCG, each link in the topology is attributed a required
throughput. Available link bandwidth (ABW) is based on
link wirelength, as shorter links have faster cycle-time.

Figure 4: MPEG4 decoder core communication graph, with
edges in MBytes/second.

The second strategy adds pipeline buffers to links with an
available bandwidth (ABW) less than the throughput of the
network adapters. We call these core-throughput matching
buffers (CTMBs). For example, if a network adapter had a
maximum throughput of 2 Gflits/s (yielding 64 Gbits/s with
32-Dbit flits), and a long link had a handshake delay of 700 ps
(yielding 46 Gbits/s), the link would need one CTMB. This
is analogous to wire pipelining for clocked networks when a
link fails to meet the timing requirement derived from the
clock period. For async systems, however, this is optional;
links can be slower than the sending or receiving component
and don’t have to meet the “clock period.” The intuition
driving this strategy is to make sure cores are never slowed
down by a wire delay in sending or receiving a flit. Even
paths with low average bandwidth will send a series of flits
one after another, and benefit from the increased link band-
width. This advantage may or may not be worth the addi-
tional power overhead of the buffers, depending on system
requirements and communication properties.

We integrated these two strategies within a tool that gen-
erates the network topology and placement, called ANet-
Gen [21]. This tool searches for a network solution with
the best power and latency characteristics, and generates a
topology, floorplan, and SystemC simulator for the network.

3. METHODOLOGY

We evaluate our link pipelining proposals using two ab-
stractions of SoC designs. One is an MPEG4 decoder SoC,
originally described by [22] but with throughput changed to
that shown in Figure 4. This benchmark has been used in
other NoC research projects [12, 11]. The other is based
on data given by Texas Instruments (TI-SoC), that in con-
trast to the MPEG4, has many more IP blocks (35) and
communication paths (423 source-to-destination). Circuit
properties for the MPEG4 design are assumed to be at the
65 nm technology node, with an area of 78.7 mm?. The TI-
SoC design assumes 32 nm parameters, thus the latency and
energy of the routers and wires was adjusted accordingly.



The network adapter in the MPEG4 design had a through-
put of 2 Gflits/s with 32 bits/flit, and for the TI-SoC, it had
a throughput of 4 Gflits/s with 64 bits/flit.

Our network optimization tool, ANetGen, was configured
to produce a topology and placement of the routers and
pipeline buffers for various values of the path-specific k£ pa-
rameter. This was done for two sets of link pipeline configu-
rations; with path-specific buffers only, and with both path-
specific and CTMBs. The tool already optimizes link band-
width on high-traffic paths by reducing their wirelength.
This process already takes the “low hanging fruit” of band-
width improvement; other experiments have shown that an
asynchronous network with customized link bandwidths yield
46% less aggregate packet latency than a similar synchronous
network with uniform link bandwidth [8]. Therefore, the re-
sults shown here are the additional improvements.

Simulations were run for each of the sets, where the k-
parameter was varied to change the threshold of where path-
specific buffers were inserted. For the MPEG4 set, k values
were 1.0, 0.05, 0.03, and 0.02 resulting in the number of
path-specific buffers of, 0, 1, 3, and 7, respectively. Due to
the details of this SoC’s specific traffic requirement, and the
floorplan, there was only one link where path-specific buffers
were inserted — the link connecting the sram2 IP core to a
router. When CTMBs are added, seven more buffers in total
are inserted on the longest links. For the TI-SoC, k values of
1.0, 0.10, 0.05, 0.03 resulted in path-specific buffer counts of
0, 4, 18, and 42 respectively, spread throughout all the links.
A total of 25 CMTBs are added, but some of these fall on the
same links that have path-specific buffers, resulting in total
link buffer counts (including both types) of 25, 27, 33, and
56. These k-threshold values were chosen experimentally.

Our simulator uses the Orion 2.0 wire models [23] to esti-
mate dynamic wire energy, but we changed the wire leakage
parameters to match the IBM process in our router and
buffer evaluation. The Orion NVT library estimated this
power to be between 5x and 7x greater than the 65 nm IBM
process. In the TI-SoC 32nm experiments, we scaled our
router and link buffer energy by a factor derived from the
Orion 2.0 router model energy at each node. The 32 nm cir-
cuit latency was reduced by half, and the network adapter
throughput doubled. For all experiments we assume the
fraction of data bits that switch in successive flits is 0.25.

The simulator uses a self-similar traffic generator, rather
than the more common Poisson-distribution. This is based
on the bursty traffic model [24], and is suggested as a key
feature in future NoC benchmark sets [25]. A known volume
of traffic to be sent during a known simulation duration is
divided into two parts, each part weighted by the bias, b.
Each of these is then split, and the process continues for
each sub-division of time, until the desired time resolution
is reached. Steps of the this process are shown in Figure 5.

This study uses message latency, rather than packet la-
tency, because it seems to be a better metric to represent
transfer of a useful piece of data, especially in media pro-
cessing. The traffic generator outputs chunks of data, or
messages, that simulate the requests from software to the
transaction layer of SoC communication. The self-similar
behavior is seen in the times of generation of these mes-
sages. A message is broken down into contiguous packets to
be sent over the network as fast as it will allow. Message
generation cannot be stalled by the network, but message la-
tency through the network is actually a measure of network

bytes/s

V (total volume)
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t t t
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Figure 5: Generation of a self-similar traffic volume distri-
bution over a simulation’s duration.

bandwidth that considers the dynamic effects of packet con-
tention with other paths. As such, message latency is de-
fined as from when the first packet of the message leaves
the sending core’s output buffer and enters the network to
the time the tail packet leaves the network and enters the
destination core. This operation flow and structural parti-
tioning is shown in Figure 6. For the MPEG4, we set the
bias b-value to be 0.7 on each CCG path, a simulated time
of 34ms, and a 256-byte message size. The TI-SoC used a
b-value of 0.5 and simulation duration of 8.3 ms.
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Figure 6: Structural partitioning of traffic generation.

Another performance metric we measured is the packet
delay in a network-adapter’s output buffer. This is defined
as from the moment the traffic generator places a packet
in the output buffer to the time the packet enters the net-
work. The entry time is set for each packet by the traffic
generator when it pushes an entire message to the buffer
at once. Therefore, the last packet of a 64-packet message
would have a minimum delay of 64 sender-cycles. The traffic
generator operates detached from the network flow control
so an infinite buffer is needed to accept its traffic at any
time. The network then empties that buffer as quickly as
possible. More details on the traffic generator, simulator,
and models are described in [21].

The MEPG4 floorplan with 3 path-specific buffers on the
sram?2 link and CTMBs is shown in Figure 7. Cores are la-
beled with their names, routers are red circles, and pipeline
buffers are green squares. Logical connectivity between com-
ponents is shown with black lines. Note this does not show
actual “Manhattan” wire routing distances. Network adapters
are assumed to be placed where a link is attached to a core.
Notice that buffers are equally spaced across a link. The
longest, from au to router 4 has three pipeline buffers, pb0,
pbl and pb2. The path-specific buffers connecting sram?2
are pb7,8,9.

4. RESULTS

Power and Latency

A succinct metric to determine the benefit of adding link
pipeline buffers is power-latency product (PLP) of the net-
work. This is similar to the energy-delay product commonly
used in CPU architecture or VLSI comparisons. The power



Figure 7: SoC floorplan showing cores, routers, buffers, and
topology, cropped and edited for legibility.

term is the sum of dynamic and leakage power of the routers,
wires, and wire pipeline buffers. The delay term is the mean
packet latency through a network adapter’s output buffer,
added to the mean message (256 bytes) latency through the
network. Delays were normalized to give equal weight to net-
work and output buffer latencies. Figure 8 shows this met-
ric on the Y-axis, with the X-axis showing the total number
of buffers inserted on all links, including both CTMBs and
path-specific. Data is given in two series, with and without
additional core-throughput matching buffers.

For the MPEG4 benchmark, the addition of one path-
specific buffer greatly lowers (improves) PLP. A slight addi-
tional improvement is seen with the addition of a few more
path-specific buffers, but PLP gets worse after this. This
trend is similar when CTMBs are also used, indicated by
the darker line data. This chart is also useful in compar-
ing the benefit of using the CTMBs. With just CTMBs
and no path-specific buffers, the PLP is improved, but only
very slightly from the initial solution. The best solution
shown in the data is with three path-specific buffers as well
as CTMBs (10 total network buffers). PLP worsens with
more path-specific buffers (14 total buffers), but is better
than if CTMBs were not used (7 total buffers).

For the TI-SoC design the results are quite different. This
stems from the much larger number of IP blocks and paths,
as well as a more uniform distribution of the communicat-
ing blocks. Generally, the addition of buffers helps greatly,
but CTMBs are a more efficient strategy from the stand-
point of mean latency over all paths. The addition of a low
number of path-spec buffers only (totals of 10-20) reduces
PLP a modest 20%. If the power budget can allow 30-50
total buffers, it is better to add CTMBs, which show a large
reduction of over 50% in PLP.

Power consumption of various network configurations is
shown in Table 2. For these experiments the topology and
placement are left constant, with only the number of buffers
varying. Therefore, the power of the routers and wires is
constant because the same traffic is sent in each trial and
the total wirelength is the same. The dynamic and leak-
age power of routers and wires, common to all configura-
tions, is shown at the top of the table. Configurations are
organized in sets, separated by benchmark (MPEG4 and TI-
SoC) and by buffer insertion type (only path-specific buffers
and both path-specific and CTM buffers). A lower value of
k-threshold represents an increased number of path-specific

MPEG4, 65nm

g 660

> B ¥ Path-spec only
8 basel

5 640@\,125&#;‘5 & with CTMBs
= 620

©

Q

E 600

g 3

580 &

9]

2 560

& 0 2 4 6 8 0 12 14 16

total # of link buffers

45 TI-SoC, 32nm
N ’ @\baseline, <= Path-spec only
z 4 no buffers == with CTMBs
Q
c o O <&
[}
£ 3.5 o
§ 3
O
=
« 25
%, P *.—Q_./’
[
=
515

0 10 20 30 40 50 60 70 80 9
total # of link buffers

Figure 8: Power-latency product for various numbers of
buffers inserted based on link utilization percentage. Results
shown with and without core-throughput matching buffers.

buffers, with a value of 1 having none. For each of these,
the buffer power (sum of dynamic and leakage) is shown,
along with the total network power. For clarification, the
wire power is due to the drivers/repeaters (large inverters)
needed along a link’s length. The much greater power con-
sumption of the TI-SoC is due to it sending far more aggre-
gate traffic. The total power consumption rises slightly in
both benchmarks with the addition of more link buffers, as
expected. Link buffer power is a small portion of the total,
less than 10% in most configurations.

Table 2: Power (mW) of various buffer configurations.

Power values common to all configs
Rtrs dyn Rtrs leak Wire dyn Wire leak

MPEG4 1.34 0.29 3.28 0.84
TI-SoC 47.8 1.63 34.6 16.70
path-specific & threshold
MPEG4 1 0.5 0.3 0.2
Without CTMBs
Link Buffers 0 0.12 0.36 0.85
Total 5.76 5.88 6.13 6.61
With CTMBs
Link Buffers 0.06 0.18 0.42 0.90
Total 5.82 5.94 6.18 6.66
TI-SoC 1 0.1 0.5 0.3
Without CTMBs
Link Buffers 0 2.61 9.01 20.72
Total 100.7 103.3 109.7 121.5
With CTMBs
Link Buffers 3.37 5.27 9.78 21.67
Total 104.1 106.0 110.5 122.4

Mean latencies are shown in Table 3 for packets through
the network adapter’s output buffer for messages through
the network. Both of these metrics generally improve when



Table 3: Mean latency (ns) of buffer configurations.

Measurement Location path-specific k threshold

MPEG4 1 0.5 0.3 0.2
Without CTMBs

Core’s Output Buffer 15281 12257 11430 11644

Network 55.74  54.58  52.92  53.58
With CTMBs

Core’s Output Buffer 15332 12400 11248 10693

Network 54.92  53.78 51.72  51.59

TI-SoC 1 0.1 0.5 0.3

Without CTMBs

Core’s Output Buffer 11.8 9.7 8.4 6.5

Network 21.9 19.4 17.8 16.2
With CTMBs

Core’s Output Buffer 10.1 8.6 8.2 6.2

Network 19.1 17.9 17.3 15.7

more path-specific buffers are used. The large output buffer
latency in the MPEG4 benchmark is an effect of lack of
backpressure to the traffic generator; it is a useful relative
comparison, but does not reflect latencies expected in an
actual system. The network message latency is more repre-
sentative of actual system behavior.

Message Latency per Path

Besides overall mean message latency, another picture of
performance is seen by looking at the message latencies for
each source-to-destination path in the SoC. For example, the
MPEG4 path from source core sram2 to destination core
risccpu has a median latency of 65 ns with no link buffering,
as seen in Figure 9 with the path-ID 21. These measure-
ments are from the time a 256-byte message has begun its
exit of a core until it completely enters a receiving core.
This is a measure of available bandwidth on a path, while
considering dynamic effects of contention with other paths.

The addition of link buffering improves median latency
significantly on some paths, notably 20,21,22 which carry
high traffic from sram2. Latency rises slightly with the addi-
tion of more buffers. Buffers were added to the link connect-
ing the sram2 core to a router, which explains the benefit on
those paths. Other paths do not benefit from these added
buffers. The effects on maximum message latency is not
conclusive, although a few paths seem to benefit slightly,
such as 0 (au—sdram) and 18 (sramI—rast). This is from
reduced contention, a side-effect of the improved connection
to sram?2.

The effects on per-path message latency by adding CTMBs
is shown in Figure 10, for the MPEG4 benchmark. All values
on the chart are normalized to the configuration with only
path-specific buffers (no CTMBs) inserted with the same
k-threshold. The data series represent various k-thresholds
and thus different numbers of path-specific buffers. Paths
that showed little difference with the addition of CTMBs
were removed from the figure. Median latency is improved
on many paths, and is an indication of increased throughput
when the network is uncongested. Note that the paths im-
proved with CTMBs are different than those improved with
path-specific buffers; paths 20,21,22 did not show much
change. Also interesting is that even though many paths
have a median latency reduction, the mean latency consid-
ering all paths (shown in Table 3) was not improved much
with the addition of CTMBs. This is due to the fact that
the paths carrying the greatest traffic already have buffers
assigned to them as the path-specific type. The other paths

do see an improvement, but it does not greatly impact mean
network latency because they carry less traffic.

Maximum latency improvements were mixed, with some
drastically worse paths, and many slightly improved ones.
The paths showing worse maximum latency are the topo-
logically longest, and thus have the highest probability for
contention and delay. The addition of CTMBs increases the
rate messages can enter the network, but not necessarily
provide beneficial throughput increases “downstream.” The
effect is, in the worst case, longer waiting times within the
network rather than in the core’s output buffer. The bene-
fit of path-specific buffers to maximum latency seems to ap-
ply less broadly than median delay benefit. However, some
paths do benefit from an increasing number of buffers such
as path 21 in 65 nm, connecting sram2—risccpu.
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Figure 10: Change in message latency through the network
with the addition of CTMBs, for the MPEG4 benchmark.
Latency is normalized to the network configuration with
path-specific buffers only. Only paths exhibiting change are
shown.

The per-path message latency evaluation for the TI-SoC
benchmark is done in a different way than for the MPEG4
because it has many more paths. Instead, we show a his-
togram of the number of paths that improve, for various
buffer configurations, compared to the baseline network with
no buffers. Figure 11 shows this histogram for two sets:
path-specific buffers only and both path-specific and CTMBs.
The better a network performs, the more paths it will have at
lower latencies, with a value of 1 being equal to the baseline.
A larger number of path-specific buffers reduces latency on
more paths, both without and with CTMBs. A few paths
had worse latency by 5-10% when many buffers are used,
but many more paths showed improvement by 10-50% less
latency. The benefit of CTMBs alone without path-specific
buffers is seen in 11b with the 1.0 k-threshold series. The
additional series show the added CTMBs.

These results show that the addition of link pipeline buffers
can improve performance as indicated by message latency
at the cost of a small power increase. The optimal inser-
tion parameters are design-specific, and the space should be
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Figure 9: Median and maximum message latencies for the MPEG4 network for each source-to-destination path. Data series
represent different numbers of path-specific buffers (more buffers for a lower k-threshold) and no CTMBs.

explored by the designer. In the MPEG4 design, the most
benefit came from path-specific buffers, while the TI-SoC
design was most sensitive to CTMBs. Path-specific buffers
yield improvements on a few critical paths, and seem to be
best when the addition of the fewest number of buffers is
desirable. The use of CTMBs offer decreased median and
maximum message latency for many paths, at the expense
of increased maximum latency on some. The benefit is more
widespread with CTMBs, and the most efficient network for
each design used CTMBs and a moderate number of path-
specific buffers.

S. CONCLUSION

In this work we have introduced two strategies for de-
termining which links of an asynchronous NoC should be
pipelined, and incorporated them into our NoC optimiza-
tion tool. An advantage of an async network is that this op-
timization can be targeted at specific links in the network,
guided by expected traffic patterns. This is in contrast to a
classic synchronous NoC (not including source-synchronous
methods) that change frequency on the whole network, or
use additional synchronizers between clock domains of dif-
ferent frequencies.

For two benchmark SoCs, we varied the number of link
pipeline buffers using combinations of the two strategies.
Simulation results showed the greatest benefit to power*latency
product was using CTMBs along with some number of path-
specific buffers. The path-specific buffer insertion strategy
is complezity-effective relating to energy, in that it increases
performance more than it costs in energy, with and without
the use of CTMBs.

The NoC-engineer should take these results into consider-
ation as evidence that the link pipelining design space should
be explored for the configuration appropriate for the given

requirements. A SoC design may be more sensitive to one in-
sertion strategy or the other. Generally, a design with a low
number of critical, high throughput paths will see the most
gain from path-specific buffers, while a design with a large
number of lower throughput paths will benefit most from
CTMBs. The given strategies offer the NoC engineer an-
other knob to turn for setting the power—performance point.
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