
Design of process invariant Delay Lock Loop (DLL)

ECE 6770 - Final Report

Manohar Nagaraju (manohar.nagaraju@utah.edu)

Department of Electrical and Computer Engineering,

University of Utah

Abstract: Random device mismatch have a significant impact on the performance of

analog circuits. This report discusses the design of a Delay Lock Loop (DLL) which is

insensitive to process variation. The DLL is optimized for reduction in the variation of

threshold voltage variations and is intended to be used in a clock and data recovery

circuit with an input bit rate of 500 Mbps. The performance specifications of the DLL are

also analyzed. The DLL is expected to be fabricated in the AMI 0.6 um technology.

Index Terms: Process variation, Delay Lock Loop, High speed counters

I. Introduction

 Wafer-to-wafer and die to die variations present significant power-speed-yield

trade-offs. The problem of process variations become all the more predominant with the

scaling of devices for each new generation. It has been proved that there is an increase of

100% in energy consumption for the same performance due to threshold voltage

variations in inverter chains (90nm) [1]. The problem of process variations is all the more

complicated in analog circuits. They have a considerable effect on the bias conditions,

gain, frequency response and bandwidth of the circuit. These challenges are complex and

necessitate design-stage statistical analysis to determine conditions for maximum yield

[2].

 An improvement in process and fabrication control is not expected to have a high

impact in controlling these process variations. This problem is expected to be overcome

by careful design of circuits. With the above problem in mind, the plan for the present

project will be to research the effects of process variations on the phase accuracy of DLL

(which is chosen as a benchmark) outputs and build a process-invariant DLL.

II. Related work

 James W. Tschanz, et al [3] have proposed using Adaptive body bias (ABB)

technique to compensate for die-to-die parameter variations by applying optimum PMOS

and NMOS body bias voltage to each die which maximizes the die frequency subject to a

power constraint. However typically low Vt devices are required for this scheme and they

have worse short-channel effects, and these effects degrade with body bias. Also, the

effect of Drain induced barrier lowering (DIBL) becomes significant with body bias and

within-die Vt variation depends on Vt-roll-off and DIBL resulting in a larger Vt variation

with body bias. Moreover, as the technology is scaled, the control of the body’s terminal

on the channel charge diminishes.

 Anand M. Pappu, et al [4] presents a design methodology to develop circuits that

compensate for process variations without the need for post-fabrication efforts. The main

advantage of this methodology stems from the fact that we can use it to optimize the

circuit to reduce variation on a parameter which we consider important such as gain,

bandwidth etc.

III. Design and Description

 Having understood the significance of designing circuits for reduced process

variation sensitivity, we now discuss the design of a DLL, which is the focus of the

present project. The DLL is planned to be used in a Clock and Data recovery circuit. The

basic block diagram of a DLL is as shown below:

Fig 1: Block Diagram of the DLL.

 The signal Vin is the reference frequency generated by a high quality crystal. It is

the input to the voltage controlled delay line (VCDL) which basically consists of a series

of delay cells each producing a fixed time delay between its input and output. The total

delay through the VCDL should be equal to one time period of the input frequency. The

output of the delay elements generate waveforms with edges that are evenly spaced

within one period of the reference crystal. The phase detector senses the phase difference

between the input and output of the delay chain and generates an error signal. This error

signal is used to control a charge pump, whose output is filtered by a loop filter. The filter

output is the control voltage that varies the time delay of each stage to minimize the

phase error. When the DLL is in locked condition, the input and the output of the delay

chain are in-phase. A DLL based clock recovery circuit or a frequency synthesizer has an

inherent advantage over a corresponding Phase Lock Loop (PLL) using a Voltage

Controlled Oscillator (VCO). In an oscillator, random timing errors accumulate because

the timing jitter at the end of each oscillation is the starting point of the next and thus the

random timing error of the output signal is the sum of timing errors of all previous

oscillations which results in poor long-term jitter performance. In contrast, in a DLL

based system, the random timing error accumulates only within one clock cycle as the

next cycle is triggered by the next output oscillation from the reference crystal frequency.

This results in an excellent long-term jitter performance.

a) DLL Performance Analysis:

 The two main performance specifications for a DLL based clock recovery circuit

is the phase noise and spurious tones. This section discusses briefly these performance

metrics.

1) Phase Noise: It is defined as the random timing fluctuation of the clock as shown in

figure 2. The random timing jitter in the time domain manifests itself as phase noise (Fig

3) in the frequency domain. An ideal oscillator generates a pure sine wave without any

jitter which corresponds to a single line in the frequency domain representation.

Fig 2: Timing Jitter

Fig 3: Oscillator power spectrum (composed of phase noise)

 Phase noise is typically measured as the power spectral density of the noise as a

function of the frequency compared to the carrier power at the carrier frequency specified

in dBc/Hz. The phase noise of a DLL based system is affected by two main factors

namely the phase noise of the input frequency by the crystal oscillator and the phase

noise contribution by the delay chain. Generally the reference frequency is generated

using high quality crystal oscillators and the phase noise due to this is ignored. The

analysis of the phase noise of a delay chain is done in [2]. It assumes that the delay chain

is driven by a perfect crystal and each element of the delay chain provides exactly the

same delay. For the 5-stage delay chain, the power spectral density of the phase noise is

given by:

where Ώ is digital frequency. The following figure shows the plot of this function.

Fig 4: Phase noise plot for 5 stage delay example

 The timing error in a DLL accumulates over only one cycle of the input

frequency. Hence the random timing error in one cycle is independent or uncorrelated to

the random timing error of the next cycle. Thus there is a flat region in the phase noise

plot and rolls off as the two timing indices approach each other within the period of the

reference crystal frequency.

3) Spurious Tones: While timing jitter manifests itself as phase noise with a range of

frequencies in the frequency spectrum, spurious tones result in spikes in the frequency

domain as shown below:

Fig 5: Spurious tones

 The main contributor to spurious tones is mismatches between the different

elements of the delay chain. If one of the delay stages has a mismatch mainly because of

process variation, then the delay through it might be shorter/longer compared to the delay

of the other stages. Thus the output of the delay chain is shifted by this amount. Since the

DLL is locked to the reference frequency, this mismatch also occurs at the same

frequency in the output spectrum. Figure shows this effect in the time domain for a 5

stage delay chain.

Fig 6: Delay stage mismatch.

b) Design Information:

 The focus of the project will be to build a process invariant delay cell so that the

time periods of the synthesized output will be equal. The time period of the synthesized

waveform is affected by the delay of each cell. One point to be noted is that we assume

that the other blocks of the DLL such as the edge combiner are functioning ideally. The

main factor affecting the delay of the cell will be the mismatch of the various parameters

of the transistors in the delay cell. Suppose for example the threshold voltage of a

transistor driving the output in a delay cell decreases, the delay through the particular cell

decreases. In order to overcome these variations of the transistor parameters of each delay

cell careful circuit design is required. The most important parameters to be considered for

process variations are threshold voltage, dL and dZ effects. However, the dL and dZ

effects are not predominant in the technology we will be using for the project (0.5um)

compared to say in a real industrial process like 45nm. So the scope of this project will be

limited to mitigating the effects of threshold voltage variations only. The strategies

planned to reduce the effect of the threshold voltage variations are:

1) Sizing: Determine effective sizing of the transistors in the standard delay cell so

that process variation is minimized.

2) Calibration: Include means of calibrating the delay cell to adjust Vt of critical

transistors to equalize the delays. Thus suggest an alternate/modified architecture

for the delay cell.

c) Module Level Details and Circuits

 The main blocks of the DLL are the Voltage Controlled Delay Line (VCDL),

phase detector, charge pump and the calibration circuitry. The following sections explain

briefly the design of each of the modules.

i) Voltage Controlled Delay Line:

 The current starved inverter has been chosen as the delay cell for its simplicity in

controlling the delay by using the bias voltage. Figure shows the schematic of the

current-starved inverter:

Fig 7: Delay Cell Schematic

 The delay cell is a single-ended inverter, consisting of P2 and N3 in series

with P0 and N1 operating in the triode region. The delay of the circuit is determined by

the equivalent resistance of P0 and N1 which in turn is controlled by the bias voltage. An

additional buffer comprising of P1 and N4 serves as an output buffer for high frequency

operation. The circuit performs a rail to rail operation, so it consumes no static power.

Delay Cell Characterization: An accurate analysis of the circuit was performed in order to

determine the delay through the circuit. It is to be noted that changing the value of

Vcontrol does not affect the delay through the second stage inverter. So first an

expression for the delay through the first stage was determined as a function of Vdc and

the circuit parameters. The delay of the circuit for a transition from a ‘0’ to ‘1’ in turn

consists of three parameters. When Vref changes from Vdd to zero, the PMOS transistors

in turn drive the output node to high voltage. Initially both transistors P0 and P2 will be

in saturation until the output voltage becomes equal to ‘Vt’, the threshold voltage. This

time is given by

2

000

2

000

2

2

333

1

])()[()(])()[()(

)(])()[()(

NNgsNoxnPtpPgsP

ptpoutptppgsp

VtnV
L

WCVV
L

W

VCVV
L

W

T
−−

−
=

µ

Then P2 comes out of saturation but P0 is still working in the saturation. The time instant

until which even P0 comes out of saturation is given by

2

000

2

3

0

2

])()[())(
2

(

]})({
)(

)(
)([

PtpPgsP
ox

p

Notndc

P

N

p

n
ddout

VV
L

WC

VV

L
W

L
W

VC

T

−

−−

=
µ

µ
µ

The third region is when both transistors are in saturation. This time is given by:

)(
3

tpddp

out

VV

C
T

−
=

β

The transition time from low to high voltage is the sum of these three time

instants. In order to minimize their variations due to variations in threshold voltage, we

can differentiate the total time with respect to each of the threshold voltages which affect

the delay namely those of N0, P0, P2 and P3 and equate it to zero. On the basis of this,

we can conclude that (W/L)N0 and (W/L)P0 should be sufficiently high and (W/L)P3

should be sufficiently low. This agrees well with one’s intuition as in order to make the

current and hence the delay less sensitive to voltage variations, one should have a

sufficiently high current which is set by having a high ratio for the mirror transistors P0

and P3. A similar analysis was carried out for the fall time for which the bias current is

set by the transistor N1 which is made sufficiently big in order to reduce the variations.

 A monte carlo simulation was carried out for estimating the delay variation before

and after optimization. The following figure shows the results. The standard deviation has

shown a remarkable reduction from 4.459ps to 2.097ps which is more than a 50%

reduction in the variation.

Fig 8: Delay variation for 500 simulations. (Before optimization)

Fig 9: Delay variation for 500 simulations (After optimization)

ii) Phase Detector: A circuit that can detect both phase and frequency detectors proves

extremely useful because it significantly increases the acquisition range of the DLL.

Unlike XOR gates, PFD’s generate two outputs that are not complementary Figure shows

the schematic of the phase detector

Fig 10: Schematic of the Phase Frequency Detector.

Signals Va and Vb act as clock signals of the two D flip flops. We note that UP and

Down signals are zero, then a transition on Va causes UP tp go high. Subsequent

transitions on Va have no effect on the UP signal, and when Vb goes high, the AND gate

activates the reset of both the flip flops. Thus UP and Down signals are simultaneously

high for a duration given by the total delay through the AND gate and the reset path of

the flip flops. Accurate matching is required between the signals UP and Down currents

as mismatches causes ripple on the control voltage, which can lead to spurs in the output

spectrum. To achieve a better matching between the signals UP and Down, extra delay is

inserted in the reset path to increase the pulse width of both the signals by the same

amount.

iii) Charge Pump: A phase detector and a low pass filter arrangement without a Charge

Pump has the disadvantage that the charge deposited on the capacitor after each phase

comparison decays. In a charge pump on the other pump, there is negligible decay of

charge between phase comparison instants. An important conclusion of this is that even

infinitesimal phase error would result in an indefinite accumulation of charge on the filter

capacitor. Shown in the Fig 11 is a charge pump with a unity gain feedback amplifier,

which was constructed using an op-amp. This serves to keep both the voltages same

when switches P1 and N1 controlled by UPbar and Down, thus eliminating the charge

sharing problem between the parasitic capacitors and the loop filter. The Bandwidth of

the DLL is dependent upon the biasing current of the charge pump, a higher current

making it wide-band. The bias current will be made as an external input.

Fig 11: Schematic of the Charge Pump

The op-amp used in the charge pump is a basic two-stage op-amp optimized for a

unity gain frequency of 36MHz and a phase margin of 105
o
. Figure 12 shows the

schematic of the two stage op-amp. The op-amp is biased using the same current source

as the charge-pump with the current being adjusted by the use of current mirror circuit.

iv) Loop Filter: The loop filter just consisted of a capacitance which controls the Vcntrl

fed to the delay cells. The value of the capacitance decides the settling time of the DLL, a

low capacitance ensuring a fast settling time. The value of the capacitance can be

calculated from the equation:

)2(

)(

Π××

×
=

C

IK cpd

pω

where wp is the pole frequency, Kd is the delay cell gain, Icp is the charge pump current

and C is the capacitance. A nominal value of 50pF has been used as of now for a fast

settling time and a proper, pole-zero analysis needs to be done depending on the

bandwidth requirements.

Fig 12: Schematic of the 2-stage op-amp

d) DLL Operation: All the components of the DLL were wired up together and tested for

the lock operation. A total of 12 delay cells were used in the delay chain with 3 of the

delay cells configured as a set in order to use it as a ring oscillator during initial setting of

the control voltage. This will be explained in the later sections. An input frequency of

500MHz was supplied. The following figure shows the transient waveforms of each of

the delay cells and the control voltage. The total delay through the delay chain slowly

adjusts itself to the period of the input signal as shown below.

Fig 13: Transient simulation of the DLL

Fig 14: Transient simulation of the DLL – in unlocked state (at start time)

Fig 15: Transient simulation of the DLL – in locked state (at end time)

e) Approach for mitigating process variation:

 As explained earlier 3 of the delay cells will be used as a ring oscillator. The idea

is to configure each of the set of 3 delay cells as a ring oscillator. The frequency of each

of the 4 ring oscillators is measured using a single high speed counter in a time

multiplexed fashion. The frequency of oscillation of the ring oscillator is directly

proportional to the delay through the delay cells. By adjusting the frequency of

oscillations of each of the ring oscillators to the same value, we ensure that each delay

cell produces a fixed delay independent of variations in the threshold voltage.

However, the ring oscillator produces a high frequency of around 1GHz and

counting the frequency using a normal flip-flop did not yield expected results. Hence a

flip flop using a ratioed logic D-latch was designed. This flip flop was used in a

asynchronous counter in order to eliminate the logic gates otherwise necessary in a

synchronous counter and maximize the frequency of operation. Figure 16 and 17 shows

the schematic of the flip flop and the 8-bit asynchronous counter respectively. Figure 18

shows the output of the asynchronous counter when its clock input is fed from one stage

of the ring oscillator discussed above.

Fig 16: Ratioed Logic D flip flop

Fig 17: 8-bit asynchronous counter

 The loop around one set of the delay cells (3 in number) was closed and the

following figure shows the output from the ring oscillator and the counter output.

Fig 18: Output from the ring oscillator and the asynchronous counter

 The 4 ring oscillators are operated sequentially with the output being fed to the

same asynchronous counter in a time multiplexed fashion. The values of the count

obtained from each of the ring oscillators are directly proportional to the delay through

the cells. These count values can be used to calibrate the delay cell so that each of set of 3

delay cells is identical. The variation in the threshold voltage can be adjusted to equalize

the delay by using body bias technique which in turn controls the current through the cell.

A higher current results in lesser delay while a lower current results in higher delay.

However using the adaptive body bias technique has the following disadvantages:

1) Short channel effects namely Vt-roll-off and drain induced barrier lowering

(DIBL) degrade further with body bias.

2) Within-die Vt-variation due to within-die variation in the critical dimension will

depend on Vt-roll-off and DIBL. Hence, within die Vt-variation increases with

body biasing.

3) The increase in within-die Vt-variation due to adaptive body bias worsens with

scaling and is more pronounced under aggressive Vt-scaling.

4) The control variable obtained from the asynchronous counter is digital in nature

and requires a Digital-to-analog converter to obtain a suitable body voltage for

Adaptive body biasing.

A possible solution to this problem is to directly control the current supplied to the

current-starved inverter of the delay cell. This can be achieved by splitting the big current

mirror transistor which supplies current to the inverter branch into smaller transistors of

increasing width. Then depending on the value obtained from the digital logic, we can

switch ON/OFF some of the transistors such that it supplies the required current. Figure

19 shows the schematic which implements the above proposal. In the schematic shown,

the output bits from the counter (bo to b7) control the transistors which operate as

switches in order to enable/disable the particular branch from sourcing current through

Fig 19: Modified schematic of the delay cell

the inverter branch. By having the transistor widths in an increasing order starting from

the minimum width, we can have a wide range of control over the delay. In the present

context, the transistors are starting from 0.9 um, the minimum width and increases in

multiples of the minimum width up to 7.2 um. By this arrangement, simulated results for

the delay through the circuit could be varied from 0.2 ps to 2.3 ps which would be

sufficient for the present application.

 The enabling of the each of the set of delay cells to function as a ring oscillator is

controlled by digital logic. An input initial_enable triggers off the digital logic which in

turn sequentially enables four output signals ring_osc1_enable, ring_osc2_enable,

ring_osc3_enable and ring_osc4_enable for a fixed amount of time (Refer appendix for

verilog code). Subsequent pulses on the input again enable each of the oscillators

sequentially one at a time. So whenever a calibration is required, a pulse needs to be

applied to this input. The behavioral verilog code was tested for its operation and then

synthesized using Synopsys. These digital signals close the loop around the particular

ring oscillator. All the four outputs of the ring oscillators are fed to the asynchronous

counter using a multiplexer.

Fig 20: Schematic of the proposed DLL

However, since the output from one ring oscillator is connected to the next ring

oscillator, the drive from one oscillator can affect the output of the next one. Hence, we

disable the power supplied to the other ring oscillators when one is enabled. This is done

by using a huge PMOS pass transistor to enable the power supply. The enabling condition

is when the particular ring oscillator is intended to run and also during the normal

operation of the DLL. The control voltage for the voltage controlled delay line (VCDL)

was intended to be constant during the calibration process. Hence a constant control

voltage was provided during this phase. This was achieved using transmission gates and a

constant supply voltage of 2V which is planned to be made as an input pin. Figure 20

shows the full schematic of the proposed DLL with process variation calibration. For

initial testing, all the binary inputs of the delay cell were given a high input.

However, there were issues with regard to the drive strength of the transistors and

the ring oscillators do not function properly. Hence, the circuit was isolated with only the

part required for the configuration of 2 of the ring oscillators taken into account and the

sizes of the transistors were adjusted. Also, the feedback path closed by the transmission

gate was not capable of driving the first inverter of the ring oscillator. Hence, two

inverters were added in the feedback path. Figure 21 shows the reduced schematic and

figure 22 shows the waveforms obtained from the same. It is to be noted that the second

output displayed is being driven when either of them is enabled. However, it is being

driven only upto half the supply rail when the second oscillator is enabled. Another

important point to consider during this design was not to add any switches in between the

ring oscillators as this directly affects the DLL operation in normal mode.

Figure 21: Reduced schematic of the proposed DLL

Fig 22: Ring oscillator outputs

 The simulation of the whole system is to be done and there might be minor

changes in the device sizes in order to operate the ring oscillators properly. The system

level analysis of the DLL needs to done using Matlab. Together with this, to run the

simulations faster for the whole system in Cadence, Verilog-A models for the phase

detector and charge pump were used (refer Appendix).

IV. Fabrication and Testing

 The DLL is planned to be fabricated in the AMI 0.6 micron technology over the

summer. Following is a list of the system level inputs and outputs for the design:

Inputs:

VIN: The input signal

 initial_enable: A pulse signaling the start of the calibration of the delay cells.

 Vctrl_in: Bias voltage of 2v to operate the delay cells during the calibration.

 Power supply: Vdd (+5V) and gnd (0V)

Outputs:

 Vout: The output signal

 Apart from this, we can tape out any intermediate signals for debugging mainly

the output from each of the set of delay cells (oscillators during calibration), the count

values etc.

 For testing of the DLL, since the 0.6 um is not expected to have a high degree of

process variation, some of the transistors can be given a body voltage in order to increase

the threshold voltage. For the twin well process (0.6 um), only the body voltage of PMOS

could be changed and hence we plan to make this is an input to our system.

References:

1) T.-C. Chen, “Where CMOS is going: Trendy hype versus real technology,” in IEEE

Int. Solid-State Circuits Conf. (ISSCC) 2006 Dig. Tech. Papers, Feb. 2006, pp. 22-28.

2) P.R.Kinget, “Device mismatch and tradeoffs in the design of analog circuits,” IEEE J.

Solid-State Circuits, vol. 40, no. 6, pp. 1212-1224, Jun. 2005

3) J. Tschanz et al., “Adaptive Body Bias for Reducing Impacts of Die-to-Die and

Within-Die Parameter Variations on Microprocessor Frequency and Leakage,” Proc. Int’l

Solid-State Circuits Conf. (ISSCC 02), IEEE Press, Piscataway, N.J., 2002, pp. 422-423.

4) Anand M. Pappu, Xuan Zhang, Andre V. Harrison, and Alyssa B. Apsel, “Process-

Invariant Current Source Design: Methodology and Examples.

5) George Chien and Paul R. Gray, " A 900-MHz Local Oscillator using a DLL-based

Frequency Multiplier Technique for PCS Applications," IEEE Journal of Solid-State

Circuits, Volume 35, Issue 12, Dec. 2000 Page(s):1996 – 1999

6) Low-jitter and process independent DLL and PLL based on self biasedtechniques

Maneatis, J.G. Solid-State Circuits Conference, 1996. Digest of Technical Papers. 43rd

ISSCC. 1996 IEEE International Volume, Issue, Feb 1996 Page(s):130 - 131, 430

7) D. A. Johns and K. Martin, “Analog Integrated Circuit Design”. NewYork: Wiley,

1997.

Appendix:

I) Verilog code for enabling the ring oscillators sequentially:
//Verilog HDL for "Research", "Controller" "behavioral"

module ring_osc_controller (initial_enable, CLK, reset,

ring_osc1_enable, ring_osc2_enable,

 ring_osc3_enable, ring_osc4_enable,temp_enable, flag);

input initial_enable;

input CLK;

input reset;

output ring_osc1_enable;

output ring_osc2_enable;

output ring_osc3_enable;

output ring_osc4_enable;

output temp_enable;

output flag;

reg [7:0] osc_count_temp;

reg ring_osc1_enable;

reg ring_osc2_enable;

reg ring_osc3_enable;

reg ring_osc4_enable;

reg temp_enable;

reg flag;

always @(posedge initial_enable or posedge flag or posedge reset)

begin

 if (reset == 1)

 temp_enable = 0;

 else if (flag == 1)

 temp_enable = 0;

 else if (initial_enable == 0)

 temp_enable = 0;

 else if (initial_enable == 1)

 temp_enable = 1;

end

always @(posedge CLK or posedge reset)

begin

 if (reset == 1)

 osc_count_temp <= 8'h00;

 else if(temp_enable == 1)

 begin

 osc_count_temp <= osc_count_temp + 8'h01;

 if(osc_count_temp == 8'h01)

 ring_osc1_enable <= 1;

 else if(osc_count_temp == 8'h3D)

 begin

 ring_osc1_enable <= 0;

 ring_osc2_enable <= 1;

 end

 else if(osc_count_temp == 8'h79)

 begin

 ring_osc2_enable <= 0;

 ring_osc3_enable <= 1;

 end

 else if(osc_count_temp == 8'hB5)

 begin

 ring_osc3_enable <= 0;

 ring_osc4_enable <= 1;

 end

 else if(osc_count_temp == 8'hF1)

 begin

 ring_osc4_enable <= 0;

 flag = 1;

 end

 end

 else if(temp_enable == 0)

 begin

 flag = 0;

 ring_osc1_enable <= 0;

 ring_osc2_enable <= 0;

 ring_osc3_enable <= 0;

 ring_osc4_enable <= 0;

 end

end

endmodule

II) Verilog-A model for the phase detector:
// VerilogA for PFD_va, veriloga

//

// Implements a 3-state phase-frequency detector, outputs are active

low

`include "constants.h"

`include "discipline.h"

`define TIME_TOL 10e-12

`define VOLT_TOL 1e-6

module PFD_va(in1, in2, up_b, dn_b);

output up_b, dn_b;

input in1, in2;

electrical in1, in2, up_b, dn_b;

parameter real VOH = 1.80;

parameter real VOL = 0.00;

parameter real Vmid = 0.9;

parameter real tdel = 1e-10;

parameter real trise = 5e-11;

parameter real tfall = 5e-11;

integer state;

real vout, up_b_out, dn_b_out;

analog begin

 @(initial_step) begin

 state = 2;

 up_b_out = VOL;

 dn_b_out = VOL;

 end

 @(cross (V(in1)-Vmid, -1, `TIME_TOL, `VOLT_TOL))

 begin

 if (state == 3)

 state = 3;

 else

 state = state + 1;

 if (state == 2) begin

 up_b_out = VOH;

 dn_b_out = VOH;

 end

 else begin

 up_b_out = VOL;

 dn_b_out = VOH;

 end

 end

 @(cross (V(in2)-Vmid, -1, `TIME_TOL, `VOLT_TOL))

 begin

 if (state == 1)

 state = 1;

 else

 state = state - 1;

 if (state == 2) begin

 up_b_out = VOH;

 dn_b_out = VOH;

 end

 else begin

 up_b_out = VOH;

 dn_b_out = VOL;

 end

 end

 V(up_b) <+ transition(up_b_out, tdel, trise, tfall);

 V(dn_b) <+ transition(dn_b_out, tdel, trise, tfall);

end

endmodule

III) Verilog-A model for the charge pump:
// VerilogA for EE536, CP_va, veriloga

//

// The up_b and dn_b inputs are active low

// The up and down currents are specified in Volts at the up_cur and

dn_cur

// inputs. One volt represents 1 uA.

`include "constants.h"

`include "discipline.h"

module CP_va(up_b, dn_b, up_cur, dn_cur, out);

input up_b, dn_b, up_cur, dn_cur;

output out;

electrical up_b, dn_b, up_cur, dn_cur, out;

integer up_flag, dn_flag;

real up_current, dn_current;

analog begin

 @(initial_step) begin

 up_current = V(up_cur)*1e-6;

 dn_current = V(dn_cur)*1e-6;

 if (V(up_b)>0.9)

 up_flag = 0;

 else

 up_flag = 1;

 if (V(dn_b)>0.9)

 dn_flag = 0;

 else

 dn_flag = 1;

 end

 @(cross(V(up_b)-0.9, +1)) begin

 up_flag = 0;

 end

 @(cross(V(dn_b)-0.9, +1)) begin

 dn_flag = 0;

 end

 @(cross(V(up_b)-0.9, -1)) begin

 up_flag = 1;

 end

 @(cross(V(dn_b)-0.9, -1)) begin

 dn_flag = 1;

 end

 I(out) <+ - (up_flag * up_current) + (dn_flag * dn_current);

end

endmodule

