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Abstract—Power consumption of on-chip interconnects is a
primary concern for many embedded system-on-chip (SoC) appli-
cations. In this paper, we compare energy and performance char-
acteristics of asynchronous (clockless) and synchronous network-
on-chip implementations, optimized for a number of SoC designs.
We adapted the COSI-2.0 framework with ORION 2.0 router and
wire models for synchronous network generation. Our own tool,
ANetGen, specifies the asynchronous network by determining
the topology with simulated-annealing and router locations with
force-directed placement. It uses energy and delay models from
our 65 nm bundled-data router design. SystemC simulations
varied traffic burstiness using the self-similar b-model. Results
show that the asynchronous network provided lower median and
maximum message latency, especially under bursty traffic, and
used far less router energy with a slight overhead for the inter-
router wires.

I. INTRODUCTION

Embedded, energy-constrained SoC designs can be roughly

separated into two classes: platform-based and fixed-function

(also called application-specific). The former is concerned with

being able to perform a wide variety of tasks, many of which

cannot be foreseen at design time. The latter is targeted towards

a particular function, or a few functions, that have known

properties. A fixed-function design might consist of a number

of highly specialized cores and memories, and fewer general-

purpose processors. The network-on-chip (NoC) of both these

classes should be optimized for minimal energy usage while

meeting the predicted performance requirements; however, the

application-specific NoC may be more specialized as it has

a priori knowledge of the communication patterns between

cores. This is in contrast to general-purpose interconnects that

are often evaluated with traffic patterns such as spatially-

uniform, bit-transpose, etc.. The domain of this work is the

fixed-function, rather than the platform-based SoC.

Some globally-asynchronous locally-synchronous (GALS)

interconnect solutions rely on a clock, either with standard

synchronous clock distribution, or a mesochronous method.

However, an asynchronous (also called clockless) network has

a number of potential advantages over a clocked network in a

GALS environment. Standard arguments for asynchronous cir-

cuit design include robustness to process/voltage/temperature

variation, average-case instead of worst-case performance, and

other such points. However, there are also many NoC-specific

arguments. In a synchronous NoC, the clock tree for all routers

and pipeline buffers can consume significant power as shown in

a heterogeneous network [1], and in a large CMP (chip multi-

processor) 33% of router power [2]. Many SoC designs have

quite bursty and “reactive” traffic. In this case, asynchronous

methods are beneficial in that they consume little dynamic

power during periods of low traffic without relying on clock

gating techniques.

Available bandwidth on each asynchronous link can be

independently set, to some extent, by wirelength between

routers, link pipeline depth, or by varying the physical wire

properties (metal layer, width, and spacing). This is potentially

useful when bandwidth requirements on core-to-core paths vary

considerably. This is in contrast to clocked networks which

commonly use a single frequency for all routers and is wasteful

to those paths not requiring high bandwidth. A clocked NoC

can use discrete “islands” of differing clock speeds to achieve

a similar effect, but in a much coarser-grained fashion.

Design automation techniques are commonly used to gen-

erate a NoC for a specific SoC design. These methods can

decrease time of development in commercial products or

allow a researcher to explore a larger design space. The NoC

solution is chosen based on some metric, usually a function of

energy and performance. In the optimization process, potential

solutions must be evaluated for quality, and this often requires

an abstracted model of the SoC characteristics.

This abstraction can be done at a variety of levels depending

upon completeness or availability of the SoC design and NoC

components. Ideally, one could simulate the exact functionality

of the various cores composing the design, and the NoC would

be fully implemented to model the communication. Unfortu-

nately, this method is labor and simulation-time intensive, and

not a good choice for early-exploration of the NoC design

space. As usual, tradeoffs must be made as function becomes

more abstracted.

A commonly used abstraction used in the literature has been

titled a communication trace graph [3] (CTG) or a core graph.

A path describes pairs of source and destination cores, and the

particular links and routers a packet traverses. The CTG has a

n-tuple of values per path, but often includes average expected

traffic rate per path and sometimes a latency requirement of a

packet. An example CTG is shown in Figure 1 that we use in

our evaluation.

To our knowledge, there does not exist published methods to

aid in automating high-level asynchronous NoC optimization
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Figure 1: Example CTG graph. Edge weights are in MBytes/s.

for fixed-function SoCs. This is in contrast to techniques

that utilize synchronous tools for implementing a specific

network [4]. In this work, we give an overview of our circuits

and design automation techniques, and compare the resulting

asynchronous NoC to a synchronous one generated by an

existing tool. We also show that adding a measure of bursty

traffic to a CTG design abstraction leads to a more conclusive

NoC evaluation. Also unique is our SystemC simulator that

models asynchronous routers, and importantly, the link delay

as a function of wire length between routers.

This paper is organized as follows. Section II gives an

overview of related work. The synchronous network genera-

tion framework is discussed in Section III. Our asynchronous

router is discussed in Section IV at a circuit level. Section V

describes our methodology for asynchronous NoC generation

and simulation. Our evaluation methodology and setup is given

in Section VI, with the results discussed in Section VII. We

conclude in Section VIII.

II. RELATED WORK

The COSI framework [5] generates an application-specific

NoC and floorplan, taking as input such constraints as core

areas and average bandwidth between cores. While it is exten-

sible with new algorithms and components, it does not consider

asynchronous network components and, as future work, cites

the need for integrating traffic burstiness. For the Xpipes

library, a heuristic search determines the topology and router

configuration [6]. It uses floorplan information, router energy

models, and core communication requirements. The results

indicate a significantly reduced power and hop-count versus

the best mesh topologies for a variety of SoC designs. It is

part of a complete workflow to automatically synthesize a NoC

down to chip layout [7]. A linear programming based method

is presented in [3]. For the QNoC routers, application-specific

optimization is discussed in [8], but it focuses on mapping

logical resources of a mesh-style topology rather than physical

concerns.

Previous research on asynchronous interconnects is rich,

but these designs are either hand-designed for a particular

application, or general in design but possibly having over-

provisioned resources for a power-constrained SoC. All but one

of these existing routers use quasi delay-insensitive protocols

between routers, rather than bundled-data. Fulcrum Microsys-

tems created a large asynchronous crossbar to interconnect

cores of a SoC [9]. The commercial startup Silistix, based on

earlier academic research [10], sells EDA software and circuits

that provide an customized asynchronous NoC, but has no

published methods for the optimization process. The MANGO

router [11] provides both best-effort and guaranteed-service

traffic. FAUST [12] is a platform and fabricated chip used in 4G

telephony development, and uses an asynchronous mesh-based

NoC [13]. The QNoC group has developed an asynchronous

router that provides multiple service levels and dynamically

allocated virtual channels per level [14]. A mesh-of-trees

network was constructed from simple, bundled-data routers for

a CMP [15]. A comparison between the asynchronous network

ANOC, and the mesochronous clocked network DSPIN, was

performed in [1]. For both designs, a physical layout and

functional traffic simulation was done for analysis. While

DSPIN had 33% less area and 33% higher bandwidth than

ANOC, ANOC had shorter packet latency and at least 37%

lower power consumption. DSPIN was also compared against

its asynchronous analog, ASPIN [16]. Average power, latency,

and saturation threshold are superior in ASPIN with similar

die area.

Traffic modeling for NoCs is one of the major outstanding

problems in the field [17]. The b-model [18] provides a simple

method to produce and analyze the burstiness of self-similar

traffic with a single value. The b-model has been adapted to

study burstiness effects in the Nostrum NoC [19]. Evidence

of traffic self-similarity and burstiness in MPEG-2 video ap-

plications has been shown [20]. Several analytic models of

network performance have been developed for NoC design.

A model has been developed to capture spatial and temporal

characteristics of traffic for regular, homogeneous NoCs [21].

A generalized analytic router model was developed in [22].

It provides detailed statistics during expected traffic, and is

applicable to heterogeneous, irregular networks, but relies on

the Poisson arrival process and a synchronously-clocked router.

III. SYNCHRONOUS NETWORK GENERATION

The baseline network used for comparison purposes is

generated by a research tool called COSI 2.0, a source-code

release that incorporates much of the functionality of COSI-

NoC (v.1.2) [5]. COSI takes as input a SoC design abstraction

consisting of core dimensions or area, and a set of communi-

cation constraints between those cores, which are called flows.

This is a more generalized concept than the CTG mentioned

in Section I, and COSI can consider temporal properties

between flows, such as mutual exclusion. Given these flows, its

optimization algorithms try to find the network and floorplan

that meets the constraints while minimizing power based on

router and wire models. As output, COSI produces a floorplan,

topology, and a SystemC-based simulator. Included with the

software release are algorithms for generating a mesh and a

min-cut partitioning method (hierarchical star) similar to that

of [6]. We modified COSI to incorporate the Orion 2.0 router

and wire models [23], and also made a number of other changes

to COSI to improve its operation and result reporting.

In order to explore the performance characteristics of the

network, we moved away from the Poisson traffic models

commonly used for evaluations and instead use a model more

representative of application traffic. We implemented the b-



model traffic generator [18], suggested as a key feature in

future NoC benchmark sets [24]. The SystemC simulator

produced by COSI was modified to use this bursty traffic

generator.

Our model is parameterizable with the following inputs:

• Source and destination cores.

• A b-value in the range [0.5, 1.0) indicating burstiness.

• Simulation duration.

• Average bandwidth, i.e. desired total traffic volume.

• The smallest time-resolution of the burstiness.

• Number of packets per message.

Self-similar traffic, down to the time resolution, is generated

recursively with an algorithm closely following the origi-

nal [18]. However, there are a number of interesting details to

note. The b-model determines the total volume of data to send

in each window determined by the specified time resolution.

Within a window, a message is probabilistically sent each cycle

such that over the time window the proper amount of data is

sent. An entire message consisting of multiple packets is sent

at once to emulate application-level data needs. It may be the

case that the desired volume of traffic per window exceeds the

capacity of the link or output buffer, or the previous window

has not finished sending its data yet. In these cases the packets

are queued up in an “infinite” buffer. Therefore, the model’s

output is the ideal, desired data transmissions, but the actual

achieved data is subject to network limitations as expected.

This design uses a SystemC transaction level model (TLM)

for its interface, and thus it is portable and relatively easy to

connect to other tools’ outputs, as we did here with COSI.

IV. ASYNCHRONOUS ROUTER DESIGN

A. Overview

This asynchronous router is designed for efficiency and

simplicity. Each switch directs a flit to one of two output

ports. With bi-directional channels, this results in a three-

ported “T” router. The packet format consists of a single flit

containing source-routing bits in parallel, on separate wires,

with the data bits. The packet is switched through a simple

demultiplexer controlled by the most-significant routing bit.

The bits are simply rotated, or swizzled, for the output packet.

The number of required routing bits is determined by the

maximum hop count of a network generated for a specific SoC

design. The width of each flit must be determined based on

required throughput or power and area constraints. This format

has the overhead of requiring routing bits with every flit.
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Figure 2: Architecture of a 3-port asynchronous router.

The router is implemented with three components: a switch

module, merge module, and a buffer. The switch module steers

data on an incoming channel to one of the other two outgoing

channels. The merge module arbitrates between two input

channels to an output channel, granting access to the first-to-

arrive request signal. This effectively alternates between the

two input channels, assuming each provides the next packet

within an output channel’s cycle-time. A router is composed

of three switch modules and three merge modules, as shown in

Figure 2. Each switch and merge module has one set of latches

providing 1-flit buffers on each input and output port.

B. Router Circuit Design

Asynchronous protocols normally fall into two categories:

quasi delay-insensitive (QDI) and bundled-data (BD). Gen-

erally, QDI is more robust to variations while BD allows

simpler circuits. BD has a lower wire count compared to

QDI’s common encodings (e.g. 1-of-4 and dual-rail). This is

potentially more energy-efficient due to reduced wire repeater

leakage, especially with wide links [25]. The choice of 4-

phase or 2-phase protocol impacts performance and circuit

complexity. The throughput across long links is limited by

wire latency, thus a 2-phase protocol achieves almost twice the

throughput as a 4-phase protocol. However, a 4-phase, level-

sensitive protocol typically allows more simple circuits.

With this in mind, we designed the router to internally

operate using a BD 4-phase protocol since it directly works

with a level-sensitive 4-phase MUTEX element [26] used for

arbitrating the shared output channels. We employ a BD 2-

phase protocol on the channels between routers.

The design of the router’s switch module is shown in

Figure 3a. A 2-to-4 phase converter is implemented on the

input control channel (signals lr and la). This handshakes with

a BD 4-phase burst-mode asynchronous controller to pipeline

the data. The linear controller has the same specification and

timing assumptions as the one used in [27]. The output request

is steered to one of two channels (rr1 or rr2) based on the most

significant route bit with a DEMUX. The route-bits are rotated

and passed to the merge module of the router. The routing

logic occurs concurrently with the handshake.

The merge module is composed of the arbitration circuit and

merge controller shown in Figure 3b. It contains the arbiter that

serializes requests to the shared output channel. The output

of the arbiter controls a MUX that selects which input data

to store in the output latch. Each arbiter transaction requests

a data transfer via the 4-phase handshake signal lr m. This

request passes through the merge controller to generate the 2-

phase network link handshake on signals rr and ra, as well as

store the data in a pipeline latch.

All of the circuits were designed with the static, regular

Vth, Artisan cell library on IBM’s 65nm 10sf process except

the MUTEX element in the merge module. We designed

and characterized a separate library cell for the MUTEX

element through manual layout and HSPICE simulation. This

asynchronous circuit design process used a clocked CAD

flow in a methodology similar to [28]. We synthesized our
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Figure 3: Schematics of Switch and Merge modules.

asynchronous controllers by hand or using Petrify, synthesized

the full asynchronous structural router design including data

path with Synopsys Design Compiler, and physically placed

and routed with SOC Encounter. Functionality and perfor-

mance were validated in the design with ModelSim using back

annotated pre- and post-layout delays. Asynchronous circuits

were verified by Analyze [29] and using static timing analysis.

C. Evaluation

We have constructed a number of routers with varying flit

widths, but for this paper use one with 32-bits of data and

8-bits for routing. The resulting area is 2740µm2, dynamic

energy/flit is 1.56 pJ, and leakage power is 0.009mW.

The area is dominated by data storage latches and the data

MUXes used in the merge modules. The controllers (linear

controllers in switch modules and merge controllers in merge

modules) make a very small contribution to the total area.

Dynamic energy is consumed when one data word passes a

router from an input port to an output port. Energy is measured

using HSPICE simulations with the spice netlist generated from

the design using parasitic extraction from Mentor Graphics

Calibre PEX. The same simulation was used in both HSPICE

and ModelSim. The HSPICE control file was generated by

converting a vcd file generated from the ModelSim simulation.

This allowed us to more easily validate switching activity on

the data and control paths. A 50% data switching activity factor

was applied to the data bits for our power simulations.

The maximum throughput of the router is 2.38Gflits/s.

This was measured by inserting data into the input ports at

maximum rate and allowing the output port to communicate

with another router with no wire delay.

We define the backward latency of our routers as the delay

from a request on an incoming channel to the acknowledgment

on that channel, completing the handshake of the two-phase

protocol. Fast backward latency is desirable because it frees the

previous router’s output port for another transaction. We define

forward latency as the delay from a request on an incoming

channel of a router to the associated request on an output

channel assuming no contention or stalling in the arbitration

circuit. This is determined by the delay to buffer the data,

arbitrate control, and switch to the outbound channel. Our

router design has 250 ps backward latency and 460 ps forward

latency.

Our router’s low power and area are due to its simple

architecture and the use of latches, rather than flip-flops, for

the storage elements. Latches are about half the size and use

less power than flip-flops. Since much of the area and power

of many router architectures derives from memory elements,

this advantage makes a significant difference. Furthermore,

the simplicity of the control circuits also contributes to high

throughput. This router employs a bundled data protocol rather

than delay insensitive codes which results in fewer wires per

channel and efficient use of standard cell libraries. However,

the cost to this is that the circuit timing must be carefully

specified and controlled, similar to clocked design, to ensure

correct operation.

V. ASYNCHRONOUS NETWORK GENERATION

We built a tool, ANetGen, that has goals similar to COSI’s,

but operates with our router model and its asynchronous

considerations. ANetGen takes an input format that defines the

CTG edges and expected traffic bandwidth, as well as the core

dimensions. The core floorplan is specified prior to ANetGen,

which then determines physical placement of the routers and

their logical topology. The objective function is to minimize

wirelength and hop counts for high traffic paths. It does this

with a combination of simulated annealing (SA) and force-

directed movement techniques.

A. Topology and Placement

Asynchronous circuits have unique properties that can be

leveraged to optimize the network. Specifically, the physical

path length between endpoints directly affects packet latency,

not just the number of routers and pipeline buffers a packet

must travel through, assuming an uncongested path. This is in

contrast to a synchronous system, where each network element

constitutes at least one required clock cycle. Also, link energy



usage can be significant [30] and will grow, relatively, with

shrinking process technology.

With this in mind, the physical placement of routers needs

to be determined such that wirelength is minimized, especially

on highly trafficked paths. For these experiments, we assume

soft IP (intellectual property) blocks which have cells placed

and routed by the SoC developer, rather than a single hard

macro block. This enables us to consider more options for

router locations. In an actual design flow, the router placement

our tool generates will provide input to the hierarchical placer,

or floorplacer [31] that will legalize the placement of cells and

macros composing each core.

The problem of finding the optimal tree topology is similar

to the NP-hard quadratic assignment problem of mapping cores

to a mesh topology [32]. For this, we utilized a simulated

annealing method. The fitness to be minimized is based on

a topology’s router hop-count and wirelength, each weighted

by the volume of traffic expected over the path. In the current

tool implementation we limit the topology to a tree, which has

a minimal number of three-port routers. We save a detailed

analysis and comparison with other topologies to future work,

but this method produces good results, as seen in Section VII.

Within the SA process, topology choices are explored by

perturbing the topology and re-placing routers. We used a

method extended from [33] that uses force-directed movement

to provide router locations and link lengths to the SA process.

Force vectors are applied to routers that are proportional to: (a)

bandwidth requirements and (b) physical distances between the

router and its attached core or router. The process is iterative,

where a router moves a distance proportional to the sum of

its force vectors. This movement will reduce wire lengths of

paths that carry high traffic.

B. Simulator

We chose to build an asynchronous network simulator using

the SystemC library. The following modules were developed:

an arbiter, an inport to the router, an outport from the router,

and input and output port FIFOs. The SystemC Transaction

Level Modeling (TLM) library is used for inter-router links

and traffic generation. We chose this method to allow easier

extensibility of the channels if needed, and TLM provides a

convenient way to model link and protocol delays.

The traffic generator and router ports use a simple

socket to receive a generic payload transaction object

that contains packet and routing information. When a TLM

object is received by the inport’s socket, a wait is performed

to model the wire delay. This delay is calculated from an

interpolation of HSPICE simulations of various wirelengths

in IBM’s 65nm technology. The wire energy per transfer is

calculated using the Orion 2.0 model. The router waits an

additional time period to model forward logic delay. The flit is

written to the FIFO, which triggers the arbiter. Another wait

models the acknowledgment delay to the sender.

Within the arbiter, a doSwitching SC METHOD is

called whenever a packet is received by an input FIFO or

acknowledged by an output FIFO. The arbitration mechanism

is that described in Section IV. At each switching operation,

the appropriate energy is logged. This energy was measured

from transistor-level router simulations.

Each outport operates in its own thread, waiting for a packet

to be passed to it by the arbiter, or for a TLM response

indicating that the channel is free. When there is data in

the FIFO and the channel is free, it sends a new TLM

generic payload. The outport also records wire energy

of the transmitting link.

VI. EVALUATION METHODOLOGY

The evaluation of all network solutions was done with the

SystemC simulators generated by the tools. In this section, we

present the benchmarks and simulation parameters.

A. SoC Designs and NoC Generation

We used two SoC design abstractions of the CTG format

described in Section I for our evaluations. One is titled ADSTB

and is from the public COSI 2.0 distribution. The other is

an MPEG4 decoder originally described by [34] and used in

several other NoC research projects. Bandwidth requirements

were modified from those originally provided, and are shown

in Figure 1 for MPEG4 and Table I for ADSTB. The die areas

after router placement for the ADSTB and MPEG4 designs

were 35.7mm2 and 78.7mm2, respectively. These floorplans

were from the COSI tool’s output.

TABLE I: Average bandwidths for the ADSTB design.
Sender Receiver MBytes/s Sender Receiver MBytes/s

CPU AudioDec 1 CPU DDR 3

CPU Demux 1 CPU MPEG2 1

DDR CPU 3 DDR HDTVEnc 314

DDR MPEG2 593 Dem1 Demux 31

Dem2 Demux 31 Demux AudioDec 5

Demux MPEG2 7 HDTVEnc DDR 148

MPEG2 DDR 424

We generated a network for each design using the COSI and

ANetGen tools. We also manually created an asynchronous

network for the ADSTB design that is based on the topology

of the COSI solution. For each radix-4 and radix-5 router,

we manually replaced it with a construction of our radix-3

asynchronous routers, shown in Figure 4. The paths which

carry the most traffic were mapped to ports with the least

number of routers between them, such as ports A and B. This

construction is not a true radix-N switch, as it can have internal

contention (e.g. A → C contends with B → D).

We configured COSI to generate a hierarchical star network

with N/3 + 1 partitions (N is number of cores), chosen based

on empirical experimentation for low energy. The floorplanner

A

B

C

D

(a) Radix-4

A

B

C

D

E

(b) Radix-5

Figure 4: Asynchronous router constructions replacing those

of radix > 3. External ports are labeled with letters.



was constrained to a square aspect ratio outline. The input to

ANetGen was the same floorplan and communication proper-

ties as COSI.

B. Simulation Parameters

We instrumented the SystemC router and wire models from

COSI and ANetGen to record energy usage, packet latency,

and message latency over the course of a simulation. Orion

2.0 is used for the wire energy model in both frameworks, and

also for the synchronous router leakage power and switching

energy models. Energy for the asynchronous routers comes

from circuit simulation described in Section IV. The link model

assumes 50% of the wires switch per flit transfer. This is a

worst case model because real data will have a lower fraction of

changing bits. Additionally, the asynchronous router’s source-

route wires will change less than this as subsequent flits

often carry similar routing paths. Thus, the overhead of these

additional routing wires is likely less than what is represented

in the results.

We chose parameters for the Orion router model to be near as

possible to our asynchronous configuration in both energy and

performance. These are shown in Table II. Clock tree power

estimation was excluded from these models.

TABLE II: Orion 2.0 Model Parameters.
Router Freq. 2 GHz Router I/O buff’s 2 / 1 flit
Tech. Library 65 nm NVT Crossbar Multitree
Voltage 1.0 v Flit width 32 bits

VII. RESULTS

In this section we present results that show the asynchronous

networks provided lower message latency and used less power

than the synchronous networks.

Recall that a message is composed of a number of packets,

and is typically managed at the transport layer. Message latency

is defined as the time the first packet of the message leaves

the sending core’s output buffer and enters the network to

the time the tail packet leaves the network and enters the

destination core. The following results were generated with a

message size of 256 bytes, not counting flits carrying address

information. Simulations were run at three burstiness b-values

{0.5, 0.65, 0.8}. We assume that packets are not dropped, and

that the destination cores do not stall, blocking its input port.

A. Message Latency Distribution

Histograms of message latency are shown in Figure 5 for

the ADSTB design, and a summary of both is presented in

Table III. An increase in latency as traffic burstiness rises shows

that traffic paths contend for switch and link resources for

longer periods of time. At 0.5 burstiness, all networks operate

with low latency of 150-190ns for nearly all traffic. At 0.8

burstiness, the asynchronous networks have more messages

arriving in under 200ns, and a lower “re-peak” on the right

side of the chart.

TABLE III: Observed message latencies (ns); absolute maxi-

mum and latency bound of 99%.
Network Burstiness

99% less than 0.5 0.65 0.8

ADSTB sync. 158 231 531
manual async 188 262 274

ANetGen 192 291 304
MPEG4 sync. 838 1395 1903

ANetGen 275 431 697
Maximum

ADSTB sync. 1130 51077 126480
manual async 510 580 914

ANetGen 510 762 912
MPEG4 sync. 11722 56041 158264

ANetGen 704 2520 5288

B. Per-path Message Latency

An understanding of latency and congestion within the

network cannot be fully understood by the overall delay alone.

Due to the heterogeneity and diverse path properties in an

application-specific SoC, there is benefit to analyzing each path

through the network separately.

For each path, or pair of communicating cores, Figure 6

shows the maximum latency for the ADSTB design and the

median latency for the MPEG4 design. With few exceptions,

the asynchronous network provides lower latency, at both low

and high burstiness values. This is a combination of a number

of factors. COSI’s synchronous routers operate with wormhole

switching in which a blocked header flit stalls up to two trailing

flits that in turn block other packets in other routers. Second,

the asynchronous network can take advantage of short wires

between routers and not delay a packet an entire cycle. Lastly,

the COSI-based router design has the overhead of an extra flit

carrying address information.

Despite the large variation in some paths, other paths show

little difference between change in burstiness or between

median and max delay. This is due to the network topology,

where some paths have fewer hops and a lower chance of

congestion, and others must traverse more routers. Both COSI

and ANetGen map paths carrying more traffic such that they

have fewer router hops.

C. Output Buffer Delay

Another metric of measuring the network performance is the

output buffer delay, which is from the time the traffic generator

places a packet in the output buffer to the time the packet

enters the network. The buffer entry time is set for each packet

by the traffic generator when it pushes an entire message to

the buffer at once. Therefore, the last packet of a 64-packet

message would have a minimum delay of 64 sender-cycles.

The traffic generator operates detached from the network flow

control so an infinite buffer is needed to accept its traffic at

any time. The network then empties that buffer as quickly as

possible. As burstiness increases, the additional delay comes

not only from contention within the network, but also from the

local traffic generator’s attempt to send more data in a shorter

time period. This grows the buffer more rapidly, increasing

delay, even if the network was uncongested. From the results in
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Figure 5: Histograms of message latency for the ADSTB design.
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(b) Median latency for MPEG4

Figure 6: Observed latencies per path for 256-byte messages.

Results are shown for the synchronous and asynchronous

network, and traffic of two burstiness amounts.

Table IV, we see that the asynchronous networks consistently

have a lower delay for both median and maximum values.

D. Instantaneous Bandwidth

A measure of network performance related to message

latency is the instantaneous bandwidth (IB) available to a path

at any given time. This is in contrast to the average bandwidth

that an application produces over a long period. We define

an IB requirement for a source-destination path by a pair of

TABLE IV: Source output buffer packet delay (ns).
Network Burstiness

Median 0.5 0.65 0.8
ADSTB sync. 96 730 390065

manual async. 90 508 320018
ANetGen 90 500 319818

MPEG4 sync. 274 170336 1.1e6
ANetGen 84 250 171496

Maximum

ADSTB sync. 1274 261112 1.3e6
manual async. 952 215908 1.2e6

ANetGen 912 231242 1.2e6
MPEG4 sync. 11683 1.2e6 2.99e6

ANetGen 1036 171358 1.1e6

values: {V, T }, where V is in bytes and T is in seconds. This

might be used in validating an interconnect of, say, a real-time

speech recognition SoC, where 18MB must be processed in

0.1 s [35].

For example, the maximum synchronous network latency

seen in simulation between the upsamp and sdram cores of the

MPEG4 was 2525 ns. Suppose this path had an IB requirement

of {256 bytes, 1000 ns} (equating to 256 MBytes/s). This

network would be a poor choice because the application would

occasionally not receive proper communication throughput,

despite the fact that the network did support its average

bandwidth.

E. Power Consumption and Area

We present the power consumption in Table V, broken down

into the following areas: dynamic power of routers, leakage

power of routers, dynamic power of wires, and leakage power

of wires. These measurements do not include the power of

clock distribution, and assume clock gating at the router. The

wire power includes that from drivers and repeaters (large

inverters).

TABLE V: Power consumption (mW) of routers and wires.

rtr dyn rtr leak wire dyn wire leak TOTAL

ADSTB sync 5.5 5 7.86 4.6 23
manual async 0.95 0.072 12 8 21

ANetGen 0.95 0.054 6.3 4.5 11

MPEG4 sync 12.3 15.7 28 15 71
ANetGen 2.4 0.09 20.5 16.7 40

In both cases, the dynamic power of the asynchronous

routers is reduced to about one-fifth the power of the syn-

chronous routers. The leakage power of the asynchronous

routers is negligible. The manual asynchronous network for

the ADSTB design has a noticeable increase in wire power.

One reason is the additional links needed to form the cluster

of 3-port routers in place of a higher-radix router. Second, the

routing bits are on separate wires, rather than an address on the

head flit. Third, our routers and tools use bi-directional ports,

with links instantiated in both directions. COSI, meanwhile,

considers uni-directional router ports, and may produce a

solution with fewer links.

Overall, the asynchronous networks use less power than the

synchronous networks. The majority of savings comes from

significantly lower router power, both dynamic and leakage.

These results also point to the need for wire resources to be

careful utilized, especially with energy-efficient routers.



The ANetGen networks have an area advantage over the

synchronous ones as well. Router areas are 15630µm2 (ANet-

Gen) vs. 99704µm2 (COSI) for ADSTB, and 26050µm2 vs.

138822µm2 for MPEG4.

VIII. CONCLUSION

In this paper we provided an examination of performance

and energy of synchronous and asynchronous NoCs that are

customized for a number of SoC designs. The asynchronous

network formed by our tool ANetGen and our energy-efficient

routers only consumed half as much power as the synchronous

case. Wires consumed the largest fraction due to repeater

energy. Our asynchronous network also had lower latency,

significantly so for bursty traffic, for 256-byte messages. For

the ADSTB design, ANetGen yielded a lower-energy solution

and slightly lower latency than a manually-designed network

based on the synchronous topology. The evaluation suggests

that the common abstraction of SoC requirements using only

average bandwidth may not be sufficient. The addition of a

single-valued burstiness to the tuple representing a network

flow’s properties should be considered in other NoC evalua-

tions. In future work, we will refine ANetGen to consider a

wider range of topologies and more closely integrate it with

the floorplanning tool.
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