
v2000.05 Guide to HDL Coding Styles for Synthesis
4
High-Performance Coding Techniques 4

This chapter contains examples utilizing various high-performance
coding techniques.

Data-Path Duplication

The following examples illustrate how to duplicate logic in HDL to
improve timing.

In Example 4-1 and Example 4-2, CONTROL is a late arriving input
signal. The goal is to reduce the logic from CONTROL to the output
port COUNT.
/ 4-1HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Example 4-1 Original Verilog Before Logic Duplication
module BEFORE (ADDRESS, PTR1, PTR2, B, CONTROL, COUNT);
input [7:0] PTR1,PTR2;
input [15:0] ADDRESS, B;
input CONTROL; // CONTROL is late arriving
output [15:0] COUNT;

parameter [7:0] BASE = 8’b10000000;
wire [7:0] PTR, OFFSET;
wire [15:0] ADDR;

assign PTR = (CONTROL == 1’b1) ? PTR1 : PTR2;
assign OFFSET = BASE - PTR; //Could be any function f(BASE,PTR)
assign ADDR = ADDRESS - {8’h00, OFFSET};
assign COUNT = ADDR + B;

endmodule
/ 4-2HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Example 4-2 Original VHDL Before Logic Duplication
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity BEFORE is
port(ADDRESS, B : in std_logic_vector (15 downto 0);

PTR1, PTR2 : in std_logic_vector (7 downto 0);
 CONTROL : in std_logic; -- CONTROL is late arriving

COUNT : out std_logic_vector (15 downto 0));
end BEFORE;

architecture RTL of BEFORE is
begin

process (B, CONTROL, ADDRESS, PTR1, PTR2)
constant BASE : std_logic_vector (7 downto 0) := ”10000000”;
variable PTR, OFFSET : std_logic_vector (7 downto 0);
variable ADDR : std_logic_vector (15 downto 0);

begin
if CONTROL = ’1’ then

PTR := PTR1;
else

PTR := PTR2;
end if;

OFFSET := BASE - PTR; -- Could be any function f(BASE,PTR)
ADDR := ADDRESS - (”00000000” & OFFSET);

COUNT <= ADDR + B;
end process;

end RTL;

Figure 4-1 shows the structure implied by the original HDL.
/ 4-3HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Figure 4-1 Structure Implied by Original HDL Before Logic Duplication

In Figure 4-1, notice that there is a SELECT_OPnext to a subtracter.
When you see a SELECT_OP next to an operator, there is a good
chance that you can move the SELECT_OPto after the operator. You
might want to do this if the control signal for the SELECT_OP is late
arriving. You can move the SELECT_OPby duplicating the logic in the
branches of the conditional statement that implied the SELECT_OP.

In Figure 4-1, you can also see the signal that CONTROL selects
between two inputs. The selected input drives a chain of arithmetic
operations (the data path) and ends at the output port COUNT. If
CONTROL arrives late, you will want to move the selection closer to
the output port COUNT.

Example 4-3 and Example 4-4 show the improved HDL for
Example 4-1 and Example 4-2. The improved HDL shows the data-
path duplication described previously.

SELECT_OP

2

PTR1

PTR2

CONTROL

SUBTRACTER SUBTRACTER

ADDERBASE

8
00000000

16
COUNT

16

B
16
/ 4-4HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Example 4-3 Improved Verilog With Data Path Duplicated
module PRECOMPUTED (ADDRESS, PTR1, PTR2, B, CONTROL, COUNT);
input [7:0] PTR1, PTR2;
input [15:0] ADDRESS, B;
input CONTROL;
output [15:0] COUNT;

parameter [7:0] BASE = 8’b10000000;
wire [7:0] OFFSET1,OFFSET2;
wire [15:0] ADDR1,ADDR2,COUNT1,COUNT2;

assign OFFSET1 = BASE - PTR1; // Could be f(BASE,PTR)
assign OFFSET2 = BASE - PTR2; // Could be f(BASE,PTR)
assign ADDR1 = ADDRESS - {8’h00 , OFFSET1};
assign ADDR2 = ADDRESS - {8’h00 , OFFSET2};
assign COUNT1 = ADDR1 + B;
assign COUNT2 = ADDR2 + B;
assign COUNT = (CONTROL == 1’b1) ? COUNT1 : COUNT2;

endmodule

Example 4-4 Improved VHDL With Data Path Duplicated
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity PRECOMPUTED is
port (ADDRESS, B : in std_logic_vector (15 downto 0);

PTR1, PTR2 : in std_logic_vector (7 downto 0);
CONTROL : in std_logic;
COUNT : out std_logic_vector (15 downto 0));

end PRECOMPUTED;

architecture RTL of PRECOMPUTED is
begin

process (CONTROL, ADDRESS, B, PTR1, PTR2)
constant BASE : std_logic_vector (7 downto 0) := ”10000000”;
variable OFFSET2, OFFSET2 : std_logic_vector (7 downto 0);
variable ADDR1, ADDR2 : std_logic_vector (15 downto 0);
variable COUNT1, COUNT2 : std_logic_vector (15 downto 0);
begin

OFFSET1 := BASE - PTR1; -- Could be f(BASE,PTR)
/ 4-5HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
OFFSET2 := BASE - PTR2; -- Could be f(BASE,PTR)

ADDR1 := ADDRESS - (”00000000” & OFFSET1);
ADDR2 := ADDRESS - (”00000000” & OFFSET2);

COUNT1 := ADDR1 + B;
COUNT2 := ADDR2 + B;

if CONTROL = ’1’ then
COUNT <= COUNT1;

else
COUNT <= COUNT2;

end if;

end process;

end RTL;

When you duplicate the operations that depend on the inputs PTR1
and PTR2, the assignment to COUNT becomes a selection between
the two parallel data paths. The signal CONTROLselects the data path.
The path from CONTROL to the output port COUNT is no longer the
critical path, but this change comes at the expense of duplicated logic.

In Example 4-3 and Example 4-4, the entire data path is duplicated,
because CONTROL arrives late. Had CONTROL arrived earlier, you
could have duplicated only a portion of the logic, thereby decreasing
the area expense. The designer controls how much logic is
duplicated.

In addition, the amount of duplication is proportional to the number
of branches in the conditional statement. For example, if there were
four PTR signals in Example 4-1 and Example 4-2 instead of two
(PTR1 and PTR2), the area penalty would be larger, because you
would have two more duplicated data paths.

Figure 4-2 shows the structure implied by the improved HDL.
/ 4-6HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Figure 4-2 Structure Implied by Improved HDL With Data Path Duplication

Table 4-1 shows the timing and area results for the original and the
improved HDL shown in Example 4-1, Example 4-2, Example 4-3,
and Example 4-4. The timing numbers are for the path from
CONTROL to COUNT[9], which was the worst path in the original
design.

In conclusion, the improved design with the data path duplicated is
much better with respect to timing. As expected, the area is worse
for the improved design. If you want to optimize your design for timing

Table 4-1 Timing and Area Results for Data-Path Duplication

Data Arrival Time Area

Original Design 5.23 1057

Improved Design 2.33 1622

SELECT_OP

2

PTR1

PTR2

CONTROL

SUBTRACTER
SUBTRACTER

ADDER
BASE

8

00000000

16

COUNT

16

B
16

ADDRESS

DUPLICATED
LOGIC

SUBTRACTER
SUBTRACTER

ADDER

00000000
16

16

B
16

ADDRESSBASE

8

/ 4-7HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
and are less concerned about area, data-path duplication is the
recommended methodology. Note that logic duplication also
increases the load on the input pins.

Operator in if Condition

Example 4-5 and Example 4-6 show Verilog and VHDL designs that
contain operators in the conditional expression of an if statement. The
signal A in the conditional expression is a late arriving signal, so you
should move the signal closer to the output.

Example 4-5 Original Verilog With Operator in Conditional Expression
module cond_oper(A, B, C, D, Z);
parameter N = 8;
input [N-1:0] A, B, C, D; //A is late arriving
output [N-1:0] Z;

reg [N-1:0] Z;

always @(A or B or C or D)
begin

if (A + B < 24)
Z <= C;

else
Z <= D;

end

endmodule
/ 4-8HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Example 4-6 Original VHDL With Operator in Conditional Expression
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity cond_oper is
generic(N: natural := 8);
port(A, B: in std_logic_vector(N-1 downto 0);
 -- A is late arriving

C, D: in std_logic_vector(N-1 downto 0);
Z: out std_logic_vector(N-1 downto 0));

end cond_oper;

architecture one of cond_oper is
begin

process(A, B, C, D)
begin

if (A + B < 24) then
Z <= C;

else
Z <= D;

end if;
end process;

end one;

Figure 4-3 shows the structure implied by the original HDL in
Example 4-5 and Example 4-6. The signal A is an input to the adder
in Figure 4-3.
/ 4-9HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Figure 4-3 Structure Implied by Original HDL With Late Arriving A Signal

You want to reduce the number of operations that have the signal A
in their fanin cone. Example 4-7 and Example 4-8 show the
improved HDL for Example 4-5 and Example 4-6.

Example 4-7 Improved Verilog With Operator in Conditional Expression
module cond_oper_improved (A, B, C, D, Z);
parameter N = 8;
input [N-1:0] A, B, C, D; // A is late arriving
output [N-1:0] Z;

reg [N-1:0] Z;

always @(A or B or C or D)
begin

if (A < 24 - B)
Z <= C;

else
Z <= D;

end
endmodule

ADDER

A

B COMPARATOR

SELECT_OP

C

D
Z

24

2

/ 4-10HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Example 4-8 Improved VHDL With Operator in Conditional Expression
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity cond_oper_improved is
generic (N : natural := 8);
port (A, B : in std_logic_vector(N-1 downto 0);
 -- A is late arriving

C, D : in std_logic_vector(N-1 downto 0);
Z : out std_logic_vector(N-1 downto 0));

end cond_oper_improved;

architecture one of cond_oper_improved is
begin

process(A, B, C, D)
begin

if (A < 24 - B) then
Z <= C;

else
Z <= D;

end if;
end process;

end one;

Figure 4-4 shows the structure implied by the improved HDL. The
signal A is an input to the comparator in Figure 4-4.
/ 4-11HOME CONTENTS

v2000.05 Guide to HDL Coding Styles for Synthesis
Figure 4-4 Structure Implied by Improved HDL With A as Input to
Comparator

Table 4-2 shows the timing and area results (given that A is a late
arriving input) for the original and improved HDL shown in
Example 4-5, Example 4-6, Example 4-7, and Example 4-8. The
timing results are for the worst path in the design.

Table 4-2 Timing and Area Results for Conditional Operator Examples

Data Arrival Time Area

Original Design 4.33 411.1

Improved Design 3.89 271.0

24

B
COMPARATOR

SELECT_OP

C

D
Z

2

SUBTRACTER

A

/ 4-12HOME CONTENTS

	High-Performance Coding Techniques
	Data-Path Duplication
	Operator in if Condition

