
v2000.05 Guide to HDL Coding Styles for Synthesis
5
General Coding Style Guidelines 5

This chapter lists some general guidelines for writing HDL.

Unintentional Latch Inference

Incompletely specified if statements and case statements cause the
HDL Compiler tool to infer latches. The code segments shown in
Example 5-1 and Example 5-2 infer a latch, because the output,
data_out , is not assigned under all possible conditions.
/ 5-1HOME CONTENTS



v2000.05 Guide to HDL Coding Styles for Synthesis
Example 5-1 Verilog Showing Unintentional Latch Inference
always @(cond_1)
begin

if (cond_1)
data_out <= data_in;

end

Example 5-2 VHDL Showing Unintentional Latch Inference
process(cond1)
begin

if (cond_1 = ’1’) then
data_out <= data_in;

end if;
end process;

Example 5-1 and Example 5-2 result in latches because data_out
is not given a value when cond_1  is not equal to ’1’ . To prevent
HDL Compiler from inferring unintentional latches for these examples,
you should make a default assignment to data_out  outside the if
statement or add an else  branch to the if statement.

VHDL requires case statements to be completely specified
(incompletely specified case statements result in a syntax error). In
VHDL, latches are inferred if the output signal is not assigned in each
branch of the case statement.

Latches are inferred for incompletely specified case statements in
Verilog. To prevent this unintentional latch inference in Verilog, specify
all possible conditions in the case statement and assign the output
signal in each branch of the case statement.

For Verilog, you can also use the HDL Compiler full_case directive
with caution to tell HDL Compiler that the case statement is fully
specified. For additional information on the full_case directive, see
the HDL Compiler for Verilog Reference Manual.
/ 5-2HOME CONTENTS



v2000.05 Guide to HDL Coding Styles for Synthesis
To get HDL Compiler to issue a warning when latches are inferred,
set the variable hdlin_check_no_latch to true before HDL input.
You can also check the inference report after HDL input to see if any
latches were inferred.

For additional information on inference reports and HDL examples to
infer flip-flops and latches, see the HDL Compiler for Verilog
Reference Manual.

Incomplete Sensitivity Lists

Incomplete sensitivity lists can cause a simulation/synthesis
mismatch. HDL Compiler issues warnings for signals that are read in
a process or in an always  block but are not listed in the sensitivity
list. Sensitivity lists do not affect the logic generated by HDL Compiler,
but an incomplete sensitivity list can cause unexpected simulation
results, because the process does not trigger when necessary.

Consider the Verilog and VHDL code segments in Example 5-3 and
Example 5-4.

Example 5-3 Verilog With Missing Signal in Sensitivity List
always @(d or clr)

if (clr)
q = 1’b0

else if (e)
q = d;
/ 5-3HOME CONTENTS



v2000.05 Guide to HDL Coding Styles for Synthesis
Example 5-4 VHDL With Missing Signal in Sensitivity List
process(d, clr)
begin

if (clr = ’1’) then
q <= ’0’;

elsif (e = ’1’) then
q <= d;

end if;
end process;

In Example 5-3 and Example 5-4, the signal e is read, but it is not in
the sensitivity list. Assuming that clr  is stable at 0, a change in e
from 0 to 1 does not trigger the always block or process, so the value
of d does not get latched onto q. This behavior does not match the
behavior of the synthesized hardware.

Unnecessary Calculations in for Loops

Avoid placing expressions that do not change inside for loops. For
VHDL, HDL Compiler unrolls for loops, so the structure inferred is
repetitive. Moving unchanging expressions outside the loop prevents
Design Compiler from spending time optimizing redundant logic.

Example 5-5 is a statement that does not change value in a loop.

Example 5-5 Original VHDL With Unnecessary Statement in Loop
for I in 0 to 4 loop

sig1 <= sig2; -- unchanging statement
data_out(I) <= data_in(I);

end loop;

The unchanging statement should be pulled out of the loop, as shown
in Example 5-6.
/ 5-4HOME CONTENTS



v2000.05 Guide to HDL Coding Styles for Synthesis
Example 5-6 Improved VHDL With Statement Pulled out of Loop
sig1 <= sig2;
for I in 0 to 4 loop

data_out(I) <= data_in(I);
end loop;

Resource Sharing

Arithmetic operators are shared only if they occur in mutually
exclusive branches of if-then-else or case statements. Operators in
loops and conditional assignments in Verilog (using the conditional
operator ?) are not shared.

Example 5-7 shows a Verilog statement that uses the conditional
operator. Resource sharing does not take place for this example.

Example 5-7 No Resource Sharing for Conditional Operator in Verilog
z = (cond)?(a+b):(c+d);

However, resource sharing does take place for the equivalent if-then-
else statement in Example 5-8.

Example 5-8 Resource Sharing for equivalent if-then-else in Verilog
if (cond)

z = a+b;
else

z = c+d;

For additional information about resource sharing, see the HDL
Compiler for Verilog Reference Manual or the VHDL Compiler
Reference Manual.
/ 5-5HOME CONTENTS



v2000.05 Guide to HDL Coding Styles for Synthesis
/ 5-6HOME CONTENTS


	General Coding Style Guidelines
	Unintentional Latch Inference
	Incomplete Sensitivity Lists
	Unnecessary Calculations in for Loops
	Resource Sharing


