Concurrency and Process Logics

Ken Stevens

SECTION 6

Linear Time / Branching Time Spectrum

Process Theory

- **Processes:** The behavior of a system, machine, particle, protocol, etc.
- E.g.: network of falling dominoes, chess players, etc.

Two activities:

Modeling: Representing processes as elements of a mathematical domain \ll properties \gg or expressions in a system description language *ll* behavioral *gg*.

Verification: Proving statements about processes

E.g.: whether two processes behave similarly, whether they have certain properties, (liveness, deadlock, etc.)

The verification constitutes the <u>semantics</u> of the language!

Process semantics are partially order by the relation:

"makes strictly more identifications on processes than"

truly creating a lattice of language strengths.

Semantic Notions of Contemporary Process Theory

• Linear Time vs Branching Time

"trace runs" "internal branching structure" To what extent should branching structure of execution path effect equality?

- Interleaving semantics vs Partial Orders
 To what extent should one identify processes differing in <u>causal</u> dependencies (while agreeing on possible orders of execution)?
- Abstractions to internal actions
 To what extent should we differentiate between processes
 differing only in internal or silent actions?

Semantic Notions of Contemporary Process Theory

Infinity

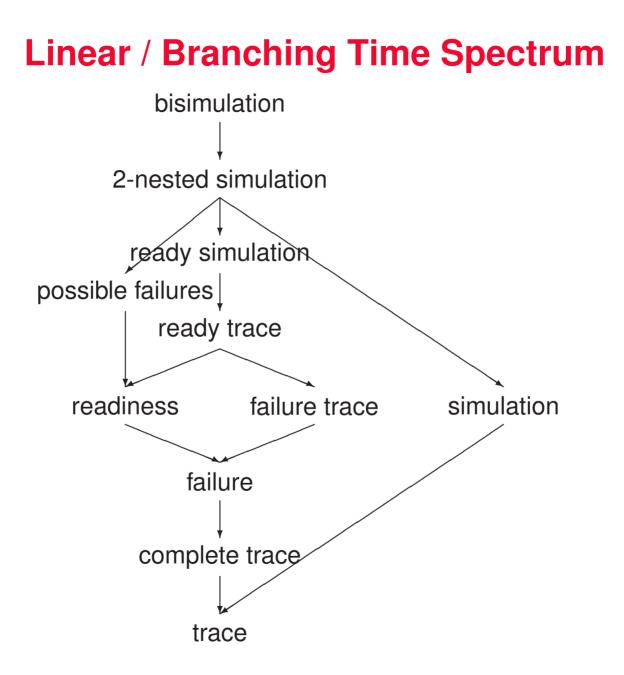
What differences occur only in treating infinite behavior?

- Stochastic
- Real Time
- "Uniform Concurrency"

Actions α , β , ... are not subject to further scrutiny. E.g.: Assignments to variables, moon launch, falling dominoes, signal voltage transition.

Limit to simple subset of above:

- Uniform concurrency
 - actions not subject to further scrutiny
- Sequential processes
 - Processes can perform one action at a time
- Finite Branching
 - from all states
- External observation
 - drop internal actions: CSP
 - "concrete" processes without internal actions: vanGlabeek
 - Modeled internal actions: CCS



Linear / Branching Time Spectrum

- bisimulation
 - **CCS:** (park), observational equivalence (Hennesey & Milner, strong bisimulation all coincide on LTBT spectrum.
- 2-nested simulation
 - (Groote & Vaancrager)
- ready simulation
 - (bloom, Istrail, Meyer) "GSOS Trace Congruence" (Larsen/Skou) "2/3 bisimulation equivalence"
- ready trace
 - (pnuelli) called "barbed semantics", also (Baeten Bergstom Klop) as "exhibited behavior semantics"

Linear / Branching Time Spectrum

- readiness
 - (Olerog, Hoar) slightly finer than failures
- failure trace
 - (philips) refusal semantics, must equiv in CWB
- Simulation
 - (park) independent of 5 semantics to left of lattice
- failure
 - CSP: (Brooks, Hoare, Roscoe), testing equivalence (DeNicola/Hennesey) for LTBT systems

Linear / Branching Time Spectrum

- complete trace
 - may equivalence in CWB
- Trace
 - (Hoar) partial traces okay

Look at Four Equivalences

- (weak)(complete) Trace Equivalence $=_t$
 - simple
 - not generally useful in arbitrary processes since it equates agents with different deadlock properties.
- Strong Equivalence \sim
 - useful but too strong
 - makes too many distinctions between agents
- Observation Equivalence (Bisimulation) \approx
 - The preferred notion of equivalence between agents
 - ... except that is is *not* a congruence (for summation).
 - Thus it does not admit equational reasoning
- Observational Congruence =

Look at Four Equivalences

The relationship of these four equivalence relations: $P_1 \sim P_2 \supset P_1 = P_2 \supset P_1 \approx P_2 \supset P_1 =_t P_2$

All implications are proper

Venn diagrams complete inclusion

Equivalences

Interactive example of Job Shop

Section 7

Equivalences

1. LTS =
$$(S, T, \{\stackrel{\alpha}{\rightarrow} : \alpha \in T\})$$

S: set of states T: set of transition labels $\stackrel{\alpha}{\rightarrow} \subseteq S \times S$ transition relation $\forall \alpha \in T$

- **2.** *P* is agent if $P \xrightarrow{\alpha} P'$ then α is action of *P* and *P'* is α -derivative of *P*
- **3.** *P* is *derivation closed* if $\forall P \in \mathcal{P}$ and $\forall \alpha \in Act$ whenever $P \xrightarrow{\alpha} P'$ then $P' \in \mathcal{P}$ When \mathcal{P} is minimized (1 agent expression per state), size of \mathcal{E} is state size
- **4.** $s = \alpha_1 \dots \alpha_n \in \mathcal{L}^*$ then $P \stackrel{s}{\Rightarrow} P'$ iff $P(\stackrel{\tau}{\rightarrow})^* \stackrel{\alpha_1}{\rightarrow} (\stackrel{\tau}{\rightarrow})^* \dots (\stackrel{\tau}{\rightarrow})^* \stackrel{\alpha_n}{\rightarrow} (\stackrel{\tau}{\rightarrow})^* P'$ (transitive, reflexive closure on τ)

$$\text{ if } s = \varepsilon \text{ then } \stackrel{\varepsilon}{\Rightarrow} = (\stackrel{\tau}{\rightarrow})^*$$

Shorthand $P \stackrel{s}{\Rightarrow}$ stands for $P \stackrel{s}{\Rightarrow} P'$ for some P'

if $s \in Act^*$, \hat{s} is the projection of s on \mathcal{L}^* delete all τ in s

if $s \notin \mathcal{L}^*$ then $\hat{s} = \varepsilon$

if $s \in Act^*$ then $\hat{s} = \alpha_1, \dots, \alpha_n \in \mathcal{L}^*$ and $P \stackrel{\hat{s}}{\Rightarrow} P'$ iff $P(\stackrel{\tau}{\rightarrow})^* \stackrel{\alpha_1}{\rightarrow} (\stackrel{\tau}{\rightarrow})^* \dots (\stackrel{\tau}{\rightarrow})^* \stackrel{\alpha_n}{\rightarrow} (\stackrel{\tau}{\rightarrow})^* P'$

Example

 $\mathcal{E} = \{P_1, P_2\}, P_1 \stackrel{def}{=} a.P_2; P_2 \stackrel{def}{=} \tau.P_1 + b.P_1;$

 $P_1 \xrightarrow{a} P_1$ and $P_1 \xrightarrow{a} P_2$ are valid transitions

Trace Equivalence

s is a *trace* of P if $P \stackrel{s}{\Rightarrow} P'$ for some $P'(s \in \mathcal{L}^*)$

Trace equivalence is denoted as $P =_t Q$ iff T(P) = T(Q)where $T(P) = \{s \in \mathcal{L}^* : P \stackrel{s}{\Rightarrow} P', \exists P'\}$

Formally,

P and Q are (weakly) (complete) trace equivalent, written $P=_t Q$ iff $\forall s\in \mathcal{L}^*$

$$P \stackrel{s}{\Rightarrow} \text{iff } Q \stackrel{s}{\Rightarrow}$$

So
$$P =_t Q$$
 iff $\forall s \in \mathcal{L}^*$
if $P \stackrel{s}{\Rightarrow} P'$ for some P'
then $Q \stackrel{s}{\Rightarrow} Q'$ for some Q'
and if $Q \stackrel{s}{\Rightarrow} Q'$ for some Q'
then $P \stackrel{s}{\Rightarrow} P'$ for some P'

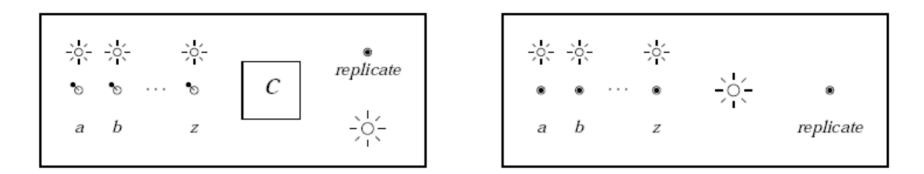
T(P) is the acceptance language for an automaton – take a "formal languages and automaton course!

Testing Scenarios

Variety of testing scenarios available.

- Each scenario determines the notion of observable behavior
- The internal structure is not observable
- We will build more complex testing scenarios
 - generative
 - reactive

Generative and Reactive Testing

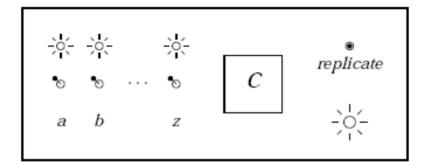


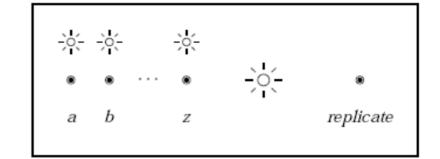
Generative and Reactive Machines

Generative machine spontaneously acts. Interaction is through *restricting* actions.

Reactive machine only acts in response to environment Both are theoretically equivalent

Generative and Reactive Testing





Generative and Reactive Machines

- observable actions displayed when they occur. They stay until the display is clear.
- internal action light. (idle when no internal action)
- menu lights showing possible actions
- switches to block or create action
- replication button that creates concurrent copies from given state

Trace Semantics

 $s \in Act^*$ is a *trace* of process *P* if $\exists P' : P \xrightarrow{s} P'$

Let T(P) denotes the set of traces P.

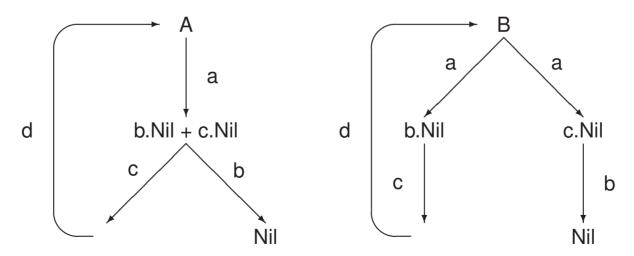
Two processes *P* and *Q* are trace equivalent, denoted $P =_t Q$ if T(P) = T(Q)

In trace semantics two processes are identified iff they are trace equivalent.

Trace Examples

 $A \stackrel{def}{=} a.(b.Nil + c.d.A) \qquad \qquad B \stackrel{def}{=} a.b.Nil + a.c.d.A$

- **1.** So *A* and *B* are finite state automata over alphabet $Act = \{a, b, c, d\}$
- '+' is "union of languages", '.' is concatenation, Nil is the language who's only member is the empty string.
- **3.** transition graphs:



Trace Example

Let's break agents down to look at states

$$A \stackrel{def}{=} a.A_{1} \qquad B \stackrel{def}{=} a.B_{1} + a.B'_{1}$$

$$A_{1} \stackrel{def}{=} b.A_{2} + c.A_{3} \qquad B_{1} \stackrel{def}{=} b.B_{2} \qquad B'_{1} \stackrel{def}{=} c.B_{3}$$

$$A_{2} \stackrel{def}{=} Nil \qquad B_{2} \stackrel{def}{=} Nil$$

$$A_{3} \stackrel{def}{=} d.A \qquad B_{3} \stackrel{def}{=} d.B$$

Now, let A_2 and B_2 be accepting states for the language. (Automata would abbreviate CCS to remove Nil, but effect is the

same.)

Trace Example

Using automata theory

$$A \stackrel{def}{=} a. (b.Nil + c.d.A)$$

Substitution to get 1st equation from concatenation and union
$$A \stackrel{def}{=} a.b.Nil + a.c.d.A$$

by the distributive law

$$A \stackrel{def}{=} (a.c.d)^*.a.b$$

deduce as regular grammar

$$B \stackrel{def}{=} a.b.Nil + a.c.d.A$$

Substitution to get 1st equation from concatenation and union

$$A \stackrel{def}{=} (a.c.d)^*.a.b$$

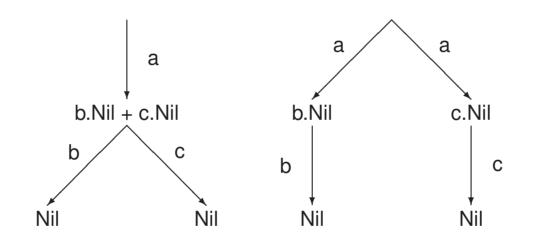
deduce as regular grammar

So these are equivalent using regular grammars and nondeterministic automata!

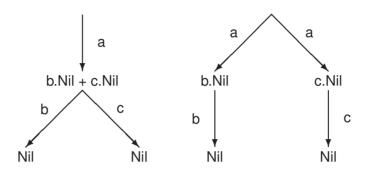
Trace Examples

$$P \stackrel{def}{=} a. (b.Nil + c.Nil)$$
$$Q \stackrel{def}{=} a.b.Nil + a.c.Nil$$

Transition graphs:



Trace Examples



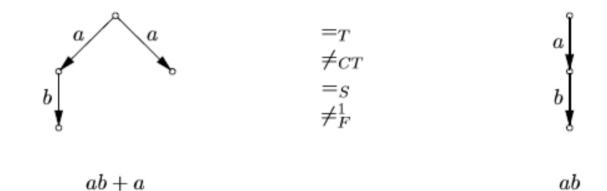
• $P =_t Q$

- But observable behavior different with respect to deadlock
- (Q | R) can deadlock after action a
- reject this as general notion of *compositional* equivalence
- good for systems that reduce to a branch of regular algebra and nondeterministic automata theory

Complete Trace

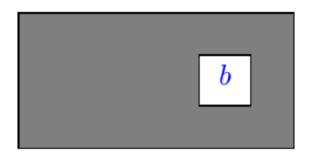
 $s \in Act^*$ is a *complete trace* of process *P* if $\exists P' : P \xrightarrow{s} P'$ and $I(P') = \emptyset$ (*I* = initial traces)

Two processes *P* and *Q* are trace equivalent, denoted $P =_{ct} Q$ iff T(P) = T(Q) and CT(P) = CT(Q)



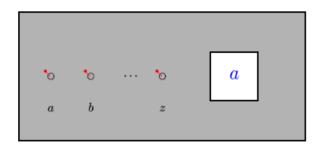
 $T \leq CT$ $T(left) = T(right) = \{\varepsilon, a, ab\}$ $a \in CT(left) - CT(right)$

Trace Testing

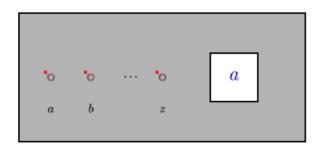


Black box

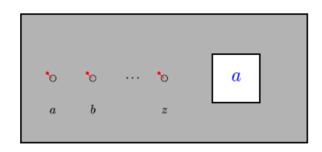
- display shows name of action
- *P* autonomously chooses an execution path
- action always shown (except at start)
- observer records actions



- Machine runs autonomously
- User chooses the signal sets that are enabled
- Machine will only permit the signals that are enabled
- Display turns off if deadlocked



- Same interface to outside world as trace semantics
- Adds switch for each action $a \in Act$
 - now can determine which actions are
 - free
 - blocked
- machine autonomously chooses execution path

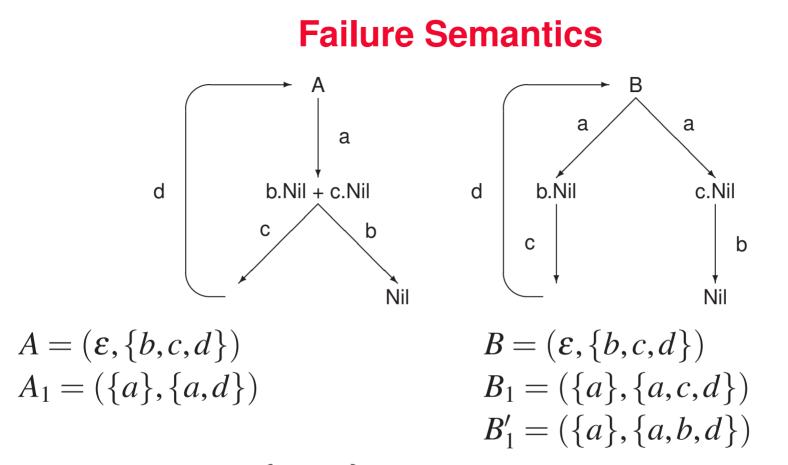


Informally we can state this, based on our testing scenario, that:

After a certain sequence of actions σ , the set X of free actions is refused by the process. X is therefore called a refusal set and $\langle \sigma, X \rangle$ is a failure pair.

Failure is a pair (s, L) where $s \in L^*$ is a trace and $L \subseteq L$ is a set of labels. The failure (s, L) belongs to an agent *P* if $\exists P'$:

1. $P \stackrel{s}{\Rightarrow} P'$ 2. $P' \stackrel{\tau}{\not\rightarrow}$ (so τ doesn't create $\alpha \in L$ actions) 3. $\forall \alpha \in L, P \stackrel{\alpha}{\not\rightarrow}$



If you initially block $\{b, c, d\}$ both machines respond the same. After that, different failure sets have different responses, showing they are not equivalent.

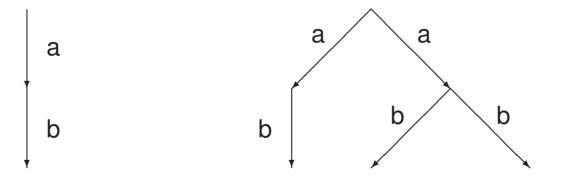
Failures Semantics

The distributive law of Automata Theory allowed the equivalence deduction:

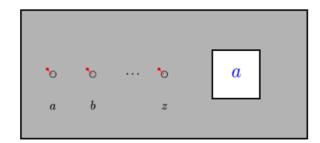
$$a.(P+Q) = a.P+a.Q$$

Failures semantics is not equivalent across distribution.

Note: Don't conclude that identical derivation trees required:



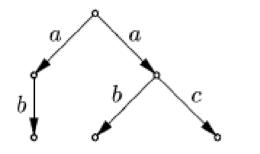
Trace and Failures Counterexample



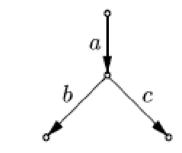
 $=_{CT}$

 \neq_F

 $=_{CS} \neq^1_F$



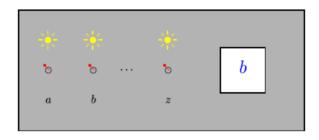
ab + a(b + c)



a(b+c)

Ready Trace Semantics

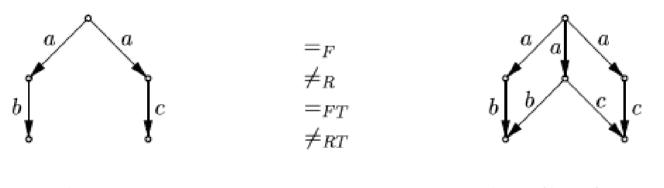
A variant of the failure trace machine equipped with a lamp for each action $a \in Act$. When process idles, lamps are lit if they can be engaged by the process. (Actions must be blocked by user to make process idle.)



This is important for **temporal logics** which can now directly see "observable" branching structure!

Ready Trace Counterexample

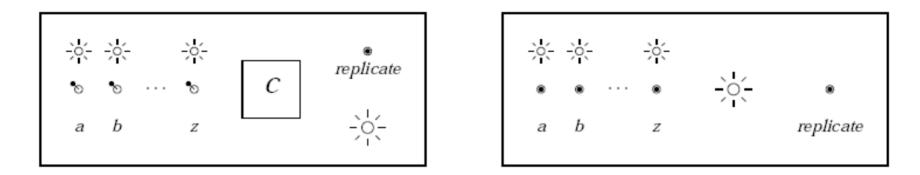




ab + ac

ab + a(b + c) + ac

Bisimulation Semantics



Reactive failure ability with duplicator and global testing capability.

"ability to enumerate all (of finitely many) possible 'operating environments' at each stage of the test, so as to guarantee that all nondeterministic branches will be pursued by various copies of the subject process"

Abramsky

Bisimulation Semantics

Global assumptions - example with environmental condition modalities on α :

- **1.** It is the *weather* that determines which α move will occur from every state when α is pushed on the box.
- 2. The weather only has finitely many states for choice resolution.
- **3.** We can control the weather.

So, if we investigate all α moves in all weather conditions, then we can describe the behavior of the system when carried out for all $\alpha \in \mathcal{L}(P)$

(finiteness can be relaxed, but important if you want a solution in a finite amount of time...)

Bisimulation Relation Extensions

Other extensions can be made to the relationship:

 Stochastic nature could be exploited here as the probabilities of the weather conditions could be listed.

Bisimulation Semantics

$$P \approx Q \text{ iff } \forall \alpha \in Act$$

(i) whenever $P \xrightarrow{\alpha} P'$ then, for some Q'
 $Q \xrightarrow{\hat{\alpha}} Q'$ and $P' \approx Q'$
(ii) whenever $Q \xrightarrow{\alpha} Q'$ then, for some P'
 $P \xrightarrow{\hat{\alpha}} P'$ and $P' \approx Q'$

Note:

$$\begin{array}{l} \text{if} \xrightarrow{\alpha} \text{ and } \alpha \neq \tau \\ P \xrightarrow{\hat{\alpha}} P' = P(\xrightarrow{\tau})^* \xrightarrow{\alpha} (\xrightarrow{\tau})^* P' \\ \text{if} \xrightarrow{\alpha} \text{ and } \alpha = \tau \\ P \xrightarrow{\hat{\alpha}} P' = P(\xrightarrow{\tau})^* P' \end{array}$$

Bisimulation Relations

Observational Equivalence

P pprox Q iff $P \zeta Q$ for some bisimulation ζ

Basic Properties

- 1. \approx is an equivalence relation
 - a. Idp (reflexive)
 - **b.** S_i^{-1} (symmetric)
 - **c.** S_1S_2 (transitive)
- **2.** \approx is itself a bisimulation
 - **a.** $\bigcup_{i \in I} S_i$
- **3.** it satisfies the "back and forth" property

Bisimulation Relations

Example: Let $C_0 = \overline{b}.C_1 + a.C_2$ $D = \overline{b}.D_1 + a.D_2$ $C_1 = a.C_3$ $D_1 = a.D$ $C_2 = \overline{b}.C_3$ $D_2 = \overline{b}.D$ $C_3 = \tau.C_0$

Assume $C_0 \approx D$ are bisimilar

Prove by constructing bisimular sets:

$$egin{array}{rcl} \zeta = & \{ & (C_0, C_3, D) \ & (C_1, D_1) \ & (C_2, D_2) \} \end{array}$$

Note: We want largest sets, as the sets (C_0, D) and (C_3, D) are also valid.

Other Issues

- τ cycles are ignored!
 - Possibility of active idling not detected in bisimulation.
 - This is different from *livelock*

Milner states

"In a theory which equates 2 agents even when the proportion between their speeds may vary unboundedly, it is natural to allow this proportion to be infinite."

Other Issues

In fact:

Every system containing τ -cycles is equivalent to one without.

Nil
$$\approx A$$
 $A \stackrel{def}{=} \tau.A$

If bisimulation is strengthened to include this, the awkward consequence follows:

 $P \mid A \not\approx P$ where A is as defined above

Seems wrong since P is no less divergent when composed with τ -cycle running concurrently with it.

Strong Bisimulation

- Represented in Miler by relationship =
- Not very useful as it distinguishes τ as "observable" action

 $\begin{array}{l} P = Q \text{ iff } \forall \alpha \in Act \\ P \xrightarrow{\alpha} P' \text{ implies } (Q \xrightarrow{\alpha} Q' \text{ for some } Q' = P') \\ \text{and } Q \xrightarrow{\alpha} Q' \text{ implies } (P \xrightarrow{\alpha} P' \text{ for some } P' = Q') \end{array}$

Congruence

Note: Bisimulation is not a congruence.

This is the case when the initial agent is divergent.

(A process is divergent or not stable if it can do a τ action)

This is due to the semantics of summation that we don't have time to show.

Circuit Verification

Bisimulation semantics gives **observational equivalence**

- basically any externally observable difference is recognized
- allows full protocol compatibilility regardless of implementation!

However, equivalence is NOT the relationship that we want!

- Equivalence to a specification is too strong a relationship.
- We need flexibility in inputs and in outputs

What we really need is a **conformance** relationship:

The specification *conforms*, or is a valid replacement of the implementation.

Results in difference between specification and implementation

Conformation

In a conformance relationship:

- the implementation can have a richer input behavior than the specification
 - the implementation can (and must) accept inputs in states that the specification does not allow.
 - essential in hardware to avoid *computation interference*
 - the condition when an input is passed to a process in a state where it cannot accept the input
 - e.g.: four-input mux design is valid for three-input mux specification.

Logic Conformation in Analyze

This is the conformance relationship implemented in Analyze:

A binary relation $\mathcal{LC} \subseteq \mathcal{P} \times \mathcal{P}$ over agents is a **logic conformation** between implementation *I* and specification S if $(I, S) \in \mathcal{LC}$ then $\forall \alpha \in Act$ and $\forall \beta \in \overline{\mathcal{A}} \cup \{\tau\}$ (outputs) and τ) and $\forall \gamma \in \mathcal{A}$ (inputs) (i) Whenever $S \xrightarrow{\alpha} S'$ then $\exists I' \text{ such that } I \stackrel{\alpha}{\Rightarrow} I' \text{ and } (I', S') \in \mathcal{LC}$ (ii) Whenever $I \xrightarrow{\beta} I'$ then $\exists S' \text{ such that } S \stackrel{\widehat{\beta}}{\Rightarrow} S' \text{ and } (I', S') \in \mathcal{LC}$ (iii) Whenever $I \xrightarrow{\gamma} I'$ and $S \xrightarrow{\gamma}$ then $\exists S' \text{ such that } S \stackrel{\gamma}{\Rightarrow} S' \text{ and } (I', S') \in \mathcal{LC}$

Logic Conformation in Analyze

This results in a partial order, not equivalence, relationship between implementation and specification, $S \prec I$

Conformance Weakening on Outputs

Outputs also do not need to equivalently match:

- the implementation can have a less rich output behavior when the outputs are confluent
 - Confluence occurs when the outputs can occur *concurrently*.
 - This is a relationship on labeled transition systems that matches true concurrency in languages such as petri nets.
 - **1.** If the specification allows concurrent output burst, then the composed implementation must accept all outputs.
 - **2.** If the implementation only produces a subset of the possible output sequences, then the system will still behave correctly.

Formalized by Brower.

Not implemented in Analyze