Test of Decompression module
Meysam Taassori

Abstract — This assay is trying to explain the
process of test of a decompression module. This
module is implemented using Verilog and
simulated with Modelsim; all other steps from a
Verilog code describing the design to having a chip
have been done by Cadence tools. This chip is
fabricated in MOSIS 600nm and tested by
Tektronics family called LV500. This
decompression module is designed to use in
memory systems. Since there are a lot of
similarities in data is going to be saved in different
hierarchy of memory systems, compression and
decompression can be useful for these system to
tackle one of the most important problems of
memory systems, latency of memories.

. INTRODUCTION

As technology advances, the designers have more
transistors on a chip and in turn there are more faster
cores on one die; therefore, the number of request to
memory is increasing dramatically. On the other hand,
memories are implemented and optimized just for
capacity and in this situation they cannot cope with
this number of fast cores. That is, this introduces
performance bottleneck in future multicore systems.
In new technologies, the contribution of power
consumption in memory systems also is increasing;
this side effect is so important to servers where we
need so many memory capacities. These huge
numbers of memory is so power hungry and this
amount of power consumed in memory systems cause
some other problems including cost, high error rate
and so on. Briefly, the gap between CPUs and
memory systems is going to be exacerbated.

One approach to tackle these problems is to use
data compression in storage of data. According to
some observation, there are a lot of similarities in data
pattern resident in memory hierarchy, which make it
possible for compression to help improve
performance.

We implemented these compression schemes
using Verilog to description it in structural level. In
next step, this Verilog code is synthesized to provide
us with the gate level of this system. This step is
followed by placement and routing in 0.6 micrometer
technology using Cadence tools.

The rest of this report is organized as follows:
First the particular compression and decompression
algorithms used in this chip are explained and the
output of simulation of this module is depicted in
section 3. Then the method of test of this module is
discussed and MSA file used to test this module is
introduced. In section 5, we are going to explain some
difficulties we encountered in the test process.

Il. COMPRESSION ALGORITHM

Frequent Pattern Compression (FPC) is one
important way of compression to stop storing and
sending frequent data. Although the frequent data
differs from program to program, it is observed that
all-zero bytes are more frequent than other type of
bytes in most of programs. As a result, FPC is realized
by detecting zero-based patterns and removing
redundant parts. More precisely, a 64B cache line is
decomposed to sixteen 4B words. Then for each word
if it follows the pattern 0000, 000X, 00XY, or XYZT
FPC merely keeps 00,01X, 10XY, or 11XYZT,
respectively. Note that the underlined numbers
represent bits, whereas the other parts showed by
alphabets represent bytes, so FPC might lead to
significant savings with a small overhead. In addition
to simplifying the decompression process the
underlined bits are kept in the first word as metadata.
Figure 1 depicts the bitmap in an FPC-based
compressed line.

« 4B —

(a) |0005.-. ‘ 0000 ‘ 008,8B, B.I..BUB”B._,.,‘

(b) ‘mioo;ml- 11 B”‘ B, ‘B.-

| Tolelule

«— p —>€ 158 >

Figure 1: Bitmap of FPC Compression

Base Delta Intermediate (BDI) is a recent proposal
that proved to be effective for desktop applications.
BDI relies on the fact that the difference between
words in one cache is often limited. As such, BDI
keeps the difference (delta) of words with one base
value instead of keeping whole words. The base value
is typically the first word and the delta is typically

valued in the range of [-128,127] to fit in a byte.
Figure 2 illustrates bitmap for BDI.

4+ JB —»

D, = B,+delta0)

Pis = Bu+dellal%

|
v

o]

(a)

(b)| & [demo

4B + 4h =
Compression metodate

Figure 2: Bitmap of BDI

We use the implementation of FPC and BDI based on
proposals in [1] and [2]. Figure 3 shows the block
diagram for FPC compression unit.

8B, 16B,

32B, 648 Barrel Shifter 1

(64-to-4)

Barrel Shifter N
(64-to-4)

Figure 3: FPC Compression Unit

It mainly consists of three important parts: index
generator, barrel shifter, and pattern convertor. The
index generator simply generates an index. The index
is the position of the first non-zero byte of a word in
the compressed cache line, recalling that each word is
compressed to 2-bit metadata kept in the first word
and zero or more non-zero bytes. As we have 16
words per line, we need to generate 16 indices as well.
Since the rate of data arrival is 4B per cycle, these
indices are generated by one in each cycle.

The next important part is the barrel shifter. In
Cycle i the barrel shifter shifts the cache line, index(i)
position, so that the beginning of the non-compressed
part of the word matches the LSB position. So zero,
one, two, or four least significant bytes are the non-
compressed part of Word i. The next component, the
pattern convertor, decides how many of the first four
bytes after shifting belong to Word i by checking the

metadata associated with this word. It also fills zero
bytes when necessary, again based on metadata.

In [2] the authors considered complete a barrel
shifter in their design. We conclude that this is not
necessary. In fact, just the first four bytes are needed.
Therefore, we modified to Barrel shifter to shift the
line and just keep the first LSB after shift. This
significantly reduced the number of MUXes needed in
the barrel shifter. As DBI kept the difference (delta)
between each word and the first word, its
decompression is simply a bunch of adders to add up
the delta and base to find the original word.

I11. RESULT OF SIMULATION

To simulate the structural level model of the design, we use
Modelsim. In this stage, we prepare a testbench for this
design; our testbench is in charge of preparing different
input signals such as clock, reset, and data_in. Then, the
output signals will be get by this testbench and we can
check it if they are exactly the same as what we expect.
Figure 3 depicts the output and input waves of
decompression. As shown in figure 3, inputs including
“reset”, “clk”, “ready_in”, “number”, and “data_in” are set
in Modelsim and the outputs including “data_out” is get
from this simulator. “Reset” in this module would be set for
several clock period to make sure that circuit is getting
started from reset state. After reset is reset, the valid input
would be set to module in every period of clock. Since, in
this step, we are going to test the behavior of our circuit,
timing has no meaning. It is worth mentioning that in this
case, no cell has any delay and because of lack of definition
of delay, timing is not defined in this step.

IV. TEST METHODOLOGY

A. Tester

The tester we use in this test project is from family
called LV500 made by Tektronix in 1989-1991. This tester
has been designed in order to test of ASIC design. There are
two kinds of tester named LV512, and LV514. Both these
testers have many things in common but the most important
difference is about test head. Test head means the number
of input and output pins which are programmable
separately. This tester can test design with a clock whose
frequency is up to 50 MHz. this teset can handle 64000 test
vectors. Another important specification of this system is
ability to connect to network to upload and download the
files. LV512, LV54 have 192 and 128 test channels and 12
and 8 sectors respectively.

As shown in figure 4, we design some input vector tests;
design of this vectors is so important and we need to do it in
such a way that this set of vectors make us sure that this test
is as comprehensive as we could and need. The more

1010010100100
1001000010100
1110101001110
1010100010011
0100100010001

Input Vector Table

Actual
Output
Vectors

11010100101010
11110101010101
00101001010100
10010100010101
01010010010101

Figure 4 the methodology of test

powerful this set of tests is, the more reliable our
design would be. This vectors are given to our
design as inputs and the real output would be
received by tester. On the other hand, we can define
the outputs we are expecting from design. The
comparison between real outputs and expected
output is another duty of tester. Therefore, if the
outputs are the same the design is working correctly;
otherwise, there is an error or fault in our circuit. It
is evident that to do this test, we need both input test
vectors and expected outputs. Both of these
prerequisites can be ready just by means of
Modelsim. We can prepare a testbench for our
design and then define some inputs as the test
vector; after testing, Modelsim illustrates the
expected outputs.

B. Essential parts of a test

Each test we are going to conduct needs some
prerequisites; lack of one of these essentials can lead
some unexpected problem and consequently no

Figure 3 the result of simulation for decompression module

result we are expected would be achieved. These

parts are mentioned as follows.

1. Wired DUT (Design Under Test) card: this card
is in charge of connecting the pins of tester to
input and output of our design called DUT. The
mapping between input and output of our design
and tester is needed.

2. Tester configuration: we need to configure
voltage, current of tester properly. Moreover, we
need to set timing of design and tester; it means
that we need to clarify when inputs should be
applied and when the outputs need to be checked.
We need define for every channel of tester either
it is “force” or compare”; the former is for input
channel and the latter is dedicated to output
channels. We should notice to the point that
every channel of a tester might not be active and
we are allowed to use just active ones. The
structure of tester is composed of sectors and
each sector contains some channels; each channel
is dedicated to one input or output of our chip.
For example, LV512 has 16 sectors named 0 to F
and each sector has 16 channel; note that only
sectors called 0, 3-B are useable. Figure 5 is
depicting the card of LV512 and the active
sectors are highlighted.

3. A complete set of test vectors: we need to apply
these vectors and check if the outputs are equal
to what we are expected.

C. Configuration of test

In this sub chapter, we are going to explain entire
configuration we need to consider before starting a
test.

1. Mapping the output and input of our circuit to the
sector and channel of tester. In this step, we need
to define some groups including all pins of our
design. In fact, all pins which needs a same
timing can be considered as a group; for instance,
we can consider a group named “data_in” for all
pins of data and another group called data_out to
consider all output pins of data. In each group we
need to map the pins of that group to channels of
tester. For example, data_out0 is mapped to 9"
channel of sector A as follows
signal "data_out0" {

dut = "j10";

sector = OhA;

channel = 0h9;

}

Each group defined in first step has some
specifications including phase, when data should
be compared, when data should be forced or even
ignored.

2. Defining phase for every group. We can define
one phase for every group of pins. Each phase
has a delay showing when signal is getting up,
another parameter is width depicting how long it
would be up, and cycle length showing how long
each period takes.

3. Defining the force format: if signal is input, we
need to define force format for its group. This
format can be chosen from the set of “R1”, “R0”,
“DNRZL”, and “DNRZT”. This format along
with the phase we defined in step 2 can define
signals precisely.

4. Defining the compare format: if signal is output -

we need to compare it with what we expect.
Compare format we can choose is compare edge
T, edge L, and window;

5. In this step we need to define a template where
we set phases and function of each group.

6. Finally, we need to define pattern; the patterns
are just different inputs and different outputs
based on behavior of our chip, meaning that we
need to show what we expect from this system
under test.

All these parts of configuration can be mentioned in

a file with extension of “.msa”. When we run this

file in tester all these configuration parts would be

done automatically.

V. RESULT OF TEST

After preparing msa file, we can start running the
appropriate test. The result of tester is mentioned in
this chapter. We got the result in two different cases,
using logic analyzer, and using software of tester.

A. Using logic Analyzer

In this case, we connect the digital analyzer to the
input and output ports of our chip which are
connected to different channels and sectors of tester.
Therefore, we have this opportunity to monitor all
input ports and all output ports to make sure that
what we have defined in msa file is working well.
We assume different force formats for signal of
clock and in turn we got some different output
signals. In the following figures, channel 0, 1, 2-9,
10-15 are dedicated to “clock”, “reset”, “output
signals” and “input signals” respectively.
1. Clock format is “NRZL”

nm

Figure 6 output of logic analyzer in case 1

2. Clock RO and in pattern it is “0”
T

G TR e Lol « [l S R e
Figure 7 output of logic analyzer in case 1
Figure 6 and 7 shows that output of this chip is
strange and it is not what we expected. Although the
inputs of this circuit seem to be correct, the outputs
are getting stuck at zero or we can see some sparks

on that output.

B. Using software of tester

After entering the msa file, we configure the tester in
such a way that all our patterns have been entered
and we can start testing. When we changed the
format of clock as mentioned in previous section,
there were some differences in the output of system.

Eile Edit Yiew Explore Forpat Simglation Hindows Help

tadence

Bg B W n- | H-||MY
Search Hanes: Signal * H # # Search Tines: Value ~
z =~ ~ — -] & ol i 1 &
H: Tanofl ¥|=[57.000,000 ff lps » [t ~| 4u sp_ | I} hd O
Baselinewso

% & I

£r Cursor-Rasol inews 57,000, 000, 000ps.

2] Send To1 5 an TR g] —
& & DX RSN EE
o

B0 57,000,000, 00005 Tims: &'

Figure 8 output of file sent fabrication

When we assume that the format of clock is NRZL,
all output pins get stuck at 0 and there is no change
when the input pins change in our pattern.

These two method of test, using software and logic
analyzer, made us sure that the problem might be
searched in our design not in configuration of
tester. However, all other cases also were tested to
make quite sure that this is not because of some
wrong in configuration.

Finally, after investigating the files that we have
sent to fabrication to have our chip fabricated, |
found that mistakenly in those files there are many
flip flops that are not connected to either “reset” or
any function of reset. Therefore, we have many flip
flops whose reset state is not known and they are
starting from unknown state.

To make sure that our guess is right, we have
conducted a simulation using NC-Verilog with the
file we have sent fabrication. The result of this
simulation indicates that our guess unfortunately
was right and there are some serious problems in
our original file. Figure 8 shows the result of this
last experiment using. It indicates that even after
reset is high for enough period of time, some
outputs of our design are still unknown shown with
red wave in figure 8.

VI. CONCLUSION

In this essay, we were explaining how to test an
VLSI chip. We described our methodology for a
complete test. Furthermore, we introduced the
tester from family LV500 in this paper and how to
configure this tester. Finally, we showed the results
we earned with this tester in two methods, by
means of logic analyzer, and software of tester as
well. The results were upsetting and showed that
our chip does not work properly. To make sure that

this problem is not about our tester or any
configuration we have set, we conducted another
test using NC-Verilog; the result of this test also
confirmed that our chip has some serious problems
and does not work correctly. Our guess is that this
problem is about the file we have sent for
fabricating to fabrication.

VII. REFERENCES

[1] B. Abali, H. Franke, D. E. Poff, R. A. Saccone,
C. O. Schulz, L. M. Herger, and T. B. Smith.
Memory expansion technology (MXT):
software support and performance. IBM JRD,
2001.

[2] A. R. Alameldeen and D. A. Wood. Adaptive
cache compression for high performance
processors. In ISCA-31, 2004.

