
Concurrency and Process Logics

Ken Stevens

Verification

Cannot understand verification
without understanding concurrency

Concurrency Challenge

Concurrency is major challenge

l practically: plethora of concurrent implementations

u architectures
n Mayfly, transputer, reduction machines, microprocessors, . . .

u Programming
n Algorithms, actors, domains, threads, . . .

l Theoretical: model and prove properties

u architectures
n PRAM model, . . .

u Programming
n CSP, Occam, CCS, . . .

Concurrency

Interesting dichotomy exists:

l more parallel architectures than languages

u inherent parallelism in hardware
u inherent difficulty in parallel programming

n perhaps Verilog is most used parallel programming
language?

Humans don’t think in parallel

l missed off-ramp on freeway

Concurrency Models

Plethora of variations can create confusion

Theory is useful

l provides clarity and understanding

l classifies/groups similarities/variations

l applicable to real “practice” (but sterile)

Process Logics

l apply theory to concurrency

l focus on interaction of theory and practice

l still a large breach in both

There are other theories

We will use simplest process logic: CCS

Von Neumann Architecture

Serial Control -� Memory

Program is a mathematical function over memory state

l given a start state, can calculate solution

Assumes subservient memory, under sole control of single serial
thread.

Equality – for now nebulous –
semantic equality results in same results.

Von Neumann Architecture

Program 1 Program 2
x := 1; x := 0;

eval x x := x+1
eval x

Are models equivalent?

Von Neumann Architecture

Program 1 Program 2
x := 1; x := 0;

eval x x := x+1
eval x

Are models equivalent: yes under Von-Neumann model

What about concurrent model?

Von Neumann Architecture

Program 1 Program 2
x := 1; x := 0;

eval x x := x+1
eval x

Are models equivalent: yes under Von-Neumann model

What about concurrent model: no.

Concurrent architecture

Program 1 Program 2
x := 1; x := 0;

eval x x := x+1
eval x

Assume daemon: x := 1;, or concurrent operation of programs.
x can be 1 or 2.

Look at results of interactions of concurrent systems

l who and when memory location x is accessed

Concurrent architectures

key: memory no longer a “slave”;

memory now 1st class agent with behavior that needs modeling.

“He who serves two masters serves none”

Think asynchronously: each model is own master.

Calculus of Communicating Systems
Milner’s CCS:

l semantic theory in which interaction and communication is
central idea.

l achieves smooth mathematical treatment

Hoar’s CSP:
same primitive notion for different purpose

l the ability to derive other primitives

u semaphores and monitors (themselves taken as primitives)

from one general primitive

Both converged to same point of the pivotal nature of interaction
and communication between behaviors.

Process Logics

Evidence that this notation is a pivotal one:

l serial interacting agents

l communication primitive

Other concurrency theories
l Petri nets

u (I learned this from one of Carl Petri’s contemporaries)
u independence (parallel) of actions
u place transition nets / signal transition graphs

True Concurrency vs interleaving concurrencyms
? a
?m
@

@@R c

- ms
?b
?m

�
��	

� s
�

�
�	

as
@

@
@Rb s

?

c
@

@
@R

bs
�

�
�	 a

l true concurrency

l first good theory of concurrency

u still used today for most asynchronous modeling

Petri Nets
Benefits:

1. causality directly represented

l virtue of places
l preconditions

Problems:

1. Structural issue not addressed

l results in serious drawbacks
u not compositional operator defined
u not able to hide actions

l attempted to model with “Snippets” and other “warts”

2. no general theory of equality or canonical representation

Process Logics
1. Interleaving semantics

l looses causality
u becomes an “observational” or “existential” theory
u (turns weakness into a strength)
u CCS not even directly observable (due to τ)

2. Direct Structural aspect

l independent parallel “process” or “agent” set
u each process has localized behavior

l clear definition of “interaction” or “synchronization”
l ability to hide non-critical detail and hierarchy

results in tractable theory which focuses on local behavior and interaction.

no theory exists that directly supports both causality and structure

Process Logics
Processes interact

l core is an algebra
various systems or branches of mathematics concerned with the properties

and relationships of abstract entities manipulated in symbolic form under

operations often analogous to those of arithmetic.

u everything cannot be done with algebra
u still have need for higher order logic or theorem proving

l “Calculus” of communicating systems
a method of computation or calculation in a special notation (as of logic or

symbolic logic)

u implies use of logic
u temporal logic applies here

SECTION 2

CCS

Communication and concurrency are complex notations formalized
in process logics.

concurrency: Independence or locality of behavior
communication: unifies independent models into a single system

Underlying notion of identity:

l agents: identifiable behaviors that persist in time

CCS

Systems consist of discrete actions.

Actions come in two independent classes:

1. dependency

l actions can be independent
l or constrained by communication or synchronization

2. observability

l actions can be externally observed
l actions are unobservable, but their results can be observed

u unobservable action: τ

CCS

Agents represent the current state

State to state transitions occur via actions

Hence it is convenient to write these as:

P α→ Q

Notation
Agents: P P,Q, . . . range over P
Names: A a,b, . . . range over A
CoName: A a,b, . . . range over A
Labels: L L = A ∪A
unobservable action: τ

Actions: Act Act = L ∪{τ}
Actions: Act α ,β , . . . range over Act
Agent Expressions: E E,F , . . . range over E
Indexing sets: {Ei: i ∈ I}

Agent Expressions

Nil does nothing (∑i∈0 Ei)
Constant A = P; (infinite behavior via recursion)
prefixing α .E (α ∈ Act)

Now we have the power to define simple agents:

Match = strike.burn.Nil;

CooCoo = tick.tock.CooCoo;

Choice

Summation ∑i∈I Ei

Summation implements non-deterministic choice.

l interleaving parallelism

We now have ability to express more powerful agents:

C-element can now be derived from state diagram earlier:

C-element = a.b.’c.C-Element + b.a.’c.C-Element

(note: ’a is textual representation of a)

Synchronization

These are the synchronizing primitives:

Composition E1 | E2

Restriction E\L (L should be A)
Relabeling E[f]

f is a relabeling function mapping L to L such that
f (α) = f (α) and f (τ) = τ

signal complementation a = a

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

What is the difference between c and c?

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

What is the difference between c and c?

Labels and Colabels (inputs and outputs)

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

Can c fire independently in the lower graph?

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

Can c fire independently in the lower graph?

YES!

Since A′ c→ A, we infer A′ | B c→ A | B

This does not indicate communication between A and B

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

Can c and c handshake communicate in the lower graph?

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

Can c and c handshake communicate in the lower graph?

YES!

Since A′ c→ A, and B c→ B′, we infer A′ | B ?→ A | B′

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

Since A′ c→ A, and B c→ B′, we infer A′ | B ?→ A | B′

When we have handshake communication what is the ‘?’ action?

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

Since A′ c→ A, and B c→ B′, we infer A′ | B ?→ A | B′

When we have handshake communication what is the ‘?’ action?

τ – the invisible internal action.

The τ action has semantic properties in CCS that are significantly
different than other process logics, labeled transition systems (LTS),
or concurrency models.

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

Can c communicate with other agents in the system that can do the
c action?

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

Can c communicate with other agents in the system that can do the
c action?

YES!! This is a primary means of specifying semaphores,
nondeterminism, etc. in a system!

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

Can we force the communication to occur? How do we prevent the
independent c and c actions from occurring?

Composition

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Now consider:

a s��
��
A s c c s��

��
B s b

Can we force the communication to occur? How do we prevent the
independent c and c actions from occurring?

YES! – this is the purpose of the restriction operator! The operator
(A | B)\{c} will restrict the c and c actions from occurring in the
composed process.

Transitional Semantics

A labeled transition system LTS = (S,T ,{ t→: t ∈ T})
S: state set
T: Transition label set
Transition relation:

t→ ⊆ S×S ∀t ∈ T

Also:

S ::= E
T ::= Act

Semantics for agent expressions E consist in the definition of each
transition relation over E .

Simple Examples
Sender −→ (medium) −→ Receiver

l sender can send data at any time

l when ether not empty, receiver can accept at any time

Medium: ether
non-order-preserving
bounded buffer
buffer
shared memory
. . .

Must be able to represent them all.

Just like Von-Neumann example and parallel computer – the
medium just like the memory can have its own arbitrary behavior,
and thus can be represented as an independent agent!

Bounded FIFO

FIFO = in(x).FIFO’(x);
FIFO’(x) = ’out(x).FIFO;

Equivalent definition:

FIFO = in(x).’out(x).FIFO;

What of F ◦F ◦F? (composition?)

Exercise 1, page 18 of Milner

SECTION 3

Review

E ::= A constant
| α .E prefixing
| ∑i∈I Ei summation
| E1 | E2 composition
| E[f] relabeling
| E\L restriction

LTS = (S,T ,{ t→: t ∈ T})
In composition, a label and colabel interact to form a single
indivisible communication action τ .

Derivation Tree

For the process:
a s��

��
A s s��

��
B s b

we can create the derivation tree:
(A | B)\{c}

?
a

(A′ | B)\{c}

?
τ

(A | B′)\{c}

�
�

�	

b @
@

@R

a

(A | B)\{c}

?
a

(A′ | B)\{c}

...

(A′ | B′)\{c}

?
b

(A′ | B)\{c}

...

Derivation Tree

For the process:
a s��

��
A s s��

��
B s b

The cyclic nature allows us to represent this behavior as a transition
graph:

(A | B′)\{c}

�
�

�	

b @
@

@R

a

(A | B)\{c}

@
@

@R

a

(A′ | B′)\{c}

�
�

�	

b

(A′ | B)\{c}

�

$

%

�
?

Internal Actions

The internal action τ

1. has no complement

2. cannot communicate with other actions

3. is not directly observable

We want to define systems as equivalent if they can perform the
same pattern of external actions.

This results in the ability to abstract:

Should P τ→ P1
τ→ · · · τ→ Pn

be equal to P τ→ Pn??

Internal Actions
The internal action τ

1. has no complement

2. cannot communicate with other actions

3. is not directly observable

We want to define systems as equivalent if they can perform the
same pattern of external actions.

This results in the ability to abstract:

Should P τ→ P1
τ→ · · · τ→ Pn

be equal to P τ→ Pn??

YES!! We will define the transitional semantics and rules that show
this to be the case.

Transitional Semantics

Transitional semantics of
LTS = (S,T ,{ t→: t ∈ T})
These come in form of:

RULE
name−→ Act

Top of the bar is the hypothesis

Bottom of bar is the conclusion

Act
α .E α→ E

Prefixing

Transitional Semantics

Sum j

E j
α→ E ′

j

(j ∈ I)
∑i∈I Ei

α→ E ′
j

Summation

l case I = 0, result is 0 or NIL

l case I = {1,2}
∑i∈{1,2}Ei is written E1 +E2 and has transition rules

E1
α→ E ′

1

E1 +E2
α→ E ′

1

and
E2

α→ E ′
2

E1 +E2
α→ E ′

2

Example

C-element defined as:

C = a.b.’c.C + b.a.’c.C;

rules are

a.b.’c.C
a→ b.’c.C

a.b.’c.C + b.a.’c.C
a→ b.’c.C

and

b.a.’c.C
b→ a.’c.C

a.b.’c.C + b.a.’c.C
b→ a.’c.C

Transitional Semantics

Parallel Composition

E1 E2

E1 | E2

&%
'$ua uc

ub

&%
'$ua u

c

ub

&%
'$uduc

ub

&%
'$udu

c

ub

Names joined to corresponding conames

E1|E2 has three rules:

Transitional Semantics

Com1

E1
α→ E ′

1

E1 | E2
α→ E ′

1 | E2

Com2

E2
α→ E ′

2

E1 | E2
α→ E1 | E ′

2

Com3

E1
l→ E ′

1 E2
l→ E ′

2

E1 | E2
τ→ E ′

1 | E ′
2

l ∈ L
if l is b then l is b = b

if l is c then l is c

Transitional Semantics
τ is the unobservable internal action

l τ is neither a name or coname

l τ is not a well-formed action expression

Note:

l In Com3 we get τ whether l or l give rise to the communication.

l We can not tell from τ exactly what goes on inside E1 | E2

l Likewise, we cannot differentiate between the b and c tau transitions

u unless it creates a difference in externally observable behavior

l only single internal transition label necessary

l most (all?) other languages use a hiding semantics!

Transition Semantics

SORTS:

Definition: for any L ⊆ L , if the actions of P and all its derivatives
lie in L∪{τ} then we say P has sort L, or L is a sort of P, and write
P:L.

Proposition: For every E and L, L is a sort of E if and only if,
whenever E α→ E ′, then

1. α ∈ L∪{τ}

2. L is a sort of E ′

Transitional Semantics
For E with sort K and F with sort L
(This is used for hardware modeling and broadcast communication)

Conj1
E α→ E ′

(α 6∈ L)
E | F α→ E ′ | F

Conj2
F α→ F ′

(α 6∈ K)
E | F α→ E | F ′

Conj3
E l→ E ′ F l→ F ′

(l ∈ K∩L)
E | F τ→ E ′ | F ′

(We can allow τ to be l for circuit semantics, and can allow l to communicate with

l as shared inputs.)

Relabeling

f is relabeling function, so f :Act → Act

l f (τ) = τ

l f (l) ∈ L when l ∈ L

l f (l) = f (l) ∀ l ∈ L

Rel

E α→ E ′

E[f]
f (α)−→ E ′[f]

Relabeling

Notation:
when f (li) = l′i.(i = 1, . . . ,n)

f (l) = l if l 6= l1, . . . , ln
written E[f] as E[l′1/l1, . . . , l′n/ln]

Relabeling

Problems exist without restriction:

FIFO = in.’out.FIFO

♣:

FIFO | FIFO

♠:

FIFO[mid/out] | FIFO[mid/in]

Draw transition graph for ♣
Draw derivation tree for ♠
Note problem of independent actions!

Restriction

L ⊆ L

Res
E α→ E ′

(α ,α 6∈ L)
E\L α→ E ′\L

l E\L has the same τ transitions as E since τ 6∈ L

l Syntax of some tools assumes L 6∈ A , but L ∈ A

Hiding

Hiding is the semantics for internal signals for most process logics
and LTS

L ⊆ L

Hid1

E α→ E ′

(α ,α 6∈ L)
E/L α→ E ′/L

Hid2

E l→ E ′

(l∨ l ∈ L)
E/L → E ′/L

Does this result in E and E ′ being equivalent?

Hiding

Hiding is the semantics for internal signals for most process logics
and LTS

L ⊆ L

Hid1

E α→ E ′

(α ,α 6∈ L)
E/L α→ E ′/L

Hid2

E l→ E ′

(l∨ l ∈ L)
E/L → E ′/L

Does this result in E and E ′ being equivalent?
YES

Example

Now try this FIFO:

FIFO = in.’out.FIFO

(FIFO[mid/out] | FIFO[mid/in]) \{ mid }

Make transition Graph

Make Derivation Tree

Examples

1. inverter

2. buffer

3. toggle

4. fork

5. merge

6. semaphore

7. mutex element

